
The NetLogo 7.0.2 User Manual

Table of Contents

1. The NetLogo 7.0.2 User Manual

2. What is NetLogo?

2.1 Features

3. Copyright and License Information

3.1 How to reference

3.2 Acknowledgments

3.3 NetLogo license

3.4 Commercial licenses

3.5 NetLogo User Manual license

3.6 Open source

3.7 Third party licenses

3.7.1 Scala

3.7.2 MersenneTwisterFast

3.7.3 Colt

3.7.4 Config

3.7.5 Apache Commons Codec (TM)

3.7.6 Flexmark

3.7.7 JHotDraw

3.7.8 JOGL

3.7.9 Matrix3D

3.7.10 ASM

3.7.11 PicoContainer

3.7.12 Parboiled

3.7.13 RSyntaxTextArea

3.7.14 JCodec

3.7.15 Java-Objective-C Bridge

3.7.16 Webcam-capture

3.7.17 Guava

3.7.18 Gephi

3.7.19 JSSC

3.7.20 Apache Commons CSV

3.7.21 JTS Topology Suite

3.7.22 Apache Commons HTTPClient

3.7.23 Apache Commons Logging

3.7.24 ng-units

3.7.25 Tinfour

3.7.26 json-simple

3.7.27 hid4java

3.7.28 JAMA

3.7.29 Gson

4. What's new?

4.1 Version 7.0.2 (October 2025)

4.1.1 Major bugs fixed

4.2 Version 7.0.1 (October 2025)

4.2.1 Bundled software to open multiple instances of NetLogo on Mac

4.2.2 Interface changes

4.2.3 Changes to NetLogo Web export

4.2.4 Major bugs fixed

4.2.5 Minor bugs fixed

4.3 Version 7.0.0 (September 2025)

4.3.1 Changes in NetLogo Functionality

4.3.2 Changes to the NetLogo GUI

4.3.3 Changes to the NetLogo File format

4.3.4 Changes in Primitive Functionality

4.3.5 Changes for Customizability

4.3.6 Features and Enhancements

4.3.7 Language Changes

4.3.8 Bug Fixes and Minor Changes

4.3.9 Extension Updates

4.3.10 Documentation Updates

4.3.11 Models Library Changes

4.4 Version 6.4.0 (November 2023)

4.4.1 BehaviorSpace New Features

4.4.2 Language Changes

4.4.3 Bug Fixes and Changes

4.4.4 Extension Updates

4.4.5 Documentation Updates

4.4.6 Models Library Changes

4.5 Version 6.3.0 (September 2022)

4.5.1 Bug Fixes and Changes

4.5.2 Extension Updates

4.5.3 Documentation Updates

4.5.4 Models Library Changes

4.6 Version 6.2.2 (December 2021)

4.6.1 Fixes and Changes

4.7 Version 6.2.1 (October 2021)

4.7.1 Features and Changes

4.7.2 Documentation Updates

4.7.3 Bugfixes

4.7.4 Models Library Changes

4.8 Version 6.2.0 (December 2020)

4.8.1 Features

4.8.2 Bugfixes

4.8.3 Logging Improvements

4.8.4 NetLogo 3D Bugfixes

4.8.5 Extension Changes

4.8.6 Documentation Changes

4.8.7 Model Changes

4.8.8 Alternative Visualization Updates:

4.9 Version 6.1.1 (September 2019)

4.9.1 Bugfixes

4.9.2 Features

4.9.3 Extension Changes

4.9.4 Documentation Changes

4.9.5 Model Changes

4.10 Version 6.1.0 (May 2019)

4.10.1 Feature Changes

4.10.2 Bugfixes

4.10.3 Extension Changes

4.10.4 Documentation Changes

4.10.5 Model Changes

4.11 Version 6.0.4 (June 2018)

4.11.1 Feature Changes

4.11.2 Bugfixes

4.11.3 Documentation Changes

4.11.4 Model Changes

4.12 Version 6.0.3 (March 2018)

4.12.1 Feature Changes

4.12.2 Documentation Changes

4.12.3 Bugfixes

4.12.4 Extension Changes

4.12.5 Documentation Changes

4.12.6 Model Changes

4.13 Version 6.0.2 (August 2017)

4.13.1 Feature Changes

4.13.2 Bugfixes

4.13.3 Extension Changes

4.13.4 Documentation Changes

4.13.5 Model Changes

4.14 Version 6.0.1 (March 2017)

4.14.1 Feature Changes

4.14.2 Bugfixes

4.14.3 Extension Changes

4.14.4 Documentation Changes

4.14.5 Models

4.15 Version 6.0 (December 2016)

4.15.1 Feature Changes

4.15.2 Bugfixes

4.15.3 Language Changes

4.15.4 Extension Changes

4.15.5 Operating System Support

4.15.6 Documentation Changes

4.15.7 Internationalization Changes

4.15.8 Models

4.16 Version 5.3.1 (February 2016)

4.16.1 Feature Changes

4.16.2 Extension Changes

4.16.3 Bugfixes

4.17 Version 5.3 (December 2015)

4.17.1 Feature Changes

4.17.2 Extension Changes

4.18 Version 5.2.1 (September 2015)

4.18.1 Extensions

4.18.2 New features

4.18.3 Bug fixes

4.18.4 Model changes

4.19 Version 5.2.0 (April 2015)

4.19.1 Extensions

4.19.2 New features

4.19.3 Bug fixes

4.19.4 Model changes

4.20 Version 5.1.0 (July 2014)

4.21 Version 5.0.4 (March 2013)

4.22 Version 5.0 (February 2012)

4.23 Version 4.1.3 (April 2011)

4.24 Version 4.1 (December 2009)

4.25 Version 4.0 (September 2007)

4.26 Version 3.1 (April 2006)

4.27 Version 3.0 (September 2005)

4.28 Version 2.1 (December 2004)

4.29 Version 2.0.2 (August 2004)

4.30 Version 2.0 (December 2003)

4.31 Version 1.3 (June 2003)

4.32 Version 1.2 (March 2003)

4.33 Version 1.1 (July 2002)

4.34 Version 1.0 (April 2002)

5. System Requirements

5.1 Application Requirements

5.1.1 Windows

5.1.2 Mac OS X

5.1.3 Linux

5.2 3D Requirements

5.3 32-bit or 64-bit?

6. Contact Us

6.1 Web site

6.2 Feedback, questions, etc.

6.3 Reporting bugs

6.4 Open source

7. Sample Model: Party

7.1 At a Party

7.2 Challenge

7.3 Thinking with models

7.4 What’s next?

8. Tutorial #1: Models

8.1 Sample Model: Wolf Sheep Predation

8.2 Controlling the Model: Buttons

8.3 Controlling speed: Speed Slider

8.4 Adjusting Settings: Choosers, Sliders, and Switches

8.5 Gathering Information: Plots and Monitors

8.5.1 Plots

8.5.2 Monitors

8.6 Controlling the View

8.7 Models Library

8.7.1 Sample Models

8.7.2 Curricular Models

8.7.3 Code Examples

8.7.4 HubNet Activities

8.8 What’s Next?

9. Tutorial #2: Commands

9.1 Sample Model: Traffic Basic

9.2 Command Center

9.3 Working with colors

9.4 Agent Monitors and Agent Commanders

9.5 What’s Next?

10. Tutorial #3: Procedures

10.1 Agents and procedures

10.2 Making the setup button

10.3 Switching to tick-based view updates

10.4 Making the go button

10.5 Experimenting with commands

10.6 Patches and variables

10.7 Turtle variables

10.8 Monitors

10.9 Switches and labels

10.10 More procedures

10.11 Plotting

10.12 Tick counter

10.13 Some more details

10.14 What’s next?

10.15 Appendix: Complete code

11. Interface Guide

11.1 Menus

11.2 Tabs

11.3 International Usage

11.3.1 Character sets

11.3.2 Languages

11.3.3 Support for translators

12. Interface Tab Guide

12.1 Overview: Working with interface elements (widgets)

12.2 Charts: Interface Widgets

12.2.1 Widget Appearance: Light and Dark Themes

12.2.2 Widget Icons and Functionality

12.3 Other Interface Toolbar controls

12.4 Interface Menus

12.4.1 Add Widgets Menu

12.4.2 Align Widgets Menu

12.5 Interface Tools

12.5.1 Interaction Tool

12.5.2 Selection, Editing and Deletion Tools

12.5.3 Selection Tool

12.5.4 Editing Tool

12.5.5 Deletion Tool

12.6 The 2D and 3D views

12.6.1 World Settings

12.6.2 View Settings

12.6.3 Tick Counter Settings

12.6.4 Interacting with Agents

12.6.5 Manipulating the 3D View

12.7 Command Center

12.8 Plots

12.8.1 Plot Pens

12.9 Agent Monitors

13. Info Tab

13.1 Editing

13.2 Headings

13.3 Paragraphs

13.4 Italicized and bold text

13.5 Ordered lists

13.6 Unordered lists

13.7 Links

13.7.1 Automatic links

13.7.2 Links with text

13.7.3 Local links

13.8 Images

13.8.1 Local images

13.8.2 Bundled images

13.9 Block quotations

13.10 Code

13.11 Code blocks

13.12 Superscripts and subscripts

13.13 Notes on usage

13.14 Other features

14. Code Tab Guide

14.1 Code Tab Toolbar

14.1.1 Procedures menu

14.2 Checking for Errors

14.3 Separate Code tab

14.4 Find & Replace

14.5 Automatic Indentation

14.6 Line Numbers

14.7 More Editing Options

14.8 Included Files

15. Programming Guide

15.1 Agents and Agentsets

15.1.1 Agents

15.1.2 Agentsets

15.1.3 Breeds

15.1.4 Variables

15.1.5 Links

15.1.6 Tie

15.1.7 Drawing

15.1.8 Turtle shapes

15.1.9 Link shapes

15.2 Programming

15.2.1 Procedures

15.2.2 Ask

15.2.3 Ask-Concurrent

15.2.4 Syntax

15.2.5 Multiple source files

15.2.6 Buttons

15.2.7 Anonymous procedures

15.3 World

15.3.1 Tick counter

15.3.2 View updates

15.3.3 Topology

15.4 Observer Perspective

15.5 Input/Output

15.5.1 Output

15.5.2 File I/O

15.6 Lists

15.7 Strings

15.8 Mathematics

15.8.1 Math

15.8.2 Random numbers

15.9 Plotting

15.10 Color

15.11 Movies

16. Transition Guide

16.1 Changes for NetLogo 7.0.0

16.2 Changes for NetLogo 6.1.0

16.2.1 CF Extension Removal

16.2.2 ifelse-value Precedence Change with Infix Operators

16.3 Changes for NetLogo 6.0.3

16.3.1 Arduino Extension Changes

16.3.2 CF Extension Changes

16.4 Changes for NetLogo 6.0

16.4.1 Tasks replaced by Anonymous Procedures

16.4.2 Link reporters overhauled to be more consistent and flexible

16.4.3 Removal of Applets

16.4.4 Changes to the NetLogo User Interface

16.4.5 Nobody Not Permitted as a Chooser Value

16.4.6 Breeds must have singular and plural names

16.4.7 Removal of “Movie” Prims

16.4.8 Improved Name Collision Detection

16.4.9 Removal of hubnet-set-client-interface

16.4.10 Improved & Updated Extensions API

16.4.11 Add range primitive

16.5 Changes for NetLogo 5.2

16.5.1 hsb primitives

16.5.2 GoGo extension

16.6 Changes for NetLogo 5.0

16.6.1 Plotting

16.6.2 Tick counter

16.6.3 Unicode characters

16.6.4 Info tabs

16.6.5 Model speed

16.6.6 List performance

16.6.7 Extensions API

16.7 Changes for NetLogo 4.1

16.7.1 Combining set and of

16.8 Changes for NetLogo 4.0

16.8.1 Who numbering

16.8.2 Turtle creation: randomized vs. “ordered”

16.8.3 Adding strings and lists

16.8.4 The -at primitives

16.8.5 Links

16.8.6 New “of” syntax

16.8.7 Serial ask

16.8.8 Tick counter

16.8.9 View update modes

16.8.10 Speed slider

16.8.11 Numbers

16.8.12 Agentset building

16.8.13 RGB Colors

16.8.14 Tie

16.9 Changes for NetLogo 3.1

16.9.1 Agentsets

16.9.2 Wrapping

16.9.3 Random turtle coordinates

17. Extension Manager Guide

17.1 Authoring and Sharing

17.2 Interface

18. Shapes Editor Guide

18.1 Getting started

18.1.1 Importing shapes

18.2 Creating and editing turtle shapes

18.2.1 Tools

18.2.2 Previews

18.2.3 Overlapping shapes

18.2.4 Undo

18.2.5 Colors

18.2.6 Other buttons

18.2.7 Shape design

18.2.8 Keeping a shape

18.3 Creating and editing link shapes

18.3.1 Changing link shape properties

18.4 Using shapes in a model

19. BehaviorSpace Guide

19.1 What is BehaviorSpace?

19.1.1 Why BehaviorSpace?

19.2 How It Works

19.2.1 Managing experiment setups

19.2.2 Creating an experiment setup

19.2.3 Importing and exporting

19.2.4 Special primitives for BehaviorSpace experiments

19.2.5 Running an experiment

19.3 Advanced Usage

19.3.1 Running from the command line

19.3.2 Setting up experiments in XML

19.3.3 Adjusting JVM Parameters

19.3.4 Bspace Extension

19.3.5 Controlling API

20. System Dynamics Guide

20.1 What is the NetLogo System Dynamics Modeler?

20.1.1 Basic Concepts

20.1.2 Sample Models

20.2 How it Works

20.2.1 Diagram Tab

20.2.2 Code Tab

20.2.3 The System Dynamics Modeler and NetLogo

20.3 Tutorial: Wolf-Sheep Predation

20.3.1 Step 1: Sheep Reproduction

20.3.2 Step 2: NetLogo Integration

20.3.3 Step 3: Wolf Predation

21. HubNet Guide

21.1 Understanding HubNet

21.1.1 NetLogo

21.1.2 HubNet Architecture

21.2 Computer HubNet

21.2.1 Activities

21.2.2 Clients

21.2.3 Requirements

21.2.4 Starting an activity

21.2.5 HubNet Control Center

21.2.6 Troubleshooting

21.2.7 Known Limitations

21.3 Teacher workshops

21.4 HubNet Authoring Guide

21.5 Running HubNet in headless mode

21.6 Getting help

22. HubNet Authoring Guide

22.1 Coding HubNet activities

22.1.1 Setup

22.1.2 Receiving messages from clients

22.1.3 Sending messages to clients

22.1.4 Examples

22.2 How to make a client interface

22.3 View updates on the clients

22.4 Clicking in the view on clients

22.5 Customizing the client’s view

22.6 Plot updates on the clients

23. Modeling Commons Guide

23.1 Introduction

23.2 Modeling Commons Accounts

23.3 Uploading Models

23.3.1 Upload a New Model

23.3.2 Upload a Child of an Existing Model (“Forking”)

23.4 Updating an Existing Model

24. Logging

24.1 Starting Logging

24.1.1 Command Line Switches

24.2 Using Logging

24.2.1 Events

24.2.2 JSON Output

24.2.3 Where Logs are Stored

24.2.4 Managing Log Files

25. Controlling Guide

26. Mathematica Link

26.1 What can I do with it?

26.2 Installation

26.3 Usage

26.4 Known Issues

26.5 Source code

26.6 Credits

27. NetLogo 3D

27.1 Introduction

27.2 Tutorial

27.3 Dictionary

27.3.1 Commands and Reporters

27.3.2 Built-In Variables

27.3.3 Primitives

27.3.4 at-points

27.3.5 distancexyz, distancexyz-nowrap

27.3.6 dz

27.3.7 face, facexyz

27.3.8 left

27.3.9 link-pitch

27.3.10 load-shapes-3d

27.3.11 max-pzcor, min-pzcor

27.3.12 neighbors, neighbors6

27.3.13 orbit-down, orbit-left, orbit-right, orbit-up

27.3.14 __oxcor, __oycor, __ozcor

27.3.15 patch

27.3.16 patch-at

27.3.17 patch-at-heading-pitch-and-distance

27.3.18 pitch

27.3.19 pzcor

27.3.20 random-pzcor

27.3.21 random-zcor

27.3.22 right

27.3.23 roll

27.3.24 roll-left

27.3.25 roll-right

27.3.26 setxyz

27.3.27 tilt-down, tilt-up

27.3.28 towards-pitch, towards-pitch-nowrap

27.3.29 towards-pitch-xyz, towards-pitch-xyz-nowrap

27.3.30 turtles-at, -at

27.3.31 world-depth

27.3.32 zcor

27.3.33 zoom

28. Extensions Guide

28.1 Authoring and Sharing

28.2 Using Extensions

28.2.1 Where extensions are located

29. Extension Authoring Introduction

29.1 Technical Details

29.2 Sharing Extensions with the Extension Manager

30. Color Picker Guide

30.1 Introduction

30.2 Colors in NetLogo

30.3 Simple Tab

30.4 The Advanced Tab

30.4.1 Introduction

30.4.2 Input Format

30.4.3 Output Format

30.4.4 Output Formats for Different Contexts

30.4.5 Details about RGB Output

30.4.6 Details about the Alpha Bar

31. NetLogo 7.0.0 Changes Overview

31.1 Motivation

31.2 Interface Tab

31.2.1 Overview of Visual Changes to the Interface Tab

31.2.2 Interface Elements (Widgets)

31.2.3 Widget Sizes

31.3 New File Format

31.4 Tools in the NetLogo 7 Interface

31.4.1 Overview: NetLogo Interface Tool Buttons and Dropdown menus

31.4.2 New Interface Tools

31.4.3 New Interface Menu

31.5 The Color Picker

31.6 Notifications

31.7 The Info Tab

31.8 Code Tab

31.8.1 Color Themes and Code Syntax Highlighting

31.8.2 Code Tab Toolbar

31.8.3 Code Tab Preferences

31.8.4 Included Files

31.9 Menu Items

31.9.1 Preferences Dialog

31.9.2 File -> Resource Manager dialog

31.10 Tools Menu Changes

31.10.1 Turtle Shapes Editor and Link Shapes Editor

31.10.2 Help Menu

31.11 Collection of anonymous usage statistics

32. NetLogo Preferences

32.1 Overview

32.2 General Preferences

32.2.1 User Interface language

32.2.2 Reload the last used model on startup

32.2.3 Reload model on external changes

32.2.4 Bold widget text

32.2.5 Jump sliders to click location (instead of incrementing)

32.2.6 UI scale

32.2.7 Send anonymous usage statistics

32.3 Code Preferences

32.3.1 Sort “Procedures” menu by

32.3.2 Always show “Included Files” menu

32.3.3 Automatically jump to source of compilation error

32.3.4 Open code tab in separate window on startup

32.3.5 Auto Indent

32.3.6 Show line numbers

32.4 Logging Preferences

32.4.1 Enable logging

32.4.2 Directory to store logs

32.4.3 Events to log:

32.5 Color Themes

32.5.1 Light

32.5.2 Dark

32.5.3 Classic

33. Arduino

33.1 Using

33.1.1 Notes

33.1.2 Compatibility

33.1.3 Questions

33.2 Primitives

33.2.1 arduino:primitives

33.2.2 arduino:ports

33.2.3 arduino:open

33.2.4 arduino:close

33.2.5 arduino:get

33.2.6 arduino:write-string

33.2.7 arduino:write-int

33.2.8 arduino:write-byte

33.2.9 arduino:is-open?

33.2.10 arduino:debug-to-arduino

33.2.11 arduino:debug-from-arduino

34. Array

34.1 Using

34.1.1 When to Use

34.1.2 Example use of Array Extension

34.2 Primitives

34.2.1 array:from-list

34.2.2 array:item

34.2.3 array:set

34.2.4 array:length

34.2.5 array:to-list

35. Bitmap

35.1 Using

35.1.1 What does the Bitmap Extension do?

35.1.2 Getting started

35.2 Primitives

35.2.1 bitmap:average-color

35.2.2 bitmap:channel

35.2.3 bitmap:copy-to-drawing

35.2.4 bitmap:copy-to-pcolors

35.2.5 bitmap:difference-rgb

35.2.6 bitmap:export

35.2.7 bitmap:from-base64

35.2.8 bitmap:to-base64

35.2.9 bitmap:from-view

35.2.10 bitmap:to-grayscale

35.2.11 bitmap:height

35.2.12 bitmap:import

35.2.13 bitmap:scaled

35.2.14 bitmap:width

36. CSV

36.1 Common use cases and examples

36.1.1 Read a file all at once

36.1.2 Read a file one line at a time

36.1.3 Read a file one line per tick

36.1.4 Write a file

36.2 Primitives

36.2.1 Formatting NetLogo data as CSV

36.2.2 Parsing CSV input to NetLogo data

36.2.3 csv:from-row

36.2.4 csv:from-string

36.2.5 csv:from-file

36.2.6 csv:to-row

36.2.7 csv:to-string

36.2.8 csv:to-file

37. GIS

37.1 Using

37.1.1 How to use

37.1.2 Known Issues

37.1.3 Credits

37.2 Primitives

37.2.1 RasterDataset Primitives

37.2.2 Dataset Primitives

37.2.3 VectorDataset Primitives

37.2.4 Coordinate System Primitives

37.2.5 Drawing Primitives

37.2.6 gis:set-transformation

37.2.7 gis:set-transformation-ds

37.2.8 gis:set-world-envelope

37.2.9 gis:set-world-envelope-ds

37.2.10 gis:world-envelope

37.2.11 gis:envelope-of

37.2.12 gis:envelope-union-of

37.2.13 gis:load-coordinate-system

37.2.14 gis:set-coordinate-system

37.2.15 gis:project-lat-lon

37.2.16 gis:project-lat-lon-from-ellipsoid

37.2.17 gis:load-dataset

37.2.18 gis:store-dataset

37.2.19 gis:type-of

37.2.20 gis:patch-dataset

37.2.21 gis:turtle-dataset

37.2.22 gis:link-dataset

37.2.23 gis:shape-type-of

37.2.24 gis:property-names

37.2.25 gis:feature-list-of

37.2.26 gis:vertex-lists-of

37.2.27 gis:centroid-of

37.2.28 gis:random-point-inside

37.2.29 gis:location-of

37.2.30 gis:set-property-value

37.2.31 gis:property-value

37.2.32 gis:find-features

37.2.33 gis:find-one-feature

37.2.34 gis:find-less-than

37.2.35 gis:find-greater-than

37.2.36 gis:find-range

37.2.37 gis:property-minimum

37.2.38 gis:property-maximum

37.2.39 gis:apply-coverage

37.2.40 gis:create-turtles-from-points

37.2.41 gis:create-turtles-from-points-manual

37.2.42 gis:create-turtles-inside-polygon

37.2.43 gis:create-turtles-inside-polygon-manual

37.2.44 gis:coverage-minimum-threshold

37.2.45 gis:set-coverage-minimum-threshold

37.2.46 gis:coverage-maximum-threshold

37.2.47 gis:set-coverage-maximum-threshold

37.2.48 gis:intersects?

37.2.49 gis:contains?

37.2.50 gis:contained-by?

37.2.51 gis:have-relationship?

37.2.52 gis:relationship-of

37.2.53 gis:intersecting

37.2.54 gis:width-of

37.2.55 gis:height-of

37.2.56 gis:raster-value

37.2.57 gis:set-raster-value

37.2.58 gis:minimum-of

37.2.59 gis:maximum-of

37.2.60 gis:sampling-method-of

37.2.61 gis:set-sampling-method

37.2.62 gis:raster-sample

37.2.63 gis:raster-world-envelope

37.2.64 gis:create-raster

37.2.65 gis:resample

37.2.66 gis:convolve

37.2.67 gis:apply-raster

37.2.68 gis:drawing-color

37.2.69 gis:set-drawing-color

37.2.70 gis:draw

37.2.71 gis:fill

37.2.72 gis:paint

37.2.73 gis:import-wms-drawing

38. GoGo

38.1 NetLogoLab and the GoGo Board Extension for sensors and robotics

39. NetLogoLab and the GoGo Board Extension

39.1 What is NetLogoLab?

39.1.1 The GoGo Board NetLogo extension

39.1.2 GoGo Board: a low-cost robotics and data-logging board

39.1.3 Sensor and actuator toolkits

39.1.4 NetLogo models

39.2 How to get a GoGo Board?

39.3 Installing and testing the GoGo Extension

39.3.1 Windows

39.3.2 Mac OS X

39.3.3 Linux

39.4 Usage

39.5 Changes

39.6 Primitives

39.6.1 Other Outputs

39.6.2 Utilities

39.6.3 General

39.6.4 Sensors

39.6.5 Outputs and Servos

39.6.6 gogo:primitives

39.6.7 gogo:howmany-gogos

39.6.8 gogo:init

39.6.9 gogo:talk-to-output-ports

39.6.10 gogo:talk-to-servo-ports

39.6.11 gogo:set-output-port-power

39.6.12 gogo:output-port-on

39.6.13 gogo:output-port-off

39.6.14 gogo:output-port-clockwise

39.6.15 gogo:output-port-counterclockwise

39.6.16 gogo:set-servo

39.6.17 gogo:led

39.6.18 gogo:beep

39.6.19 gogo:read-sensors

39.6.20 gogo:read-sensor

39.6.21 gogo:read-all

39.6.22 gogo:send-bytes

39.7 Examples of NetLogoLab models

39.7.1 Controlling a car

39.7.2 A simple sensing project

39. LevelSpace

39.1 LevelSpace fundamentals

39.1.1 Headless and Interactive Models

39.1.2 Keeping Track of Models

39.1.3 A general use case: Asking and Reporting

39.1.4 A general use case: Inter-Model Interactions

39.1.5 A general Usecase: Tidying up “Dead” Child Models

39.2 Citing LevelSpace in Research

39.3 Primitives

39.3.1 Commanding and Reporting

39.3.2 Logic and Control

39.3.3 Opening and Closing Models

39.3.4 ls:create-models

39.3.5 ls:create-interactive-models

39.3.6 ls:close

39.3.7 ls:reset

39.3.8 ls:ask

39.3.9 ls:of

39.3.10 ls:report

39.3.11 ls:with

39.3.12 ls:let

39.3.13 ls:assign

39.3.14 ls:models

39.3.15 ls:show

39.3.16 ls:show-all

39.3.17 ls:hide

39.3.18 ls:hide-all

39.3.19 ls:path-of

39.3.20 ls:name-of

39.3.21 ls:model-exists?

39.3.22 ls:random-seed

40. Matrix

40.1 Using

40.1.1 When to Use

40.1.2 How to Use

40.1.3 Example

40.2 Primitives

40.2.1 Matrix creation and conversion to/from lists

40.2.2 Advanced features

40.2.3 Matrix data retrieval and manipulation

40.2.4 Math operations

40.2.5 matrix:make-constant

40.2.6 matrix:make-identity

40.2.7 matrix:from-row-list

40.2.8 matrix:from-column-list

40.2.9 matrix:to-row-list

40.2.10 matrix:to-column-list

40.2.11 matrix:copy

40.2.12 matrix:pretty-print-text

40.2.13 matrix:get

40.2.14 matrix:get-row

40.2.15 matrix:get-column

40.2.16 matrix:set

40.2.17 matrix:set-row

40.2.18 matrix:set-column

40.2.19 matrix:swap-rows

40.2.20 matrix:swap-columns

40.2.21 matrix:set-and-report

40.2.22 matrix:dimensions

40.2.23 matrix:submatrix

40.2.24 matrix:map

40.2.25 matrix:times-scalar

40.2.26 matrix:times

40.2.27 matrix:*

40.2.28 matrix:times-element-wise

40.2.29 matrix:plus-scalar

40.2.30 matrix:plus

40.2.31 matrix:+

40.2.32 matrix:minus

40.2.33 matrix:-

40.2.34 matrix:inverse

40.2.35 matrix:transpose

40.2.36 matrix:real-eigenvalues

40.2.37 matrix:imaginary-eigenvalues

40.2.38 matrix:eigenvectors

40.2.39 matrix:det

40.2.40 matrix:rank

40.2.41 matrix:trace

40.2.42 matrix:solve

40.2.43 matrix:forecast-linear-growth

40.2.44 matrix:forecast-compound-growth

40.2.45 matrix:forecast-continuous-growth

40.2.46 matrix:regress

41. Networks

41.1 Usage

41.1.1 Special agentsets vs normal agentsets

41.2 A note regarding floating point calculations

41.3 Performance

41.4 Primitives

41.4.1 Generators

41.4.2 Path and Distance

41.4.3 Clusterer/Community Detection

41.4.4 Context Management

41.4.5 Import and Export

41.4.6 Centrality Measures

41.4.7 Clustering Measures

41.4.8 nw:set-context

41.4.9 nw:get-context

41.4.10 nw:with-context

41.4.11 nw:turtles-in-radius

41.4.12 nw:turtles-in-reverse-radius

41.4.13 nw:distance-to

41.4.14 nw:weighted-distance-to

41.4.15 nw:path-to

41.4.16 nw:turtles-on-path-to

41.4.17 nw:weighted-path-to

41.4.18 nw:turtles-on-weighted-path-to

41.4.19 nw:mean-path-length

41.4.20 nw:mean-weighted-path-length

41.4.21 nw:betweenness-centrality

41.4.22 nw:eigenvector-centrality

41.4.23 nw:page-rank

41.4.24 nw:closeness-centrality

41.4.25 nw:weighted-closeness-centrality

41.4.26 nw:clustering-coefficient

41.4.27 nw:modularity

41.4.28 nw:bicomponent-clusters

41.4.29 nw:weak-component-clusters

41.4.30 nw:louvain-communities

41.4.31 nw:maximal-cliques

41.4.32 nw:biggest-maximal-cliques

41.4.33 nw:generate-preferential-attachment

41.4.34 nw:generate-random

41.4.35 nw:generate-watts-strogatz

41.4.36 nw:generate-small-world

41.4.37 nw:generate-lattice-2d

41.4.38 nw:generate-ring

41.4.39 nw:generate-star

41.4.40 nw:generate-wheel

41.4.41 nw:save-matrix

41.4.42 nw:load-matrix

41.4.43 nw:save-graphml

41.4.44 nw:load-graphml

41.4.45 nw:load

41.4.46 nw:save

42. Palette

42.1 Using the Palette Extension

42.2 Getting Started

42.3 Background

42.3.1 Review of color representation in NetLogo

42.3.2 More control over the color

42.3.3 Varying an Agent’s Transparency or Color

42.3.4 How do I choose a color scheme?

42.3.5 Should I use a continuous color gradient or just a discrete color set?

42.3.6 Example Models

42.3.7 Further Reading

42.4 Primitives

42.4.1 palette:alpha-of

42.4.2 palette:with-alpha

42.4.3 palette:alpha

42.4.4 palette:set-alpha

42.4.5 palette:transparency-of

42.4.6 palette:with-transparency

42.4.7 palette:transparency

42.4.8 palette:set-transparency

42.4.9 palette:hue-of

42.4.10 palette:with-hue

42.4.11 palette:hue

42.4.12 palette:set-hue

42.4.13 palette:saturation-of

42.4.14 palette:with-saturation

42.4.15 palette:saturation

42.4.16 palette:set-saturation

42.4.17 palette:brightness-of

42.4.18 palette:with-brightness

42.4.19 palette:brightness

42.4.20 palette:set-brightness

42.4.21 palette:R-of

42.4.22 palette:with-R

42.4.23 palette:R

42.4.24 palette:set-R

42.4.25 palette:G-of

42.4.26 palette:with-G

42.4.27 palette:G

42.4.28 palette:set-G

42.4.29 palette:B-of

42.4.30 palette:with-B

42.4.31 palette:B

42.4.32 palette:set-B

42.4.33 palette:scale-gradient

42.4.34 palette:scale-gradient-hsb

42.4.35 palette:scheme-colors

42.4.36 palette:scale-scheme

42.4.37 palette:scheme-dialog

42.5 References

43. Profiler

43.1 Using the Profiler Extension

43.1.1 How to use

43.1.2 Example

43.2 Primitives

43.2.1 profiler:calls

43.2.2 profiler:exclusive-time

43.2.3 profiler:inclusive-time

43.2.4 profiler:start

43.2.5 profiler:stop

43.2.6 profiler:reset

43.2.7 profiler:report

43.2.8 profiler:data

44. Python

44.1 Using

44.1.1 Error handling

44.2 Configuring

44.3 Primitives

44.3.1 py:setup

44.3.2 py:python

44.3.3 py:python2

44.3.4 py:python3

44.3.5 py:run

44.3.6 py:runresult

44.3.7 py:set

45. Resource

45.1 Using

45.1.1 Purpose

45.1.2 Getting Started

45.2 Primitives

45.2.1 resource:get

45.2.2 resource:list

46. Rnd

46.1 Usage

46.2 A note about performance

46.3 Primitives

46.3.1 AgentSet Primitives

46.3.2 List Primitives

46.3.3 rnd:weighted-one-of

46.3.4 rnd:weighted-n-of

46.3.5 rnd:weighted-n-of-with-repeats

46.3.6 rnd:weighted-one-of-list

46.3.7 rnd:weighted-n-of-list

46.3.8 rnd:weighted-n-of-list-with-repeats

47. Sound

47.1 Using

47.1.1 How to Use

47.1.2 MIDI support

47.2 Primitives

47.2.1 sound:drums

47.2.2 sound:instruments

47.2.3 sound:play-drum

47.2.4 sound:play-note

47.2.5 sound:play-note-later

47.3 Drum Names

47.4 Instrument Names

48. Simple R

48.1 Using

48.1.1 Error handling

48.2 Citing Simple R in Research

48.3 Primitives

48.3.1 sr:setup

48.3.2 sr:run

48.3.3 sr:runresult

48.3.4 sr:set

48.3.5 sr:set-agent

48.3.6 sr:set-agent-data-frame

48.3.7 sr:set-data-frame

48.3.8 sr:set-list

48.3.9 sr:set-named-list

48.3.10 sr:set-plot-device

48.3.11 sr:r-home

48.3.12 sr:show-console

48.4 Transitioning from the old R extension

48.4.1 Using the Simple R code converter

48.4.2 Handling a named list

49. Table

49.1 Using

49.1.1 When to Use

49.1.2 Example

49.1.3 Manipulating Tables

49.1.4 Key Restrictions

49.2 Primitives

49.2.1 table:clear

49.2.2 table:counts

49.2.3 table:group-agents

49.2.4 table:group-items

49.2.5 table:from-list

49.2.6 table:from-json

49.2.7 table:from-json-file

49.2.8 table:get

49.2.9 table:get-or-default

49.2.10 table:has-key?

49.2.11 table:keys

49.2.12 table:length

49.2.13 table:make

49.2.14 table:put

49.2.15 table:remove

49.2.16 table:to-list

49.2.17 table:to-json

49.2.18 table:values

50. Time

50.1 Quickstart

50.2 What is it?

50.3 Installation

50.4 Examples

50.5 Data Types

50.6 Behavior

50.7 Format

50.7.1 Date Format

50.7.2 Supported Format Characters

50.7.3 Date-time Bounds

50.7.4 User Defined Formatting

50.8 Primitives

50.8.1 Date/Time Utilities

50.8.2 Time Series Tool

50.9 back to top

50.9.1 Discrete Event Scheduler

50.10 Building with SBT

50.11 Authors

50.12 Feedback? Bugs? Feature Requests?

50.13 Credits

50.14 Terms of Use

50.15 Primitives

51. Vid

51.1 Concepts

51.1.1 Video Source

51.1.2 Source Lifecycle

51.1.3 Video Recorder

51.1.4 Known Issues

51.2 Primitives

51.2.1 vid:camera-names

51.2.2 vid:camera-open

51.2.3 vid:camera-select

51.2.4 vid:movie-select

51.2.5 vid:movie-open

51.2.6 vid:movie-open-remote

51.2.7 vid:close

51.2.8 vid:start

51.2.9 vid:stop

51.2.10 vid:status

51.2.11 vid:capture-image

51.2.12 vid:set-time

51.2.13 vid:show-player

51.2.14 vid:hide-player

51.2.15 vid:record-view

51.2.16 vid:record-interface

51.2.17 vid:record-source

51.2.18 vid:recorder-status

51.2.19 vid:reset-recorder

51.2.20 vid:start-recorder

51.2.21 vid:save-recording

52. View2.5D

52.1 How to Use

52.1.1 Incorporating Into Models

52.1.2 Feedback

52.2 Primitives

52.2.1 view2.5d:patch-view

52.2.2 view2.5d:decorate-patch-view

52.2.3 view2.5d:undecorate-patch-view

52.2.4 view2.5d:turtle-view

52.2.5 view2.5d:update-all-patch-views

52.2.6 view2.5d:update-patch-view

52.2.7 view2.5d:update-turtle-view

52.2.8 view2.5d:get-z-scale

52.2.9 view2.5d:set-z-scale

52.2.10 view2.5d:set-turtle-stem-thickness

52.2.11 view2.5d:set-turtle-stem-color

52.2.12 view2.5d:show-links-xy-plane

52.2.13 view2.5d:show-links-xyz

52.2.14 view2.5d:get-observer-angles

52.2.15 view2.5d:set-observer-angles

52.2.16 view2.5d:get-observer-xy-focus

52.2.17 view2.5d:set-observer-xy-focus

52.2.18 view2.5d:get-observer-distance

52.2.19 view2.5d:set-observer-distance

52.2.20 view2.5d:remove-patch-view

52.2.21 view2.5d:remove-turtle-view

52.2.22 view2.5d:remove-all-patch-views

52.2.23 view2.5d:remove-all-turtle-views

52.2.24 view2.5d:count-windows

53. FAQ (Frequently Asked Questions)

53.1 General

53.1.1 Why is it called NetLogo?

53.1.2 How do I cite NetLogo or HubNet in a publication?

53.1.3 How do I cite a model from the Models Library in a publication?

53.1.4 Where and when was NetLogo created?

53.1.5 What programming language was NetLogo written in?

53.1.6 What’s the relationship between StarLogo and NetLogo?

53.1.7 Under what license is NetLogo released? Is the source code available?

53.1.8 Do you offer any workshops or other training opportunities for NetLogo?

53.1.9 Are there any NetLogo textbooks?

53.1.10 Is NetLogo available in other languages besides English?

53.1.11 Is NetLogo compiled or interpreted?

53.1.12 Has anyone built a model of ?

53.1.13 Are NetLogo models runs scientifically reproducible?

53.1.14 Will NetLogo and NetLogo 3D remain separate?

53.1.15 Can I run NetLogo on my phone or tablet?

53.2 Downloading

53.2.1 Can I have multiple versions of NetLogo installed at the same time?

53.2.2 I’m on a UNIX system and I can’t untar the download. Why?

53.2.3 How do I install NetLogo unattended?

53.3 Running

53.3.1 Can I run NetLogo from a CD, a network drive, or a USB drive?

53.3.2 Why is NetLogo so much slower when I unplug my Windows laptop?

53.3.3 Why does NetLogo bundle Java?

53.3.4 How come NetLogo won’t start up on my Linux machine?

53.3.5 When I try to install NetLogo on Windows, I see “Windows protected your PC”

53.3.6 When I try to start NetLogo on Windows I get an error “The JVM could not be started”. Help!

53.3.7 NetLogo won’t start on Mac OS Sierra (or later)

53.3.8 NetLogo won’t start on Windows or crashes suddenly on Mac OS Sierra

53.3.9 How can I speed up the launching of NetLogo on a remote server that is behind a proxy?

53.3.10 Can I run NetLogo from the command line, without the GUI?

53.3.11 Does NetLogo take advantage of multiple processors?

53.3.12 Can I distribute NetLogo model runs across a cluster or grid of computers?

53.3.13 Is there any way to recover lost work if NetLogo crashes or freezes?

53.3.14 Why is HubNet Discovery Not Working?

53.4 Usage

53.4.1 When I move the speed slider all the way to the right, why does my model seem to stop?

53.4.2 Can I use the mouse to “paint” in the view?

53.4.3 How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?

53.4.4 Where are the NetLogo Configuration Files?

53.4.5 Can I use GIS data in NetLogo?

53.4.6 My model runs slowly. How can I speed it up?

53.4.7 Can I have more than one model open at a time?

53.4.8 Can I change the choices in a chooser on the fly?

53.4.9 Can I divide the code for my model up into several files?

53.5 Programming

53.5.1 How does the NetLogo language differ from other Logos?

53.5.2 How come my model from an earlier NetLogo doesn’t work right?

53.5.3 How do I take the negative of a number?

53.5.4 My turtle moved forward 1, but it’s still on the same patch. Why?

53.5.5 How do I keep my turtles on patch centers?

53.5.6 patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?

53.5.7 How do I give my turtles “vision”?

53.5.8 Can agents sense what’s in the drawing layer?

53.5.9 I’m getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?

53.5.10 The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to be included?

53.5.11 Why is the number value in my monitor widget changing even though nothing is happening in my model?

53.5.12 How can I keep two turtles from occupying the same patch?

53.5.13 How can I find out if a turtle is dead?

53.5.14 Does NetLogo have arrays?

53.5.15 Does NetLogo have hash tables or associative arrays?

53.5.16 How can I use different patch “neighborhoods” (circular, Von Neumann, Moore, etc.)?

53.5.17 How can I convert an agentset to a list of agents, or vice versa?

53.5.18 How do I stop foreach?

53.5.19 I’m trying to make a list. Why do I keep getting the error “Expected a literal value”?

53.6 BehaviorSpace

53.6.1 Why are the rows in my BehaviorSpace table results out of order?

53.6.2 How do I measure runs every n ticks?

53.6.3 I’m varying a global variable I declared in the Code tab, but it doesn’t work. Why?

53.7 NetLogo 3D

53.7.1 Does NetLogo work with my stereoscopic device?

53.8 Extensions

53.8.1 I’m writing an extension. Why does the compiler say it can’t find org.nlogo.api?

54. NetLogo Dictionary

54.1 Categories

54.1.1 Turtle-related

54.1.2 Patch-related

54.1.3 Link-related

54.1.4 Agentset

54.1.5 Color

54.1.6 Control flow and logic

54.1.7 Anonymous Procedures

54.1.8 World

54.1.9 Perspective

54.1.10 HubNet

54.1.11 Input/output

54.1.12 File

54.1.13 List

54.1.14 String

54.1.15 Mathematical

54.1.16 Plotting

54.1.17 BehaviorSpace

54.1.18 System

54.2 Built-In Variables

54.2.1 Turtles

54.2.2 Patches

54.2.3 Links

54.3 Keywords

54.4 Constants

54.4.1 Mathematical Constants

54.4.2 Boolean Constants

54.4.3 Color Constants

54.5 A

54.5.1 abs

54.5.2 acos

54.5.3 all?

54.5.4 and

54.5.5 any?

54.5.6 approximate-hsb

54.5.7 approximate-rgb

54.5.8 Arithmetic Operators, +, *, -, /, ,̂ <, >, =, !=, <=, >=

54.5.9 asin

54.5.10 ask

54.5.11 ask-concurrent

54.5.12 at-points

54.5.13 atan

54.5.14 autoplot?, autoplotx?, autoploty?

54.5.15 auto-plot-off, auto-plot-x-off, auto-plot-y-off, auto-plot-on, auto-plot-x-on, auto-plot-y-on

54.6 B

54.6.1 back, bk

54.6.2 base-colors

54.6.3 beep

54.6.4 behaviorspace-experiment-name

54.6.5 behaviorspace-run-number

54.6.6 both-ends

54.6.7 breed

54.6.8 breed

54.6.9 but-first, butfirst, bf, but-last, butlast, bl

54.7 C

54.7.1 can-move?

54.7.2 carefully

54.7.3 ceiling

54.7.4 clear-all, ca

54.7.5 clear-all-plots

54.7.6 clear-drawing, cd

54.7.7 clear-globals

54.7.8 clear-links

54.7.9 clear-output

54.7.10 clear-patches, cp

54.7.11 clear-plot

54.7.12 clear-ticks

54.7.13 clear-turtles, ct

54.7.14 color

54.7.15 cos

54.7.16 count

54.7.17 create-ordered-turtles, cro

54.7.18 create--to, create--to, create--from, create--from, create--with, create--with, create-link-to, create-links-to, create-link-from, create-links-from, create-link-with, create-links-with

54.7.19 create-turtles, crt

54.7.20 create-temporary-plot-pen

54.8 D

54.8.1 date-and-time

54.8.2 die

54.8.3 diffuse

54.8.4 diffuse4

54.8.5 directed-link-breed

54.8.6 display

54.8.7 distance

54.8.8 distancexy

54.8.9 downhill, downhill4

54.8.10 dx, dy

54.9 E

54.9.1 empty?

54.9.2 end

54.9.3 end1

54.9.4 end2

54.9.5 error

54.9.6 error-message

54.9.7 every

54.9.8 exp

54.9.9 export-view, export-interface, export-output, export-plot, export-all-plots, export-world

54.9.10 extensions

54.9.11 extract-hsb

54.9.12 extract-rgb

54.10 F

54.10.1 face

54.10.2 facexy

54.10.3 file-at-end?

54.10.4 file-close

54.10.5 file-close-all

54.10.6 file-delete

54.10.7 file-exists?

54.10.8 file-flush

54.10.9 file-open

54.10.10 file-print

54.10.11 file-read

54.10.12 file-read-characters

54.10.13 file-read-line

54.10.14 file-show

54.10.15 file-type

54.10.16 file-write

54.10.17 filter

54.10.18 first

54.10.19 floor

54.10.20 follow

54.10.21 follow-me

54.10.22 foreach

54.10.23 forward, fd

54.10.24 fput

54.11 G

54.11.1 globals

54.12 H

54.12.1 hatch

54.12.2 heading

54.12.3 hidden?

54.12.4 hide-link

54.12.5 hide-turtle, ht

54.12.6 histogram

54.12.7 home

54.12.8 home-directory

54.12.9 hsb

54.12.10 hubnet-broadcast

54.12.11 hubnet-broadcast-clear-output

54.12.12 hubnet-broadcast-message

54.12.13 hubnet-clear-override, hubnet-clear-overrides

54.12.14 hubnet-clients-list

54.12.15 hubnet-enter-message?

54.12.16 hubnet-exit-message?

54.12.17 hubnet-fetch-message

54.12.18 hubnet-kick-client

54.12.19 hubnet-kick-all-clients

54.12.20 hubnet-message

54.12.21 hubnet-message-source

54.12.22 hubnet-message-tag

54.12.23 hubnet-message-waiting?

54.12.24 hubnet-reset

54.12.25 hubnet-reset-perspective

54.12.26 hubnet-send

54.12.27 hubnet-send-clear-output

54.12.28 hubnet-send-follow

54.12.29 hubnet-send-message

54.12.30 hubnet-send-override

54.12.31 hubnet-send-watch

54.13 I

54.13.1 if

54.13.2 ifelse

54.13.3 ifelse-value

54.13.4 import-drawing

54.13.5 import-pcolors

54.13.6 import-pcolors-rgb

54.13.7 import-world

54.13.8 in-cone

54.13.9 in--neighbor?, in-link-neighbor?

54.13.10 in--neighbors, in-link-neighbors

54.13.11 in--from, in-link-from

54.13.12 __includes

54.13.13 in-radius

54.13.14 insert-item

54.13.15 inspect

54.13.16 int

54.13.17 is-agent?, is-agentset?, is-anonymous-command?, is-anonymous-reporter?, is-boolean?, is-directed-link?, is-link?, is-link-set?, is-list?, is-number?, is-patch?, is-patch-set?, is-

string?, is-turtle?, is-turtle-set?, is-undirected-link?

54.13.18 item

54.14 J

54.14.1 jump

54.15 L

54.15.1 label

54.15.2 label-color

54.15.3 last

54.15.4 layout-circle

54.15.5 layout-radial

54.15.6 layout-spring

54.15.7 layout-tutte

54.15.8 left, lt

54.15.9 length

54.15.10 let

54.15.11 link

54.15.12 link-heading

54.15.13 link-length

54.15.14 link-set

54.15.15 link-shapes

54.15.16 links

54.15.17 links-own

54.15.18 list

54.15.19 ln

54.15.20 log

54.15.21 loop

54.15.22 lput

54.16 M

54.16.1 map

54.16.2 max

54.16.3 max-n-of

54.16.4 max-one-of

54.16.5 max-pxcor, max-pycor

54.16.6 mean

54.16.7 median

54.16.8 member?

54.16.9 min

54.16.10 min-n-of

54.16.11 min-one-of

54.16.12 min-pxcor, min-pycor

54.16.13 mod

54.16.14 modes

54.16.15 mouse-down?

54.16.16 mouse-inside?

54.16.17 mouse-xcor, mouse-ycor

54.16.18 move-to

54.16.19 my-, my-links

54.16.20 my-in-, my-in-links

54.16.21 my-out-, my-out-links

54.16.22 myself

54.17 N

54.17.1 n-of

54.17.2 n-values

54.17.3 neighbors, neighbors4

54.17.4 -neighbors, link-neighbors

54.17.5 -neighbor?, link-neighbor?

54.17.6 netlogo-version

54.17.7 netlogo-web?

54.17.8 new-seed

54.17.9 no-display

54.17.10 nobody

54.17.11 no-links

54.17.12 no-patches

54.17.13 not

54.17.14 no-turtles

54.18 O

54.18.1 of

54.18.2 one-of

54.18.3 or

54.18.4 other

54.18.5 other-end

54.18.6 out--neighbor?, out-link-neighbor?

54.18.7 out--neighbors, out-link-neighbors

54.18.8 out--to, out-link-to

54.18.9 output-print, output-show, output-type, output-write

54.19 P

54.19.1 patch

54.19.2 patch-ahead

54.19.3 patch-at

54.19.4 patch-at-heading-and-distance

54.19.5 patch-here

54.19.6 patch-left-and-ahead, patch-right-and-ahead

54.19.7 patch-set

54.19.8 patch-size

54.19.9 patches

54.19.10 patches-own

54.19.11 pcolor

54.19.12 pen-down, pd, pen-erase, pe, pen-up, pu

54.19.13 pen-mode

54.19.14 pen-size

54.19.15 plabel

54.19.16 plabel-color

54.19.17 plot

54.19.18 plot-name

54.19.19 plot-pen-exists?

54.19.20 plot-pen-down, plot-pen-up

54.19.21 plot-pen-reset

54.19.22 plotxy

54.19.23 plot-x-min, plot-x-max, plot-y-min, plot-y-max

54.19.24 position

54.19.25 precision

54.19.26 print

54.19.27 pxcor, pycor

54.20 R

54.20.1 random

54.20.2 random-float

54.20.3 random-exponential, random-gamma, random-normal, random-poisson

54.20.4 random-pxcor, random-pycor

54.20.5 random-seed

54.20.6 random-xcor, random-ycor

54.20.7 range

54.20.8 read-from-string

54.20.9 reduce

54.20.10 remainder

54.20.11 remove

54.20.12 remove-duplicates

54.20.13 remove-item

54.20.14 repeat

54.20.15 replace-item

54.20.16 report

54.20.17 reset-perspective, rp

54.20.18 reset-ticks

54.20.19 reset-timer

54.20.20 resize-world

54.20.21 reverse

54.20.22 rgb

54.20.23 ride

54.20.24 ride-me

54.20.25 right, rt

54.20.26 round

54.20.27 run, runresult

54.21 S

54.21.1 scale-color

54.21.2 self

54.21.3 ; (semicolon)

54.21.4 sentence, se

54.21.5 set

54.21.6 set-current-directory

54.21.7 set-current-plot

54.21.8 set-current-plot-pen

54.21.9 set-default-shape

54.21.10 set-histogram-num-bars

54.21.11 __set-line-thickness

54.21.12 set-patch-size

54.21.13 set-plot-background-color

54.21.14 set-plot-pen-color

54.21.15 set-plot-pen-interval

54.21.16 set-plot-pen-mode

54.21.17 setup-plots

54.21.18 set-plot-x-range, set-plot-y-range

54.21.19 set-topology

54.21.20 setxy

54.21.21 shade-of?

54.21.22 shape

54.21.23 shapes

54.21.24 show

54.21.25 show-turtle, st

54.21.26 show-link

54.21.27 shuffle

54.21.28 sin

54.21.29 size

54.21.30 sort

54.21.31 sort-by

54.21.32 sort-on

54.21.33 sprout

54.21.34 sqrt

54.21.35 stamp

54.21.36 stamp-erase

54.21.37 standard-deviation

54.21.38 startup

54.21.39 stop

54.21.40 stop-inspecting

54.21.41 stop-inspecting-dead-agents

54.21.42 subject

54.21.43 sublist, substring

54.21.44 subtract-headings

54.21.45 sum

54.22 T

54.22.1 tan

54.22.2 thickness

54.22.3 tick

54.22.4 tick-advance

54.22.5 ticks

54.22.6 tie

54.22.7 tie-mode

54.22.8 timer

54.22.9 to

54.22.10 to-report

54.22.11 towards

54.22.12 towardsxy

54.22.13 turtle

54.22.14 turtle-set

54.22.15 turtles

54.22.16 turtles-at

54.22.17 turtles-here

54.22.18 turtles-on

54.22.19 turtles-own

54.22.20 type

54.23 U

54.23.1 undirected-link-breed

54.23.2 untie

54.23.3 up-to-n-of

54.23.4 update-plots

54.23.5 uphill, uphill4

54.23.6 user-directory

54.23.7 user-file

54.23.8 user-new-file

54.23.9 user-input

54.23.10 user-message

54.23.11 user-one-of

54.23.12 user-yes-or-no?

54.24 V

54.24.1 variance

54.25 W

54.25.1 wait

54.25.2 watch

54.25.3 watch-me

54.25.4 while

54.25.5 who

54.25.6 who-are-not

54.25.7 with

54.25.8 -with, link-with

54.25.9 with-max

54.25.10 with-min

54.25.11 with-local-randomness

54.25.12 without-interruption

54.25.13 word

54.25.14 world-width, world-height

54.25.15 wrap-color

54.25.16 write

54.26 X

54.26.1 xcor

54.26.2 xor

54.27 Y

54.27.1 ycor

54.28 ->

54.28.1 ->

What is NetLogo?

NetLogo is a programmable modeling environment for simulating natural and social phenomena. It was authored by Uri Wilensky in 1999 and has been in continuous development ever since at

the Center for Connected Learning and Computer-Based Modeling.

NetLogo is particularly well suited for modeling complex systems developing over time. Modelers can give instructions to hundreds or thousands of “agents” all operating independently. This

makes it possible to explore the connection between the micro-level behavior of individuals and the macro-level patterns that emerge from their interaction.

NetLogo lets students open simulations and “play” with them, exploring their behavior under various conditions. It is also an authoring environment which enables students, teachers and cur‑

riculum developers to create their own models. NetLogo is simple enough for students and teachers, yet advanced enough to serve as a powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with the Models Library, a large collection of pre-written simulations that can be used and modified. These simulations

address content areas in the natural and social sciences including biology and medicine, physics and chemistry, mathematics and computer science, and economics and social psychology.

Several model-based inquiry curricula using NetLogo are available and more are under development.

NetLogo is the next generation of the series of multi-agent modeling languages including StarLogo and StarLogoT. NetLogo runs on the Java Virtual Machine, so it works on all major platforms

(Mac, Windows, Linux, et al). It is run as a desktop application. Command line operation is also supported.

Features

System:

Free, open source

Cross-platform: runs on Mac, Windows, Linux, et al

International character set support

Programming:

Fully programmable

Approachable syntax

Language is Logo dialect extended to support agents

Mobile agents (turtles) move over a grid of stationary agents (patches)

Link agents connect turtles to make networks, graphs, and aggregates

Large vocabulary of built-in language primitives

Double precision floating point math

First-class function values (aka anonymous procedures, closures, lambda)

Runs are reproducible cross-platform

Environment:

Command center for on-the-fly interaction

https://github.com/NetLogo/NetLogo

Interface builder w/ buttons, sliders, switches, choosers, monitors, text boxes, notes, output area

Info tab for annotating your model with formatted text and images

HubNet: participatory simulations using networked devices

Agent monitors for inspecting and controlling agents

Export and import functions (export data, save and restore state of model, make a movie)

BehaviorSpace, an open source tool used to collect data from multiple parallel runs of a model

System Dynamics Modeler

NetLogo 3D for modeling 3D worlds

Headless mode allows doing batch runs from the command line

Display and visualization:

Line, bar, and scatter plots

Speed slider lets you fast forward your model or see it in slow motion

View your model in either 2D or 3D

Scalable and rotatable vector shapes

Turtle and patch labels

APIs:

controlling API allows embedding NetLogo in a script or application

extensions API allows adding new commands and reporters to the NetLogo language; open source example extensions are included

Copyright and License Information

How to reference

If you use or refer to NetLogo in a publication, we ask that you cite it. The correct citation is: Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning

and Computer-Based Modeling, Northwestern University, Evanston, IL.

For HubNet, cite: Wilensky, U. & Stroup, W., 1999. HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html. Center for Connected Learning and Computer-Based Modeling, Northwestern

University. Evanston, IL.

For models in the Models Library, the correct citation is included in the "Credits and References" section of each model's Info tab.

Acknowledgments

The CCL gratefully acknowledges two decades of support for our NetLogo work. The original support came from the National Science Foundation -- grant numbers REC-9814682 and REC-

0126227. Further support has come from REC-0003285, REC-0115699, DRL-0196044, CCF-ITR-0326542, DRL-REC/ROLE-0440113, SBE-0624318, EEC-0648316, IIS-0713619, DRL-RED-

9552950, DRL-REC-9632612, and DRL-DRK12-1020101, IIS-1441552, CNS-1441016, CNS-1441041, CNS-1138461, IIS-1438813, IIS-1147621, DRL-REC-1343873, IIS-1438813, IIS-1441552, CNS-

1441041, IIS-1546120, DRL-1546122, DRL-1614745 and DRL-1640201. Additional support came from the Spencer Foundation, Texas Instruments, the Brady Fund, the Murphy fund, and the

Northwestern Institute on Complex Systems.

For development of the View 2.5D NetLogo Extension, we acknowledge financial support from Joshua M. Epstein's NIH Director's Pioneer Award (DP1).

NetLogo license

Copyright 1999-2025 by Uri Wilensky.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-

1301, USA.

Commercial licenses

Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at netlogo-commercial-admin@ccl.northwestern.edu.

NetLogo User Manual license

Copyright 1999-2025 by Uri Wilensky.

The NetLogo User Manual by Uri Wilensky is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Open source

The NetLogo source code is hosted at https://github.com/NetLogo/NetLogo. Contributions from interested users are welcome.

Third party licenses

Scala

Much of NetLogo is written in the Scala language and uses the Scala standard library. The license for Scala is as follows:

Copyright (c) 2002-2020 EPFL

Copyright (c) 2011-2020 Lightbend, Inc.

Scala includes software developed at LAMP/EPFL (https://lamp.epfl.ch/) and Lightbend, Inc. (https://www.lightbend.com/).

Licensed under the Apache License, Version 2.0 (the "License"). Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License

for the specific language governing permissions and limitations under the License.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
mailto:netlogo-commercial-admin@ccl.northwestern.edu
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://ccl.northwestern.edu/netlogo/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/NetLogo

MersenneTwisterFast

For random number generation, NetLogo uses the MersenneTwisterFast class by Sean Luke. The copyright for that code is as follows:

Copyright (c) 2003 by Sean Luke.

Portions copyright (c) 1993 by Michael Lecuyer.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

Neither the name of the copyright owners, their employers, nor the names of its contributors may be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Colt

Parts of NetLogo (specifically, the random-gamma primitive) are based on code from the Colt library (http://acs.lbl.gov/~hoschek/colt/). The copyright for that code is as follows:

Copyright 1999 CERN - European Organization for Nuclear Research. Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation. CERN makes no representations about the suitability of this
software for any purpose. It is provided "as is" without expressed or implied warranty.

Config

NetLogo uses the Typesafe "Config" library. Copyright (C) 2011-2012 Typesafe Inc. http://typesafe.com The Config library is licensed under the Apache 2.0 License. You may obtain a copy of

the license at http://www.apache.org/licenses/LICENSE-2.0.

Apache Commons Codec (TM)

The NetLogo compiler uses a digest method from the Apache Commons Codec (TM) library. Apache Commons Codec (TM) is copyright and trademark 2002-2014 the Apache Software

Foundation. It is licensed under the Apache 2.0 License. You may obtain a copy of the license at http://www.apache.org/licenses/LICENSE-2.0.

Flexmark

NetLogo uses the Flexmark library (and extensions) for the info tab. The copyright and license are as follows:

Copyright (c) 2015-2016, Atlassian Pty Ltd All rights reserved. Copyright (c) 2016, Vladimir Schneider, All rights reserved. Redistribution and

use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions

of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form

must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JHotDraw

For the system dynamics modeler, NetLogo uses the JHotDraw library, which is Copyright (c) 1996, 1997 by IFA Informatik and Erich Gamma. The library is covered by the GNU LGPL (Lesser

General Public License). The text of that license is included in the "docs" folder which accompanies the NetLogo download, and is also available from http://www.gnu.org/copyleft/lesser.html .

JOGL

For 3D graphics rendering, NetLogo uses JOGL, a Java API for OpenGL, and Gluegen, an automatic code generation tool. For more information about JOGL and Gluegen, see jogamp.org/. Both

libraries are distributed under the BSD license:

Copyright 2010 JogAmp Community. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

http://acs.lbl.gov/~hoschek/colt/
http://typesafe.com/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/copyleft/lesser.html
http://jogamp.org/

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the docu‑
mentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing

official policies, either expressed or implied, of JogAmp Community.

You can address the JogAmp Community via: Web http://jogamp.org/ Forum/Mailinglist http://forum.jogamp.org Chatrooms IRC irc.freenode.net
#jogamp Jabber conference.jabber.org room: jogamp (deprecated!) Repository http://jogamp.org/git/ Email mediastream _at_ jogamp _dot_ org

Matrix3D

For 3D matrix operations, NetLogo uses the Matrix3D class. It is distributed under the following license:

Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, modify and redistribute this software in source and binary code
form, provided that i) this copyright notice and license appear on all copies of the software; and ii) Licensee does not utilize the software

in a manner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL

NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR

PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft navigation or aircraft communications;
or in the design, construction, operation or maintenance of any nuclear facility. Licensee represents and warrants that it will not use or
redistribute the Software for such purposes.

ASM

For Java bytecode generation, NetLogo uses the ASM library. It is distributed under the following license:

Copyright (c) 2000-2011 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the docu‑

mentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PicoContainer

For dependency injection, NetLogo uses the PicoContainer library. The copyright and license for the library are as follows:

Copyright (c) 2004-2011, PicoContainer Organization All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the PicoContainer Organization nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parboiled

For reading models, NetLogo uses the Parboiled library. The copyright and license for Parboiled are as follows:

This software is licensed under the Apache 2 license, quoted below. Copyright © 2009-2013 Mathias Doenitz http://parboiled2.org Copyright ©

2013 Alexander Myltsev Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the

License. You may obtain a copy of the License at [http://www.apache.org/licenses/LICENSE-2.0] Unless required by applicable law or agreed to in

writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied. See the License for the specific language governing permissions and limitations under the License.

RSyntaxTextArea

The NetLogo editor uses the RSyntaxTextArea library. The copyright and license are as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. *

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE

COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ©RIGHT HOLDER& BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JCodec

The NetLogo vid extension makes use of the JCodec library. The copyright and license for JCodec are as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in

binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Java-Objective-C Bridge

NetLogo on Mac OS X makes use of the Java-Objective-C Bridge library. This library was created by Steve Hannah and is distributed under the Apache 2.0 license, available at

https://www.apache.org/licenses/LICENSE-2.0.

Webcam-capture

The NetLogo vid extension makes use of the Webcam-capture library. The copyright and license for Webcam-capture are as follows:

The MIT License (MIT) Copyright (c) 2012 - 2015 Bartosz Firyn and Contributors Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice

shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Guava

The NetLogo ls extension makes use of the Guava library. Guava is released under the Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

Gephi

The nw extension makes use of the Gephi library. Gephi is licensed under the following terms:

Gephi Dual License Header and License Notice

The Gephi Consortium elects to use only the GNU General Public License version 3 (GPL) for any software where a choice of GPL license versions
are made available with the language indicating that GPLv3 or any later version may be used, or where a choice of which version of the GPL is

applied is unspecified.

http://parboiled2.org/
https://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

For more information on the license please see: the Gephi License FAQs.

License headers are available on http://www.opensource.org/licenses/CDDL-1.0 and http://www.gnu.org/licenses/gpl.html.

JSSC

The NetLogo arduino extension makes use of the JSSC library. JSSC is released under the LGPL 3.0 license.

Apache Commons CSV

The NetLogo csv extension makes use of the Apache Commons CSV library, which is released under the Apache 2.0 license.

JTS Topology Suite

The NetLogo gis extension makes use of the JTS Topology Suite, which is released under the EPL 2.0 license and the BSD 3-Clause license.

Apache Commons HTTPClient

The NetLogo gis extension makes use of the Apache Commons HTTPClient library, which is released under the Apache 2.0 license.

Apache Commons Logging

The NetLogo gis extension makes use of the Apache Commons Logging library, which is released under the Apache 2.0 license.

ng-units

The NetLogo gis extension makes use of the ng-units library, which is released under the MIT license.

Tinfour

The NetLogo gis extension makes use of the Tinfour library, which is released under the Apache 2.0 license.

json-simple

The NetLogo gis extension makes use of the json-simple library, which is released under the Apache 2.0 license.

hid4java

The NetLogo gogo extension makes use of the hid4java library, which is released under the MIT license.

JAMA

The NetLogo matrix extension makes use of the JAMA library, which does not have a license.

Gson

The NetLogo table extension makes use of the Gson library, which is released under the Apache 2.0 license.

https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.eclipse.org/legal/epl-2.0/
https://opensource.org/license/bsd-3-clause
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/mit
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/mit
https://www.apache.org/licenses/LICENSE-2.0

What's new?

For help running models made in old versions, see the Transition Guide.

Version 7.0.2 (October 2025)

Major bugs fixed

Loading a model with a slider’s lower bound, upper bound or increment set to anything other than a constant would result in a critical error.

Version 7.0.1 (October 2025)

Bundled software to open multiple instances of NetLogo on Mac

A NetLogo Launcher app is now included on macOS to allow opening multiple instances of NetLogo simultaneously (on other platforms, you can already open multiple instances of NetLogo

by default)

Interface changes

Plots, monitors, and output widgets are now slightly lighter grey in light mode.

Disabled buttons now have slightly darker text (for increased contrast) in light mode.

Changes to NetLogo Web export

NetLogo Desktop will now export the latest version of NetLogo Web

The most notable change to NetLogo Web is that it now sends anonymized usage data to our Google Analytics

The amount of data tracked by this is very minimal, so we ask that users please leave it enabled so that we can better understand how self-hosted NetLogo Web models are

being used. However, note that the functionality can be disabled by appending ?disableAnalytics to the URL

Other updates to NetLogo Web are documented here, from version v2.12.1 to v2.12.4

Major bugs fixed

Primitives for writing text to files were always overwriting the files, rather than appending to them

Running Grammarly on a Mac could prevent using the 3D View

Minor bugs fixed

Monitors that were displaying numbers in scientific notation were showing an extra “0” at the end

Monitors were switching to scientific notation at 10,000,000 instead of at 9,007,199,254,740,993 (2)

The “Reload model on external changes” functionality was not watching all of the files that it should have been for the full duration that it should have been

The “Reload model on external changes” functionality could sometimes trigger the display of multiple redundant “Are you sure you want to open a different file?” dialogs

The “Reload model on external changes” functionality could sometimes raise unnecessary exceptions

Internal lastModified.txt file handles were being inefficiently left open

NetLogo would sometimes suggest importing an extension immediately after having imported it

The color theme was defaulting to “light”, rather than checking the system’s default theme

Some modal dialogs were being hidden behind other windows

macOS and Windows were using incorrect file icons for .nlogo and .nlogo3d files

macOS was consistently producing more than one “Print” dialog at a time (yes, as in: printing to paper)

Tabs for __includes files were wrongly being foregrounded when reopened

Tabs for __includes files could not be zoomed when popped out into separate windows

The “Auto-indent” setting was not applying to secondary code editors (e.g. inside of widget “Edit” dialogs)

self and myself were reporting incorrect values inside of carefully blocks

Mathematica Link was setting the wrong location to look for NetLogo extensions

Patches could wrongly persist in stored patchsets after calls to resize-world

The internal optimized form of any? <breed>-on was was producing incorrect results

Printing anonymous procedures to strings (e.g. with the word primitive) was over-eagerly eliding parentheses that are actually necessary when calling primitives that don’t take a fixed

number of arguments

The Command Center would display illegible gobbledygook on Linux if the output line was wider than 32767 pixels

53

file:///tmp/sbt_6c39b28e/transition.html
https://netlogoweb.org/whats-new

The colors of square brackets had poor visibility in dark mode

Auto-saves of the “File > New” model were never expiring

“Headless” versions of NetLogo could not open NetLogo 7-formatted BehaviorSpace experiments

NetLogo would give up on trying to open documentation if it lacked a connection to the internet, instead of falling back to using the copy of the documentation that comes with the NetLogo

installation

Some “help” dialogs were being placed in the wrong location on the screen

Brackets were being visually matched in editors, even when the containing editor was not foregrounded

The icon used in the compiler error banner was needlessly low-resolution

Note widgets were failing to correctly wrap text when rendering in the standard (i.e. non-Markdown) mode

The Extension Manager could sometimes fail to load the list of extensions properly

BehaviorSpace was refusing to validate or save any experiments that referenced special variables (e.g. world-width , random-seed)

BehaviorSpace could open dialogs at wrong locations and sizes

BehaviorSpace (pointlessly) allowed pausing after the final run

NW Extension: Graphs were not always retaining their ordering when they should have been

Vid Extension: Native library files were not being properly cleaned up when “temporarily” unpacked

Vid Extension: Would crash when loaded headlessly

Vid Extension: Could not use webcams on macOS versions before 14

set-patch-size wrongly allowed values of 0 or less

Opening a new file while focusing a text input could cause an exception

Extension Manager downloads didn’t raise errors when they should have

Single-line text fields did not respect undo/redo

When converting models from the old file format to the new format, slider widgets could sometimes lose their default value

Agent monitors could sometimes render at too small of a size when the model’s world was small

Version 7.0.0 (September 2025)

Changes in NetLogo Functionality

This is a major upgrade from NetLogo 6.4. We made many changes to basic features, the NetLogo GUI, the file format and NetLogo library models.

Some of the biggest changes we made in this release are:

A new modernized GUI with both light and dark modes (and a classic mode) (see below)

Greater customizability, with more preferences and settings (see below)

NetLogo models are now stored in a new format with the extension .nlogox (see below)

For users with modern macOS devices that use the Apple silicon architecture, we now provide a separate, higher-performance version of NetLogo to download

Below, we list all the changes since NetLogo 6.4.

Changes to the NetLogo GUI

Major Changes

The Interface Toolbar has been updated for usability: there are now four different tools for interacting with or editing widgets. These change the way you author and edit models:

With the Interaction tool, users can interact with widgets much as they did before NetLogo 7.

With the Selection tool, users can select and move widgets by clicking on them.

With the Edit tool, users can edit widgets after a single click (no previous selection required).

With the Delete tool, users can delete widgets by clicking (no previous selection required).

There are new tools to align, distribute and stretch widgets. These have a menu in the Interface Toolbar.

Other Changes

See the NetLogo 7.0.0 Changes Overview for more details.

User interface elements (widgets) have a flat modern look with a new color scheme.

Users have a choice of color themes: Light, Dark and Classic.

The classic color theme is similar to the light theme, except the widgets have the pre-NetLogo 7 colors.

Widget sizes have been adjusted for better aesthetics and readability.

All widgets now open with the new widget styles, but pre-NetLogo 7 models will open with the old widget sizes by default. However, the new widget styles are not designed to look or

function well with the old widget sizes, so model authors are strongly encouraged to update their models to use the new widget sizes.

There is a tool to automatically update the layout of a model to better support the new widget sizes.

Users can set widgets to have their pre-7.0.0 default sizes if they want.

Options to delete, copy and paste all selected widgets have been added to the right-click menu.

A preview is shown when widgets are added.

Buttons have new icons for observer, turtle, patch and link.

Sliders now display their values in an editable box.

For Monitors, users can specify the units represented by numbers.

The font and background colors for Notes can include transparency and are specified separately for Light and Dark Modes.

file:///tmp/sbt_6c39b28e/netlogo7intro.html

Icons for the Interface, Info and Code Tabs have been updated.

The icons for moving the command center from the bottom of the Interface Tab to its right side and back are now more intuitive.

The widget pull-down menu is easier to read.

The Model Speed slider now has buttons to increase and decrease model speed.

Code Tabs for included (.nls) files can be closed by clicking on the tab.

Code Tabs for included files have checkboxes for opening a separate code window.

Headers in the Info Tab have been redesigned.

The color themes are color blind friendly.

The shapes list in the Turtle Shapes Editor and the Link Shapes Editor is now searchable.

Color Swatches has been replaced by a more powerful Color picker.

The documentation format has been updated.

Changes to the NetLogo File format

The extension of model files is now .nlogox or .nlogox3d .

Existing .nlogo model files will be converted to .nlogox files.

NetLogo 7 only saves models as .nlogox files.

The .nlogox files are XML files.

Any third-party scripts that processed .nlogo files are not expected to function correctly on .nlogox files

The .nlogox format allows the saving of model-specific information.

The .nlogox format allows the saving of user interface element specific information.

For example, a user interface element can appear in the new larger size, or the original size.

The .nlogox format is extensible and will allow new types of data to be stored in the future.

This makes it easier to add capabilities and keep models backwards compatible.

Resources (e.g., pictures, data files) needed for a model may be stored in the .nlogox file in the future.

Changes in Primitive Functionality

There was a small bug fixed in the behavior of the random primitive. Models that use random and random-seed may not generate the exact same behavior as in NetLogo 6, though the vast

majority of models should show no change in macro-behavior.

Changes for Customizability

Widgets that have changed size for NetLogo 7 have a checkbox that allows users to switch between the new larger size in NetLogo 7 and the previous size used in NetLogo 6.4.

The “Auto-indent” and “Show line numbers” global preferences can be set from code section of the NetLogo settings dialog (also available from the code tab).

There are changes to the Preferences dialog which let you customize various NetLogo settings.

External editor support: Users can enable a feature that checks the open model for changes made outside of NetLogo to the model file and to any included files. When a change is

detected, the file is updated in NetLogo. This feature can be enabled or disabled using the NetLogo preferences dialog (also available from the code tab). It is disabled by default.

There is a new preference option that prevents compilation errors from stealing focus from the current tab. By default, it is not enabled.

There is a new preference option that causes a separate code tab to be opened when NetLogo starts. By default, it is not enabled.

There is a Linux-only UI scale preference that matches NetLogo graphics to the system UI scale.

There is a preference that enables users to control whether anonymous data will be collected when they are using NetLogo. It is enabled by default.

Users can switch between Light, Dark and Classic color themes using an item in the Tools menu.

A new Color Picker replaces Color Swatches. Users can still select NetLogo colors from a grid of rectangles. The Color Picker has a second tab that allows users to specify colors in most

common formats, and that enables easy selection of a more extensive set of colors.

Features and Enhancements

The NetLogo Graphical User Interface (GUI) has been thoroughly modernized.

The model file format has become extensible.

The NetLogo team can now send announcements which are displayed in a banner on the Interface Tab. Users can click a link for more details.

Notes on the interface tab can now render markdown/html.

Users can copy and paste widgets both within and between models.

There is a new File -> Manage Bundled Resources dialog that allows you to view, add, or remove files that are bundled with the current NetLogo model. You can easily embed such files in the

Info Tab.

Plots can now be scaled independently for the x and y axes via checkboxes in the Plot widget.

The full NetLogo menu bar remains available when you are focused on a separate code tab.

The Help Menu now has a link to the NetLogo Forum, a website to ask/answer questions and have discussions about NetLogo.

The Tools->Halt option is disabled if code is not running.

Plot legends wrap to be multi-line if needed.

The auto-save functionality will prompt users if there is an auto-save file available (for example if NetLogo crashed).

Language Changes

file:///tmp/sbt_6c39b28e/resource-manager.html

The user-input primitive has a new optional argument for a default input value.

The new primitives auto-plot-x-on , auto-plot-y-on , auto-plot-x-off , and auto-plot-y-off allow plots to be scaled independently for the x and y axes.

The new primitive set-topology allows you to set the model topology from code (it replaces the “hidden” command __change-topology)

Bug Fixes and Minor Changes

Multi-assign with let and set can use arbitrarily nested lists to “destructure” variables. For example, let [[corner1-x corner1-y corner2-x corner2-y] player-name score] get-

current-player-info .

The primitive autoplot? has been restored.

An optimization speeds up the execution of the constructs any? turtles-on and any? <breeds>-on .

An __includes statement not followed by brackets no longer causes an exception.

Reporter procedures without a report statement, run or runresult now throw a compile time error.

The user receives a specific message when keywords such as globals , turtles-own , to or end are used in an incorrect context.

Unmatched closing parentheses, brackets and braces result in a meaningful error message.

When a runtime error occurs the user is asked for information that would allow us to reproduce and fix the problem. This is in addition to the stack trace plus system information currently

requested.

“Save as NetLogo Web” adds the contents of any included files to the model code.

One can now import a world that has an array containing strings with curly braces.

The Recent Files lists now appropriately contains only 2D or 3D models, according to which NetLogo application is open.

The “Reload the last model on startup” preference now appropriately opens only 2D or 3D models.

When the user does a “Save As”, non-NetLogo files are greyed out and cannot be selected on Windows and Linux. It is a MacOS feature that users can still select a greyed-out file. If a user

selects a non-NetLogo file on MacOS they are warned that a .nlogox or .nlogox3d extension will be added.

The Tools menu now displays the correct Show/Hide Command Center option no matter how the command center is made visible or hidden.

The process of selecting a log directory has been improved to allow a directory to be created, and to display an error message if the logging directory does not exist when the model is loaded.

The preferences dialog shows an error dialog and prevents the user from closing it if logging is enabled but no log directory is specified, or if the specified log directory does not exist or if

NetLogo does not have the necessary permissions to write to the directory.

Input widget values of the wrong type, e.g. string values in numeric input widgets, are now rejected.

Creating a number input box and leaving the value empty no longer causes errors or crashes.

When the value of an interface element is changed outside of the Edit dialog, the user will be prompted to save the model when closing it.

An empty link monitor now allows a who number to be entered as an end value.

The value of the “Auto-indent” checkbox now persists between sessions.

Shortcuts for “Previous word”, “Select previous word”, “Next word”, “Select next word”, “Select word”, “Delete previous word”, and “Delete next word” should work as expected in the code tab

and in other text editors.

The MacOS and Linux convention of specifying a user’s home directory with a tilde at the beginning of a file path is now properly interpreted for included (.nls) files.

Included files are now recompiled when they are closed without saving the changes.

Leaving and returning to a “dirty” Code Tab no longer causes compilation.

There is no exception when reopening an included file that was saved in a separate code tab.

An included file being edited in a separate window can be saved.

Opening a separate code tab that contains a compilation error no longer causes an exception.

The “Save” hot-key works for included files in a separate code tab.

Doing a text search in a separate code tab that overlaps an interface window will no longer bring the interface window to the front, covering part of the separate code tab. (This was a MacOS-

only issue.)

Changes in focus happen correctly when moving between separate and non-separate tabs.

Multi-assign with let and set now works with BehaviorSpace.

BehaviorSpace works correctly when no measurements have been made. In particular, it no longer produces a runtime error when the following conditions hold: 1) the user specifies a “Run

metrics when” reporter, 2) the reporter is never true, and 3) the user has specified both Table and Spreadsheet output.

BehaviorSpace error messages are improved.

When a BehaviorSpace experiment is run with one or more specified output files that are open in another program, it now aborts the experiment and shows a useful error message.

Invalid variable specifications in BehaviorSpace result in useful messages.

BehaviorSpace output files can now be deleted once an experiment ends. NetLogo does not need to be exited.

BehaviorSpace experiment edit compilation errors are reported when the dialog is closed rather than at runtime.

Comments are now supported in BehaviorSpace multiline reporter fields.

Right clicking the blank space in a new Systems Dynamics Model no longer causes an exception.

NetLogo no longer hangs moving through a corner with wrapped coordinates and pen-down.

Number input boxes without a value no longer keep other input boxes or the command center from gaining focus.

The Page Setup dialog opened when a user wants to Print now closes when its Cancel button is pressed.

When a procedure in the Code Tab is “folded,” so that only the line with the name is visible, an action that needs to move to inside the code causes it to be “unfolded,” so it is fully visible. This

can be a result of a search, find-and-replace or jumping to code with a compilation error.

If the NetLogo window is maximized in Windows, opening a new model no longer unmaximizes it.

Plot pens always take account of plot-pen-up and plot-pen-down .

The padding and location of internal components of widgets now change proportionally when zooming.

Models that have not been edited are never considered unsaved.

Ctrl/Cmd+X when nothing is selected now cuts (copies and deletes) the entire line.

Double clicking on a model that was saved with compilation errors opens it correctly.

mouse-xcor and mouse-ycor no longer degrade performance when called multiple times per iteration of go or in an ask with lots of agents.

Using a lower case ‘i’ in code with a Turkish locale no longer causes compilations errors

The resize behavior of edit dialogs has been improved. For example, plot widget “update commands” and “setup commands” fields can now be made taller, and the BehaviorSpace

experiment edit dialog can be resized to make controls near the bottom accessible.

NetLogo now detects autosave files created for a model in case NetLogo crashes. Users are now asked if they want to recover it.

Mouse coordinates are now correctly reported along the border of a selected view.

All open files are closed when a runtime error occurs.

When exporting and then importing a model the last line in an Output area is a newline it will be retained.

Disabled button state is now preserved by Import world.

Scientific notation in monitors shows the desired number of decimals.

Empty 3D models now have more room for widgets.

Clipboard errors when pasting no longer cause an exception.

After patch colors have been read from a file the underlying input stream is now closed.

Some NetLogo display problems are avoided because Microsoft Direct3D graphics are now off by default.

The default value label tick counter, the names of the panels in the ‘About NetLogo’, and the Preview Commands editor can be internationalized.

Links to the NetLogo user manual PDF in the documentation installed with NetLogo work correctly.

Inserting a tab in a Note produces four spaces.

Adjusting a widget value using arrow keys does not affect other scrollable areas.

import-world correctly handles tables that have a key with a ‘:’.

Better support for worlds with one small and one very large dimension.

The app icon preview found by searching in the Windows Start Menu, is no longer pixelated.

Separate windows (such as the pop-out code window) can now be interacted with while other dialog windows are open

Agent monitor windows will no longer hide after giving a different application focus and then returning to NetLogo

File choosers will now open to the previously used directory

Searching for text in the editor will now also center the text’s location in the editor

The Extension Manager is better able to insert the names of extensions without introducing errors

Title bars now better match system appearance on Windows and macOS

The “Preferences” window will offer to restart the application after changing preferences that require a restart

Code “fold” actions have been reorganized into a submenu of the “Edit” menu

Code auto-indentation behavior has been improved

BehaviorSpace will notify about invalid variable values earlier

Extension Updates

The gogo extension supports the GoGo board 6.

The dialog extension user-input primitive allows an optional default value argument.

There is a new resource extension that allows you to list and get resources bundled with a model.

The SimpleR extension is now bundled with NetLogo.

The R extension is no longer bundled with NetLogo. It is available through the extension manager.

There is a new bspace extension that allows users to create experiments programmatically.

Documentation Updates

The Documentation has been updated to describe the many updates that were made for NetLogo 7.0.0. The majority of the images have been updated.

There are three new pages:

NetLogo 7.0.0 Changes Overview

Netlogo Preferences

Color Picker Guide

Grammar was improved for NetLogo Tutorial 2.

The link to the book “An Introduction to Agent-Based Modeling” was updated.

The BehaviorSpace error message about undefined parameter values was made easier to interpret.

The BehaviorSpace documentation for the subexperiment syntax is improved and uses examples from the Wolf Sheep Predation Model.

The effect of topological wrapping on the primitives neighbors and neighbors4 is explained in the documentation.

Models Library Changes

New Sample Models:

Chladni Figures

Consumer Choice

Cyclic CA

Hockey

Interstitial Diffusion

Invasive Plants

Wolf Sheep Predation - Agent Cognition (folder)

file:///tmp/sbt_6c39b28e/netlogo7intro.html
file:///tmp/sbt_6c39b28e/netlogopreferences.html
file:///tmp/sbt_6c39b28e/colorpicker.html

Wolf Sheep Predation - Micro-Sims (the main model which runs microsimulations to simulate agent cognition)

Wolf Sheep Predation - Micro-Sims Cognitive Model (the submodel for running agent microsimulations)

The Mathematics section now has a subfolder Conic Sections that contains three models:

Emergent Shapes - Ellipse

Emergent Shapes - Parabola

Emergent Shapes - Hyperbola

The three models above replace two models from the NetLogo 6.4 mathematics section:

Conic Sections 1

Conic Sections 2

New 3D Sample Models

Maze 3D

New Code Examples

The Ordered Agent Drawing Code Example model demonstrates how to sort turtles for display using stamp when precise drawing order is needed.

The Patch Outlines Example model demonstrates how to outline patches in a reasonably simple way using stamp .

Sample Model Changes

The Moths model was updated with information about new research into why moths circle lights. The idea that this could be modeled with NetLogo 3D was added as a suggestion for further

exploration.

The correct label is used after hatch ing in the Plant Speciation model.

The Discrete Event Mousetrap has additions to the Extending the Model section.

When the bar is crowded in the El Farol model the patch label is now appropriately yellow.

An inaccurate comment in Small Worlds model was corrected.

Multi-line code input widgets were enabled for PNoM 2 Diffusion Sensor Sandbox. Previously single line widgets were incorrectly used.

The Radical Polymerization model was updated to fix a bug in which Km was used instead of Kr for probability of termination.

Version 6.4.0 (November 2023)

A major change in this release the introduction of new features in BehaviorSpace

BehaviorSpace New Features

A new syntax that allows parameter combinations to be run separately, rather than being expanded combinatorically.

Measurements can be conditionally recorded when a boolean reporter is true.

Commands can be run before the experiment begins.

Commands can be run after the experiment ends.

The mean and standard deviation of data from repetitions can be output to a file.

List data can be output to a file with one list element per cell.

Experiments can now be paused and resumed.

Experiments can now be exported to an XML file that can be used when running headlessly.

Experiments in an XML file can now be imported into a model.

There is a reduction in memory usage for experiments containing plots when Update plots and monitors is unchecked in the Run options dialog.

Language Changes

The let and set primitives now support taking a list of variable names as the first argument and will assign values to those variables from a list of values given as the second argument. This is

useful in many situations, but especially when you want to have a reporter procedure calculate and report multiple values to be used elsewhere.

A new reporter primitive has been added, who-are-not . It takes an agentset as a lefthand side argument and an agent or another agentset as a righthand side argument and reports all agents in

the former who are not in the latter. For example: let strangers turtles who-are-not link-neighbors .

Bug Fixes and Changes

The save dialog will no longer appear when clicking the close button on an already-saved includes file code tab.

When an includes code file is edited, compiled, and closed without saving, the model will correctly re-compile without the unsaved change.

When extensions are updated through the extensions manager, existing files and libraries for them will be removed so conflicts between versions cannot occur.

An error will no longer occur when opening a NetLogo model stored in the user’s home directory due to the extension locating code trying to search restricted folders.

Plotting now uses its own RNG that is cloned from the main RNG and updated when the main RNG changes. This means if plotting is enabled, it will be reproducible from the main RNG, but if

plotting is disabled the behavior of the model will not change when using the same main RNG seed.

A failed compile of a string as a command with run could cause the same string to fail to run as a reporter using runresult later.

Patch colors can now be set to RGBA values with an alpha channel, the alpha channel is just ignored as there is nothing “behind” patches. Previously this would cause an error to occur.

Users can add symbolic links to their models library folders to point to other directories to have those models available for loading in the app. This had worked in a prior version of NetLogo,

but was accidentally disabled with other bugfixes.

The link-neighbor? boolean reporter has had some small optimizations done to improve performance.

Agent labels now support linebreaks.

file:///tmp/sbt_6c39b28e/behaviorspace.html

Errors that happen when NetLogo is starting but before the full interface appears should now be caught and displayed in a simple dialog. Previously to see such errors NetLogo would have to

be started from a command line console.

The default maximum memory usage for NetLogo is now set to 50% of system memory instead of a static limit of 1 gigabyte. For systems with greater than 2 gigabytes of memory this should

give improved performance and reduce the chance of getting out of memory errors during model runs.

When the extension manager is disabled via the Java environment property, no data will be fetched over the network. Previously the current extension listing would be fetched even though

using the list in the manager was disabled.

The <breed>-at primitive now works properly in 3D. Previously it would function as the 2D version, only getting agents with z-coordinate of 0.

BehaviorSpace Bug fixes and changes

3D BehaviorSpace runs are now allowed.

BehaviorSpace no longer exits when there is a plot compilation error.

Error messages for BehaviorSpace variable errors have been improved.

BehaviorSpace output files no longer contain trailing spaces.

Headless console mode now has a --help flag.

The Experiment dialog makes use of tooltips and has a cleaner look.

Changes will not be saved if the close/X button of the Experiment dialog is hit.

The number of threads in the Run options dialog is now saved.

Experiments will not run if the close/X button of the Run options dialog is hit.

Extension Updates

The Bitmap extension now supports reading images from base64-encoded strings and writing images out to base64-encoded strings.

The GIS extension has a couple of bug fixes: 1) its string-based search of features could include too many items, and 2) the code for creating turtles inside a polygon was executed for existing

turtles outside that polygon.

Documentation Updates

The logical operator precedence for and and or is clarified in the docs as not exactly matching how other programming languages function.

Clarify that mouse-inside? only works when the mouse is in the world, not only in the view, which can happen with unwrapped worlds and use of the follow primitive.

Removed the -> variable, a leftover from the switch from the old anonymous task syntax.

Clarify that an extension must be installed for the extensions keyword to take effect.

Models Library Changes

New Sample Models:

Food Reward Learning

Current in a Semiconductor

Radical Polymerization with Chains

Food Reward Learning

Baldwin Effect

Sample Model Changes

Fixed a minor issue in the Monte Carlo Lennard-Jones model.

Renamed Prisoner’s Dilemma models from “PD” to “Prisoner’s Dilemma” and clarified that “confess” means “defect” in the info tab.

Polymer dynamics model info tab was edited to indicate that this is not strictly speaking a cellular automata.

Wolf Sheep Predation was updated to include BehaviorSpace experiments that use the new BehaviorSpace features.

Anisogomy model was updated and improved.

Version 6.3.0 (September 2022)

Bug Fixes and Changes

The major change in this release is the upgrade of the bundled Java from version 8 to 17. Java 17 is the current long-term-support release of the Java runtime.

The models library will correctly display when NetLogo is set to a language other than English.

The log4j library has been removed from NetLogo. Logging is now configured from the NetLogo preferences dialog. The output is in JSON text file format. See the Logging docs for more

information.

BehaviorSpace experiments can now also be run from a terminal or command console using the “NetLogo_Console” app with NetLogo’s bundled Java by using the --headless flag. See the

BehaviorSpace documentation for more information and examples. This avoids the need to install and configure a separate Java runtime to use the netlogo-headless.sh script, which

remains bundled for those who require it.

BehaviorSpace output files are now chosen directly during run setup instead of separate prompts at the run start. This simplifies the setup process and resolves a bug where the runs would

not occur on macOS.

The System Dynamics Modeler UI has some small improvements.

Fixed a bug where slider widgets would allow initial values outside of their range when changing the limits.

Better handle asymptotic values for tan with a proper error message.

NetLogo will now correctly handle running map or foreach when no lists are given.

When an anonymous task that uses let variables is displayed as a string it will now include those variable names.

Reporters used in concise task syntax no longer give the wrong result when used with fewer arguments than their default.

The models library location will be correctly set when using GUI scripts.

Behaviorsearch now sets a flag to alert extensions that they are being run without a UI so that extension code can adjust appropriately.

Extension Updates

GoGo: Improve newer GoGo board compatibility and improve the stability of the extension.

LevelSpace: Eliminate crashes when the controlling API is used to run NetLogo without a UI.

Profiler: The profiler:data results are now given in milliseconds instead of nanoseconds, matching the other primitives in the extension.

Python: Improvements in how the extension searches for the Python binaries when they aren’t specified via the configuration menu.

Vid: Update backing libraries to try to improve stability and usability on macOS and Windows.

Documentation Updates

Update the system requirements to include Windows 11.

Fixed a bad link to the extension API version 5 to 6 transition guide.

Added a FAQ entry on how to save random seeds from runs.

Models Library Changes

New Sample Models:

Slime Mold Network

Virus Using Discrete Event Simulator (cross-listed in code examples for time extension)

Distribution Center Discrete Event Simulator (cross-listed in code examples for time extension)

CA 1D-Squaring

Hydrogen Gas Production

Molecular Dynamics Lennard-Jones

New Curricular Models:

CT-STEM:

Habitat Preference

New Code Examples:

time : Logotimes Example

time : Discrete Event Whack-a-Mole

Sample Model Changes

Taxi Cabs: Fixed Dongping Zhang’s name in the credits.

Turbulence: Cross-listed under CS/CA.

Tree Simple: Changed init-x slider min/max to -100/100. Before the range was -125/125, which caused an error.

Traffic Basic: Changed speed-limit and speed-min from agent variables to be globals.

Urban Suite - Cells: Renamed the go * 80 button to go * 40 , reflecting its actual effect.

CA 1D Rule 30 - Improved the info tab to explain how Rule 30 has been used as random number generator.

Curricular Models Changes:

PNoM 4 Virtual Syringe Force Graph: fixed a bug that produced an error message.

Kidney Reabsorption: Some improvements to the info tab.

Newly Verified Models

The suite of prisoner’s dilemma models have been in the models library for a long time but were previously “unverified.” They have been reviewed/verified and moved into the main Social

Science folder.

Version 6.2.2 (December 2021)

Fixes and Changes

When Agent Inspector window opens put focus in Command Line.

When enter macOS full screen mode move inspector windows to foreground.

Properly export models to HTML with the Save As NetLogo Web… option.

Fixed a bug where preview images would not generate correctly for models that imported background images on setup. This affected a couple of library models: Robotic Factory and Bug

Hunt Camouflage.

Added an explanation about Extension Sample Models to the models library info screen, and now those models will be listed as unverified.

Fixed a small typo in the FAQ for the path to the NetLogo.cfg file on macOS systems.

Add a profiler:data primitive to the Profiler extension that returns all the profiler data as a list of lists suitable for passing to the CSV extension for output to a file.

Fixed bug preventing typing into Command Line of first Agent Inspector window opened.

Fixed bug causing Agent Inspector windows to appear behind NetLogo window when there is an overlap.

Improved documentation of Fullscreen mode for the 3D view.

Restored hotkeys for Comment / Uncomment, Shift Left, Shift Right, Jump To Declaration, and Show Usage for separate code tab.

Added documentation for Jump To Declaration and Show Usage.

Clarified what the BehaviorSpace Table and Spreadsheet output format options do.

Version 6.2.1 (October 2021)

Features and Changes

Agent monitor inspection windows can now move across monitors

Improved error message on BehaviorSpace file access failures

Use a common error message for turtle-set , patch-set , and link-set

Use same font for input widgets as choosers/sliders/buttons

Select the search text on models library dialog open for easy replacement on a new search

Automatically add the png extension when exporting the world view

Added a preference to have NetLogo automatically load the last used model on startup

The “mammoth” shape is available in the shapes library for easy import into models

Substantial GIS extension improvements and new primitives, see the GIS extension changelog for more information

Substantial Palette extension improvements and new primitives, see the Palette extension docs for more information

Documentation Updates

Add a note about transparent colors to the color dictionary entry

Documentation for inspect and stop-inspecting now includes links

Make sure https links in standalone dictionary entries work correctly

Make the BehaviorSpace command-line examples use real models from the library with experiments that can be run without modification

Link to the new Beginner’s Interactive NetLogo Dictionary site from the help menu (BIND)

Bugfixes

Shape changes in 3D mode will take effect without a restart

Runtime exceptions with wrong argument types properly generate stack traces

When sort-on receives input values that are not all numbers, all strings, or all agents of the same type, a user-friendly error message is generated

Breeded links are properly checked for equality

exp now errors when it generates an invalid, out-of-range number result

A proper “file not found” error will be given when a model in the recent files list was deleted or moved and cannot be located

Bundled extensions updated through the extensions manager can have those updates uninstalled through it, too, just like unbundled extensions

Properly add the nlogo file extension when saving a model with a filename that contains dots

When a runtime error occurs, NetLogo will show the location in the code tab, as it did in prior versions

Detached code tab stays in front when model is saved

Mathematica-Link: Clear up some issues with the tutorial being out-of-date

Extension: View2.5d shape change bugfixes

Extension: LevelSpace bugfixes for running GUI-mode models headlessly

Models Library Changes

All external URLs in models’ INFO tabs were validated resulting in URL updates to 15 models.

New Sample Models:

Limited Order Book

River Meanders

Robotic Factory

Taxi Cab

New Curricula Models:

CT-STEM:

Calorimetry

New Code Examples:

https://github.com/NetLogo/GIS-Extension/blob/main/CHANGELOG.md#130
https://github.com/NetLogo/Palette-Extension/blob/main/README.md

palette : Color Bubbles

palette : Color Painting

palette : Color Reveal

Sample Models

Brian’s Brain: Rewritten erasing function for NLW compatibility.

Crystallization Basic: Fixed issue where world size depended on height rather than width .

Geometron Top-Down: Promoted from unverified . Updated INTERFACE, INFO, and CODE tabs.

Kaleidoscope: Promoted from unverified . Updated INTERFACE, INFO, and CODE tabs.

Lattice Gas Automaton: Mouse movement moved to a forever button for NLW compatibility.

Life: Rewritten erasing function for NLW compatibility.

Life Turtle-Based: Rewritten erasing function for NLW compatibility

N-Bodies: Rewritten mouse handling routine for NLW compatibility.

Planarity: Updated for NLW full compatibility

Small Worlds: Fixed bug with clustering coefficient being undefined for single-link.

Sunflower Biomorphs: Rewritten mouse handling routine for NLW compatibility

Surface Walking 2D: Mouse movement moved to forever button for NLW compatibility.

PANDA BEAR Solo: Mouse movement rewritten for NLW compatibility.

Code Examples

gis – GIS General Examples: Rewritten to take advantage of new primitives released in gis v1.3.0.

palette – Palette Example: Rewritten to take advantage of new primitives release in palette v2.0.0.

Version 6.2.0 (December 2020)

Features

A premier feature for this release is a pop-out code tab, that allows you to detach the code tab from the main application and into a separate window in order to view the interface and the model

code side-by-side.

The models library now shows code examples that come with extensions installed through the extensions manager.

We now bundle the Liberica OpenJDK Java runtime instead of the Oracle Java runtime, which has a less restrictive license.

The mean primitive will now work on lists that contain non-numbers as other number processing primitives do.

The extensions manager can be disabled with a command-line switch to avoid network traffic or to lock down installed extensions.

Bugfixes

We’ve made changes to how we bundle NetLogo on macOS in order to satisfy Apple’s package notarization process for detecting malware. NetLogo now runs without any special

workarounds, as long as your macOS settings allow running software from identified developers.

When first opening a model and installing a new extension for it through the extensions manager prompt, the model widgets would not be usable until the model’s code was recompiled. Now

the model will be ready to use right after the extension is installed.

When using in-cone on wrapped worlds, occasionally turtles at the very edge of the wrapped cone would be missing from the results.

When using in-radius on a patch to get nearby turtles, sometimes turtles at the edge of the radius would be missing from the results.

The performance of a turtle lookup by breed and who-number, like sheep 10 , could take an unreasonable amount of time.

Models with a large amount of code (5000+ lines) would take a very long time to check and compile.

Logging Improvements

Logging can now be enabled and a configuration file chosen through the NetLogo preferences menu. The logging standalone application is no longer necessary, so it has been removed.

The command line switch to set the logging directory would previously be ignored.

Users now get a chance to add a comment to the log when they get a compiler error.

NetLogo 3D Bugfixes

The in-radius and in-cone primitives could give incorrect results, omitting some agents in rare cases.

When hatching turtles the z-coordinates would sometimes not be copied from the parent turtle.

The font size value for the world view would be ignored.

When using with with patches, the results could include only patches with a zero z-coordinate.

NetLogo 3D should run more reliably on Linux systems.

Extension Changes

The Time extension is now bundled with NetLogo. This extension lets you work with real-world dates and times in your model, and includes an event scheduler for triggering events at points

in time. It also includes an NLS library file you can add to your model to handle time series reading from CSV files. See the Time extension docs for more information.

https://github.com/NetLogo/Time-Extension

The View2.5D extension has been significantly upgraded. Turtle stem color can be set by a reporter. Links are now visible in the 2.5D window. They can be visualized either going from turtle

to turtle (the default) or in the xy-plane. The choice can be made using radio buttons or through new commands

LevelSpace now always runs hidden models at full speed and should give better error messages when errors occur when loading a model.

The Network (NW) extension will not add extra whitespace when using nw:save-matrix .

The Python extension gives better error messages when the paths to the Python executables are incorrect.

Documentation Changes

Tutorial #1 referenced an older version of the Wolf Sheep Predation model.

Added a couple more common problems to look out for in the BehaviorSpace guide.

Clarify the version of NetLogo Web used to export models as HTML files.

Clarify that the auto scale feature for plots does not scale the X axis when used with histogram .

Clarify the location of the NetLogo.cfg files on each operating system.

Update steps to take for common issues opening on macOS, added an alert about known issues to the download page.

The docs for ifelse had some incorrect argument names.

Add info about the Pioneer Award for the View 2.5D extension.

Model Changes

New Sample Models:

Dislocation Motion and Deformation

Repressilator 1D

Sex Ratio Equilibrium

New Curricular Models:

CT-STEM (for more information, visit ct-stem.northwestern.edu):

Free Fall

Habitat Preference Behavior

Hardy Weinberg Equilibrium

Kidney Absorption

Mendelian Inheritance

Natural Selection - Camouflage

Pendulum

1D Motion Maps

New Code Examples:

Extension Examples

time Extension - Discrete Event Mousetrap

view2.5d Extension - 2.5d Turtle View Example

Sample Model Updates:

Anisogamy: INTERFACE re-design, expanded INFO tab, and refactored CODE. Now includes additional BehaviorSpace experiments.

Autumn: Minor updates to INFO tab.

Bug Hunt Speeds: Minor updates to INFO tab.

Fire: Minor updates to INFO tab.

Fur: Minor updates to INFO tab.

Grand Canyon: Minor updates to INFO tab.

Lightning: Minor updates to INFO tab.

Moths: Minor updates to INFO tab.

Particle System Basic: Minor updates to INFO tab.

Paths: Minor updates to INFO tab.

Shuffle Board: Minor updates to INFO tab.

Small Worlds: The INTERFACE tab has been overhauled to make the model easier to use. The INFO tab has been rewritten to be more clear and concise. The CODE tab has been restyled and

now uses curved link shapes for neighbors’ neighbor links.

Team Assembly: Minor updates to INFO tab.

Tumor: Additional credits and references added.

Wealth Distribution: Got rid of one line of CODE that didn’t do anything.

Our Chemistry & Physics folder now contains enough examples that can be classified as “Materials Science” that they deserve their own folder. This means a number of models have been

physically moved into this new sub-folder of Chemistry and Physics:

Solid Diffusion

Polymer Dynamics

Lennard-Jones

Dislocation Motion and Deformation

Crystallization Models

Also in this folder are the MaterialSim models. They have been physically moved to the Curricular Models folder, but will be cross-referenced in Chemistry & Physics/Materials Science .

http://ct-stem.northwestern.edu/

Alternative Visualization Updates:

Heat Diffusion - Alternative Visualization: Minor INFO tab updates.

Curricular Model Updates:

BEAGLE Evolution

Altruism: Minor INFO tab updates.

Cooperation: Minor INFO tab updates.

Divide the Cake: Promoted from Unverified after updates to CODE and INFO.

Guppy Spots HubNet: Promoted from Unverified after updates to CODE and INFO.

Chemical Equilibrium: Fix plot and monitor bug that incorrectly counted pink molecules.

EACH (now appears as a sub-directory of the “BEAGLE Evolution” directory)

Note, the above BEAGLE models have now been physically moved into the Curricular Models/BEAGLE Evolution/ folder. In the Models Library browser, they will appear cross-referenced in

the usual places.

Code Examples Updates:

view2.5d Extension - 2.5d Patch View Example: Fixed issue with perspective not being updated on setup .

gogo Extension - GoGoMonitor: Minor INFO tab updates.

HubNet Activities Updates:

All HubNet models now include a citation for the HubNet software and their web links have been updated. This resulted in a change to 37 models in total.

IABM Model Updates:

Arduino Example: Minor INFO tab updates.

Heroes and Cowards: Minor INFO tab updates.

Simple Economy: Updated INFO tab and now listed as a Sample Model under the “Economics” folder.

Fixed inconsistent bracket styling across IABM Textbook models. This resulted in changes to 12 models.

Turtles Circling Simple

Life Simple

Wolf Sheep Simple 1

Wolf Sheep Simple 2

Wolf Sheep Simple 3

Wolf Sheep Simple 4

Wolf Sheep Simple 5

Agentset Efficiency

Voting Analysis

Simple Machine Learning

Simple Viral Marketing

Version 6.1.1 (September 2019)

Bugfixes

The remove-duplicates primitive will now operate properly on lists of agentsets, considering agentsets duplicates if they contain exactly the same agents.

Many fixes to the in-radius primitive, which could report incorrect values when used with a radius that’s a large percentage of an unwrapped world width or cause runtime errors when

world sizes changed or when the radius wrapped around the world back to itself.

Corrected issues with code tab compile errors causing unexpected behavior or runtime errors in the interface tab, especially when a model had breeded links.

You can now use the same let variable name in different command blocks inside a procedure.

The netlogo-headless.sh scripts for macOS and Linux had issues with running the 3D command switch and properly wrapping the Java executable in quotes in case it contains spaces.

Features

Runtime speed optimizations when using the count primitive on turtle or link agentsets with a comparison operator like > or = .

Extension Changes

The Python extension on Windows will no longer give permissions errors when trying to create it’s config file, moved the file to a per-user directory.

The Python extension will no longer produce a confusing deprecation warning when used with Python 3.7.

Moved the storage location for the R extension config files to a per-user directory and updated documentation around getting it working. This issue mostly affected Windows users.

The Mathematica-Link add-on now works correctly with NetLogo 6.1.0 and 6.1.1.

Documentation Changes

Clarified the file location search order for extensions with the new extension manager.

Standardized the language used in the conditional primitives (if , ifelse , ifelse-value) and the boolean operators (and , not , or , xor).

Use correct arrow syntax in the ifelse-value code example.

Added notes to ifelse and ifelse-value that the multi-conditional behavior was newly added in version 6.1.

Model Changes

New Sample Models:

CRISPR Models

CRISPR Bacterium

CRISPR Bacterium LevelSpace

CRISPR Ecosystem

CRISPR Ecosystem LevelSpace

Fruit Wars Model

Sample Model Updates:

Ant Adaptation: Minor Info tab updates.

Curricular Model Updates:

PNoM Models: Minor Info tab updates.

Version 6.1.0 (May 2019)

Feature Changes

The premier feature for this release is an Extension Manager for installing and updating extensions, which is available under the Tools menu. Using extensions with NetLogo could be a painful

process: manually finding them, downloading them, and getting them correctly installed in the NetLogo application. The extensions manager addresses these issues by automating the installa‑
tion of many 3rd-party extensions, and the updating of the bundled extensions between NetLogo releases. All done easily from within the application. In fact, if you open a model that requires

an extension you don’t have installed that it knows about, the Extension Manager will ask if you’d like to download and install it right on the spot, without any extra effort

We welcome external contributions to the extensions library! If you have developed a NetLogo extension and want to make it available to NetLogo users in the Extension Manager, see these

instructions: https://github.com/NetLogo/NetLogo-Libraries#submitting-pull-requests

Other new features include:

The primitives ifelse and ifelse-value now take a varying number of clauses, making selecting a single case from a variety of options much simpler.

Added a new primitive, up-to-n-of , which gives as many items from a list as possible up to some limit, without causing an error if it cannot get all of them. Previously, to safely use n-of

when you were unsure of the number of agents in an agentset would require some verbose code like ask n-of (ifelse-value (count turtles-here < 10) [count turtles-here] [10])

turtles-here [fd 10] , but now you can simple write ask up-to-n-of turtles-here [fd 10] to get the same effect.

Added new hotkeys: Command-U for “Show Usage” of a term, Command-E for “Jump to Declaration” of a procedure, and Command-Option-S for “Save All” when using included NetLogo

code files. Or Ctrl-U, Ctrl-E, Ctrl-Alt-S for Windows and Linux users.

Multiline input widgets are now directly editable on the interface tab.

Runtime optimizations for the in-radius and in-cone primitives.

Bugfixes

When a model that has a compile-time error is saved, its sliders will not reset their values to 0 when it is reloaded.

The procedures search dropdown on the Code tab gives better results with inexact search terms.

Plot pen names with quotes in them are properly stored and loaded.

Plot pen names are now case-insensitive, just like other items in NetLogo.

When a plot is deleted and the action is undone, the plot continues to work afterward.

2D NetLogo models saved in NetLogo 3D can be opened back into 3D, or de-converted by re-opening in NetLogo 2D.

Widgets can no longer be re-sized to be completely outside the interface tab.

Code comments can be used as normal within an __includes keyword file list.

The error message for getting the mean of an empty list should now make more sense.

Double-clicking an empty experiment list in BehaviorSpace will not cause an error.

BehaviorSpace experiments are better about warning when there are astronomical numbers of run combinations.

Anonymous procedures can be given in the conditional reporter blocks of ifelse-value .

Slight changes to how color values are calculated, for smoother interoperability with NetLogo Web.

Extension Changes

The Python extension, py , is now bundled with NetLogo. If you have Python installed on your computer, you can use it from inside a NetLogo model.

The Control Flow extension, cf , has been removed from NetLogo in favor of the new variadic ifelse and ifelse-value behavior. The cf extension is still available from the extensions

library if needed for any existing models.

The CSV extension, csv , had some minor documentation updates.

https://github.com/NetLogo/NetLogo-Libraries#submitting-pull-requests

The GoGo board extension, gogo , should work more reliably on Windows 10.

The Network extension, nw , now loads data in a predictable order when imported, and it correctly handles preferential attachment.

The Table extension, table , had some minor documentation updates.

The View 2.5D extension, view2.5d , now does not throw an error when trying to use a turtle-based view.

Documentation Changes

Added documentation around using primitives like mean and variance along with agentsets producing slightly different results due to floating point arithmetic.

Add an extension authoring introduction page with links to the technical documentation.

Clarify what clear-ticks is meant to do.

Clarify that clear-globals doesn’t affect interface globals.

Fixed various formatting errors and typos.

Model Changes

New Sample Models:

Ant Adaptation

Braess’ Paradox

New Code Examples:

py Extension

Python Basic Example

Python Flocking Clusters

New Curricular models:

PNoM Curriculum

PNoM 1 Diffusion Sandbox

PNoM 2 Diffusion Sensor Sandbox

PNoM 3 Virtual Syringe

PNoM 4 Virtual Syringe Force Graph

PNoM 5 Virtual Syringe Temperature Graph

PNoM 6 Particle Sandbox Gravity

PNoM 7 Particle Sandbox Intermolecular

Sample Model Updates:

Acids & Bases Models: Dissociations now result in random headings for resulting particles.

Mandelbrot: Exposed max-iterations parameter and updated Info Tab.

Peppered Moths: Increase size of moth agents.

Perceptron: Fix weight visualization bug.

Raindrops3D: Remove unused procedure.

Reactor X-Section: Fix typo and extend manual rod depth.

Rock Paper Scissors: Minor Info tab updates.

Sandpile: Minor Info tab updates.

Simple Kinetics 1,2: Dissociations now result in random headings for resulting particles.

SmoothLife: Allows NLW compatibility by skipping some plot drawing.

Tumor: Prevent ask nobody bug when using

Wolf Sheep Predation: Fix typos in Code tab.

IABM Model Updates:

Segregation Simple Models (Simple & Extensions 1 - 3): Reworded comment in Code tab.

Code Example Updates:

LS Parent Example: Change button display name to avoid confusion with setup button.

Mouse Drag Multiple Example: The model has been rewritten to be NLW compatible.

Mouse Drag One Example: The model has been updated to be NLW compatible

We’ve introduced a new subfolder in the Sample Models/Social Science folder: “Economics”. With this new folder, several models have been moved. The following models are now in the

Social Science/Economics folder:

Bidding Market

Hotelling’s Law

Oil Cartel HubNet

Sugarscape

Bank Reserves

Cash Flow

Wealth Distribution

With the introduction of the new variadic ifelse and ifelse-value primitives, the Models Library has been updated to reflect this new functionality. These updates are divided into three

major sections:

Add parens to ifelse-value expressions that are arguments of infix operator.

Remove unnecessary parentheses from ifelse-value invocations for models that use ifelse-value with a simple infix conditional: > , < , <= , >= , and = . This results in changes to the

following models.

Remove now unnecessary parens from calls to ifelse-value with more complex conditionals.

And here are the models affected by these changes:

Code Examples:

Beatbox

HSB and RGB Example

NW General Examples

Curricular Models:

BEAGLE: DNA Protein Synthesis, DNA Replication Fork

GenEvo 1 Genetic Switch

Lattice Land - Explore

ModelSim: Bacteria Food Hunt

NIELS: Current in a Wire HubNet

ProbLab: 4 Blocks, 4 Block Stalagmites, 4 Block Two Stalagmites, Histo Blocks

HubNet Activities:

Minority Game HubNet

Predator Prey Game HubNet

Prisoners Dilemma HubNet

Root Beer Game HubNet

IABM Textbook:

Traffic Basic Adaptive Individuals

Sample Models:

Artificial Neural Net - Multilayer

Artificial Neural Net - Perceptron

Bidding Market

Blood Sugar Regulation

DLA Alternate Linear

DLA Alternate

Echo

Hotelling’s Law

Language Change

Minority Game

Robby the Robot

Signaling Game

Simple Genetic Algorithm

Tabonuco Yagrumo

Tabonuco Yagrumo Hybrid

Traffic 2 Lanes

Vision Evolution

Version 6.0.4 (June 2018)

Feature Changes

NetLogo now supports the Portuguese language.

BehaviorSpace allows optionally disabling plots and the view when running experiments.

Bugfixes

Updated the bundled Java 8, which should resolve an issue with NetLogo failing to start on Windows computers.

Fixed a bug with the nw extension preferential attachment generation and initialization.

Fixed a numerical error with the range primitive.

Fixed a bug with link lookup when using more than two link breeds.

Comment and uncomment code hotkeys should work with NetLogo include source files.

Added a better error message when a web browser couldn’t be launched for any reason.

Documentation Changes

Document that resize-world only kills all turtles when coordinates really change.

Model Changes

New Curricular Models

Mind the Gap Curriculum

MTG 1 Equal Opportunities HubNet

MTG 2 Random Assignment HubNet

MTG 3 Feedback Loop HubNet

Revised Sample Models

Blood Sugar Regulation: Updated statistical sampling procedures

Flocking: Changed default vision to 5.0 patches

Rumor Mill: Fixed a minor bug with the spread statistics in early ticks

Revised Code Examples

Flocking (Perspective Demo): Changed default vision to 5.0 patches

Revised Curricular Models

GenEvo - GenEvo 1: Fixed save screenshot bug on Windows machines

GenEvo - GenEvo 2: Fixed save screenshot bug on Windows machines

GenEvo - GenEvo 3: Fixed save screenshot bug on Windows machines

Revised Alternative Visualizations

Flocking (Alternative Visualizations): Changed default vision to 5.0 patches

Version 6.0.3 (March 2018)

Feature Changes

Improve the look & feel of Agent Monitor windows.

The procedures menu in the code tab now has a search field and actively filters procedure names as the user types. This should improve navigation speed for large models with lots of

procedures. There is also now a hotkey to access this menu: Ctrl-G on Windows and Linux, and Cmd-G on MacOS.

Increase the speed of the diffusion primitive and make the diffusion operation symmetric.

NetLogo enforces that plot names are unique and that pen names are per-plot unique without taking capitalization into account. This avoids certain cases where set-current-plot and set-

current-plot-pen primitives would set the plot or pen to something different than the user intended because names differed in capitalization only.

Models with existing plots and pens which have the same name without taking capitalization into account will be automatically converted on first open in 6.0.3.

We are planning on adding the ability to have multiple conditional branches to ifelse and ifelse-value . However, as this is a fairly substantial change to the core language, we have

implemented it in the cf extension for testing. See the cf documentation for information about the new syntax.

Documentation Changes

Add a table to the Output section of the Programming Guide specifying how the various output primitives differ in whether they print the calling agent, whether they print a newline, and

whether they can be read back into NetLogo.

Bugfixes

Anonymous procedures appearing inside ask blocks inside repeat blocks now close over unique copies of let-variables introduced in the repeat block.

Fix a longstanding HubNet bug in which HubNet would sometimes crash as a large number of users joined.

Fix HubNet discovery when the HubNet server is run on a Mac.

When switching from the code tab to the interface tab, the cursor switches to the command center. This prevents typed commands or copy/paste keyboard shortcuts from affecting the code

tab.

Turtles draw trails when moving backwards (regression in NetLogo 6.0.1).

Smooth Code Tab scrolling.

BehaviorSpace now only applies standard CSV string escaping (doubling of double quotes) to string outputs in result files. It used to apply NetLogo style string escaping (backslashes in front

of special characters) and then apply CSV escaping on top of that. The new behavior is consistent with the RFC 4180 specification and the current behavior of the csv extension.

The Behaviorspace dialog appears centered in the NetLogo window.

Due to changes introduced in Java, certain dialogs in NetLogo 6.0.1 would appear under the dialog that created them instead of on top. These dialogs now appear on top of the dialog that

created them.

Non-code changes to the System Dynamics modeler are pulled in on every recompile (prior to this, changes like newly-disconnected flows were sometimes not taken into account on

recompiles).

The system dynamics code tab adjusts itself to match the size of the system dynamics window.

NetLogo 3D loads and saves system dynamics.

Fixes an error raised in 3D when the world was cleared following setting a patch-color to an RGB list.

file:///tmp/sbt_6c39b28e/cf.html

Miscellaneous small changes to the format of exported worlds. NetLogo 6.0.3 should be able to import worlds exported by older versions of NetLogo and older versions of NetLogo should be

able to import worlds exported by NetLogo 6.0.3.

The “others” execute bit is set for the netlogo-headless.sh script in the Linux installer package.

Extension Changes

nw:generate-preferential-attachment accepts a min-degree parameter, specifying the number of links each new turtle preferentially creates to existing turtles.

The arduino extension (and the related sketch and model in the library) have been updated to allow the arduino to send strings back to NetLogo. Two new debug primitives have also been

added to help troubleshoot interaction between NetLogo and the arduino.

The verbose cf extension conditional syntax as been replaced with straight-forward generalizations of the ifelse and ifelse-value primitives. The syntax is much simpler and these

primitives run much faster than the old constructs.

The ls extension has much less overhead for calling out to single models, making constructs like ask turtles [ls:ask my-model [run-something]] much faster.

The ls extension now seeds the child model RNG based on the parent model RNG at model creation. Furthermore, and ls:random-seed primitive has been introduced, so an entire model

system can be seeded simultaneously. This makes it possible to have reproducible runs when using LevelSpace.

The ls:let primitive now handles scoping properly.

ls:assign has been added to LevelSpace to make assigning globals of child models easier.

Documentation Changes

Clarify documentation around __includes by providing examples.

Fix a broken link in the dictionary.

Update the Windows unattended installation directions in the FAQ.

Model Changes

New Sample Models:

Bidding Market

Blood Sugar Regulation

Rock Paper Scissors

Vision Evolution

New Curricular Models

NIELS - Current in a Wire HubNet

New HubNet Activities:

Current in a Wire HubNet (same as above)

Revised Code Examples:

arduino Extension: The example model and sketch have been updated to reflect new features in the extension

sound Extension – Sound Workbench: Minor GUI updates

sound Extension – Percussion Workbench: Minor GUI updates

File Input Example: Fixed a bug in the save-patch-data template procedure

Lottery Example: Corrected Related Models from Preferential Attachment to the “Rnd” Example Model in the Info Tab

Info Tab Example: Corrected reference from pegdown to flexmark in the Info Tab

Revised Curricular Models:

BEAGLE Evolution - Fish Tank Genetic Drift: Update duplicate plot-pen names and resize plots

GenEvo - GenEvo 4: Replaced usage of cf:when with nested ifelse s

Lattice Land - Lattice Land Explore: Fixed bug when deleting a segment that didn’t exist.

Lattice Land - Lattice Land Triangles Dissection: Fixed bug when deleting a segment that didn’t exist.

NIELS - Electrostatics: All turtles are now particles and each particle has a charge; Changed particle coloring; Updated Info Tab and some variable names to reflect later NIELS models

Urban Suite - Tijuana Bordertowns: Minor Info Tab updates.

Revised Sample Models:

Artificial Anasazi: Update broken URLs in Info Tab

Autumn: Update broken URLs in Info Tab

HIV: The “AIDS” model has been renamed to “HIV”†

Color Fractions: Removed direct reference to dead web page in Info Tab

Fairy Circles: Update URLs in Info Tab

Fur: Update broken URLs in Info Tab

Hex Cell Aggregation: Update broken URLs in Info Tab

Ising: Update broken URLs in Info Tab

Kicked Rotators: Update broken URLs in Info Tab

Language Change: Update URLs in Info Tab

Lennard-Jones: Added citation in the Info tab

Lightning: Update URLs in Info Tab.

L-System Fractals: Update broken URLs in Info Tab

Membrane Formation: Update broken URLs in Info Tab

Moth: Update URLs in Info Tab

Party: Fix incorrect comment on turtle headings.

PD Basic: Minor GUI updates

Segregation: Update broken URLs in Info Tab. Update color scheme for color blindness. Minor GUI updates. Minor Info Tab updates.

Sugarscape 1 Immediate Growback: Fixed “Wealth distribution” histogram bug (turtle with max sugar was not displayed)

Sugarscape 2 Constant Growback: Fixed “Wealth distribution” histogram bug (turtle with max sugar was not displayed)

Sugarscape 3 Wealth Distribution: Fixed “Wealth distribution” histogram bug (turtle with max sugar was not displayed)

Revised IABM Models:

Arduino Example: The example model and sketch have been updated to reflect new features in the extension (same as above)

Segregation Simple Extension 1: Update broken URLs in Info Tab

Segregation Simple Extension 2: Update broken URLs in Info Tab

Segregation Simple Extension 3: Update broken URLs in Info Tab

Segregation Simple: Update broken URLs in Info Tab

† - Models Updated to Correctly Reference the HIV Model

Alternative Visualizations

Virus - Alternative Visualization

Virus - Circle Visualization

Curricular Models

epiDEM Basic

epiDEM Travel and Control

IABM Models

Spread of Disease

Sample Models:

Disease Solo

Virus

Rumor Mill

Version 6.0.2 (August 2017)

Feature Changes

The autosuggest functionality introduced in NetLogo 6 will now display extension primitive names.

A new insert-item primitive was added to the language. It works similarly to replace-item , but without removing the item at the specified index.

A new set-plot-background-color primitive was added to the language. It can be used in plotting code to set the background color of the plot.

Behaviorsearch’s user interface has been updated. It now uses the JavaFX UI toolkit for a more modern look and feel.

Bugfixes

The 6.0.1 autoconverter would error when converting tasks with exactly one argument (from 5.3.1 and earlier models only). The conversion would be correct, but it was confusing. This has

now been remedied and the autoconverter will correctly convert models from 5.3.1 and earlier without erroring on single-argument tasks.

Fix a bug where extensions weren’t located properly when in a path relative to the model.

Help browser now opens in 64-bit Windows.

Fix a speed regression for the import-world primitive introduced in 6.0.

If an unexpected reporter block is passed to with when used with other , the error will now reflect that the block is unsuitable for with instead of other .

When sort-by receives an unsuitable reporter block from the user it now shows a useful error instead of a cryptic stack trace.

String representations of anonymous procedures now show the arguments of those anonymous procedures

When working in an nls file, switching to a different tab will compile the nls file.

Display error label on nls file when the code it contains causes an error.

Some users were unable to open NetLogo 6 and 6.0.1 in Mac OS Sierra. We’ve changed our signing process in 6.0.2 to attempt to fix this problem. We are continuing to track this issue to

determine whether our fix was effective. More information (including a partial workaround for the problem) is available here.

Extension Changes

Fixed a bug in gis:patch-dataset introduced in NetLogo 6.

The table extension has new table:group-agents and table:group-items primitives which can be used to build a table of grouped agents and items by supplying an anonymous reporter.

Documentation Changes

Clarify when various parts of the anonymous procedure syntax are optional.

https://github.com/NetLogo/NetLogo/wiki/Known-Issues#netlogo-wont-start-on-mac-os-sierra

Fix a few small documentation bugs around foreach .

Clarify relationship between speed and update modality in the “View Updates” section of the programming guide.

Model Changes

New Sample Models:

Chaos in a Box

Fairy Circles

SmoothLife

New Curricular Models:

Lattice Land Curriculum

Lattice Land - Triangles Explore

Lattice Land - Triangles Dissection

Revised Sample Models:

Anisogamy: New color scheme. Adds BehaviorSpace experiments.

Ethnocentrism: Now cross-listed as an Evolutionary model.

Fireworks: Rename fireworks to max-fireworks and enforce a minimum of 1.

GenJam - Duple: Minor info tab updates.

Wolf Sheep Predation: Revised to better clarify the grass? construct and code.

Revised Curricular Models:

Connected Chemistry:

Connected Chemistry 1: Fix NetLogo Web incompatibility.

Connected Chemistry 3: Update minimum number of particles to 2.

Connected Chemistry 8: Minor code updates. Small change to default values.

Revised HubNet Activities:

Gridlock HubNet: Minor code updates.

Revised Code Examples:

Info Tab Example: Corrected formatting of un/ordered lists example.

LS Extension – Model Visualizer and Plotter Example: Updated code dependencies for WSP.

LS Extension – Model Interactions Example: Updated code dependencies for WSP.

Version 6.0.1 (March 2017)

Feature Changes

Brackets are required around anonymous procedure reporters only when there are two or more arguments. For instance [[x] -> x] can now be written [x -> x] . Note this change

makes it possible to create models in NetLogo 6.0.1 that will not run in NetLogo 6.0. If you plan to use your model in NetLogo 6.0, be sure to include brackets around anonymous procedure

arguments. For a short period after the release, models which use unbracketed lambda arguments may not work on netlogoweb.org.

Bugfixes

The NetLogo code editor navigates and indents models much more quickly and efficiently than in NetLogo 6.0.

The NetLogo 5-to-6 autoconverter now ignores commented-out code.

The behavior of layout-radial in NetLogo 6 did not match the 5.3.1 behavior. This has been corrected and layout-radial should be identical between NetLogo 6.0.1 and NetLogo 5.3.1

NetLogo 6 raised a NullPointerException when numbers became too large for NetLogo to handle. This is now properly displayed to the user as a number out of bounds error.

Improved performance of models which use let and anonymous procedures together.

Reloading a model now clears global variables.

Clearer warning dialogs when opening an older version of a NetLogo 2D file in NetLogo 3D.

Using foreach improperly in the Command Center will display the same error as it would if used improperly in the code tab.

Extremely long anonymous procedures no longer cause an exception when compiled.

in-radius is no longer pathologically slow on agentsets created using with .

Extension Changes

A new primitive, table:values has been added to the table extension.

The R extension has been updated to take full advantage of the JavaGD R library using r:setPlotDevice .

Users can now supply a path to the R extension by configuring the value of r.lib.paths in the user.properties file.

Fixed a LevelSpace bug preventing interactive models from using nls files.

Fixed a LevelSpace bug causing NetLogo to lock up when trying to load a nonexistent file as an interactive model.

Documentation Changes

The system dynamics tutorial now instructs the user to set the dt to a value which gives stable behavior

The documentation for follow , ride , and watch has been clarified to indicate that calling one undoes highlights and perspective changes caused by the other

The documentation for = and != indicates that they work with extension objects.

Several examples have been added to sort clarifying the behavior of sort on lists featuring different types of objects.

A new section on User Interface primitives has been added to the programming guide which discusses the behavior of the “Halt” button in the various user interaction dialogs.

Incorrect example code for foreach and reduce has been corrected.

Models

All models have been updated to reflect the new optional nature of brackets for zero/one argument anonymous procedures. This resulted in changes to 108 models.

All models have been updated to reflect the availability of the new range primitive. This resulted in changes to 12 models.

New Sample Model

GenJam - Duple

New Curricular Model

Lattice Land curriculum:

Lattice Land Explore

Revised Sample Models

PD 2 Person Iterated: info tab updates and extensive fixes for the code.

Party: fixed bug where a monitor covered a plot.

Signaling Game: info tab updates.

Revised Curricular Models

GenEvo curriculum:

GenEvo 1 Genetic Switch: info tab updates and new graduated method of displaying lacZ concentration.

GenEvo 2 Genetic Drift: info tab updates and interface tweaks. New model preview.

GenEvo 3 Genetic Drift and Natural Selection: info tab updates and interface tweaks.

GenEvo 4 Competition: info tab updates.

Genetic Switch - Synthetic Biology has been renamed and is now Synthetic Biology - Genetic Switch. It also received info tab updates and a few interface changes.

Version 6.0 (December 2016)

Feature Changes

The NetLogo code editor now offers autocompletion support. Simply press the Control key and the spacebar at the same time while typing a word and you will see a list of similar NetLogo

primitives as suggestions.

The NetLogo code editor offers the option to “fold” procedures to make navigating large models simpler.

NetLogo supports multi-level agent-based modeling with the LevelSpace extension

Line numbering can be enabled in the NetLogo code editor by choosing “Show Line Numbers” from the “Preferences” dialog. This dialog can be opened by selecting “NetLogo” >

“Preferences” in Mac, or “Tools” > “Preferences” on Linux or Windows.

The view resizing arrows have been removed and the tick counter has been relocated under the speed slider.

When editing NetLogo code, users can right-click a variable name or primitive and choose “Show Usage” to see all usages of that name in the file.

When editing NetLogo code, users can right-click a variable name and choose “Jump to Declaration” to see where in the file that variable is declared.

The NetLogo interface editor now supports “Undo” for widget addition, deletion, and movement.

NetLogo can export code to HTML with code-colorization by choosing “Export Code” in the “Export” section of the “File” menu.

The look and feel of NetLogo on Mac OS X has changed significantly. NetLogo is now using the Oracle-supplied Java look and feel as opposed to a third-party look and feel used in prior

versions.

Plots use a random number generator independent of the main-model random number generator.

Model Preview Commands can be edited through the GUI by choosing “Preview Commands Editor” in the “Tools” menu. Those commands generate the preview image that appears when you

upload your model to the Modeling Commons.

NetLogo displays a more helpful error message when a program fails due to an “out of memory” error.

NetLogo and its bundled extensions are now compiled against Java 8 and Scala 2.12.

NetLogo has upgraded the ASM bytecode library to enable generation of Java 8 bytecode.

Bugfixes

*-link-neighbor? primitives now work the same way for breeded and unbreeded links.

Resizing the world in NetLogo 3D no longer causes a black view.

Fixed error caused by right-clicking a widget while dragging.

Improved error message when a user-defined procedure shadows a breed procedure.

neighbors4 and neighbors no longer report agentsets containing the same patch more than once.

Language Changes

Support for plural-only breed names (e.g., breed [mice]) has been removed. Write breed [mice mouse] instead.

Tasks have been replaced by anonymous procedures. Tasks made use of ? variables which were confusing for novices and difficult to read for experts. Additionally, tasks could not refer to

the task variables of a containing task. Anonymous procedures may have named arguments which can be accessed by inner anonymous tasks. Upon first opening a NetLogo 5 model in

NetLogo 6, tasks like task [?1 + ?2] will be automatically converted to [[?1 ?2] -> ?1 + ?2] . See the the transition guide for more information.

Link reporters have been overhauled to be more consistent and flexible

The task primitive is no longer supported.

Breed names that conflict with language primitives are now disallowed. For instance, breed [strings string] is now disallowed since it makes is-string? ambiguous.

The compiler errors on duplicated breed singular names.

The compiler detects a greater number of type errors, for instance not pxcor now raises a compiler error instead of erroring at runtime.

set-plot-pen-color now accepts RGB lists as arguments.

The hubnet-set-client-interface primitive has been removed.

The various primitives starting with movie- have been removed, as has the movie encoder. They have been replaced with the new vid extension. The transition guide provides more details

and information.

The __change-language primitive has been removed. You can now change the User Interface Language through the preferences dialog, which can be found by choosing “Preferences…” in

the “NetLogo” menu (Mac OS X) or in the “Tools” menu (all other platforms).

The string representation of anonymous procedures displays the body of the anonymous procedure.

Extension Changes

NetLogo 6.0 comes with three new, bundled extensions: LevelSpace ls , the vid extension for video manipulation, and the enhanced visualization extension view2.5d .

ls enables multi-level agent-based modeling in NetLogo.

The Extensions API has been updated from 5.0 to 6.0. This means that all non-bundled extensions will need to be updated to use the new API. Extensions written for NetLogo 5 will not work in

NetLogo 6. If you’re an extension author, see the extension author transition guide for 6.0 for more information. If you regularly use extensions you may want to contact their authors to

inform them a new version of NetLogo is on the way and they may want to update their extensions.

arduino:get (in the arduino extension) correctly reports values from Windows 64-bit machines. In prior versions it would only report some values correctly.

Several new features have been added to the nw extension:

Added community detection using the Louvain method

Added modularity measurement

Added Watts-Strogatz small-world network generation

Made other network generation algorithms easier to layout

Weighted primitives now take symbolic variable names instead of strings. See the transition guide for more information.

The qtj extension is no longer bundled with NetLogo. Users are encouraged to make use of the new vid extension.

The new vid extension is now bundled with NetLogo, combining features of the late qtj extension and the movie primitives.

The network extension is no longer bundled with NetLogo. Users are encouraged to use the nw extension (https://ccl.northwestern.edu/netlogo/docs/nw.html), which has been bundled

with NetLogo for some time.

The gogo-serial extension is no longer bundled with NetLogo. Users are encouraged to transition to the newer gogo extension, which uses HID to communicate with the GoGo board.

Operating System Support

NetLogo will now be used to open .nlogo links in PowerPoint and other programs on Microsoft Windows.

The NetLogo binaries on Mac OS X are installed as runnable by any user.

NetLogo in Mac OS X will not use “App Nap” while running. This keeps simulations running at full speed when NetLogo is in the background.

The NetLogo controlling API has changed since NetLogo 5. Programs that rely on the controlling API (such as BehaviorSearch) will not work until they have been changed to match the new

API.

Documentation Changes

New documentation for anonymous procedures

The NetLogo tutorial screenshots have been updated to correspond to the new Mac OS X Look and Feel.

The NetLogo dictionary displays the version in which each primitive was introduced next to that primitive.

A Spanish translation of the NetLogo dictionary is available here

Internationalization Changes

A new Spanish translation of the NetLogo dictionary is available as part of the NetLogo manual.

Language preferences can be changed by using the new “Preferences” menu instead of the __change-language primitive.

A Japanese localization for NetLogo is now available and included with the standard download.

The Chinese translation for NetLogo has been updated.

file:///tmp/sbt_6c39b28e/transition.html
file:///tmp/sbt_6c39b28e/transition.html
https://github.com/NetLogo/NetLogo/wiki/6.0-Extension-and-Controlling-API-Transition-Guide
file:///tmp/sbt_6c39b28e/transition.html
file:///tmp/sbt_6c39b28e/vid.html
file:///tmp/sbt_6c39b28e/nw.html
file:///tmp/sbt_6c39b28e/diccionario.pdf
file:///tmp/sbt_6c39b28e/diccionario.pdf

Models

New Sample Models:

Kicked Rotator

Kicked Rotators

Mammoths, a legacy StarLogoT model, has been converted to NetLogo.

New Curricular Models:

GenEvo 1 Genetic Switch

GenEvo 2 Genetic Drift

GenEvo 3 Genetic Drift and Natural Selection

GenEvo 4 Competition

New Code Examples:

Movie Playing Example (vid extension)

Movie Recording Example (vid extension)

Video Camera Example (vid extension)

Network Extension General Demo (nw extension)

Model Interactions Example (ls extension)

Model Loader Example (ls extension)

Model Visualizer and Plotter Example (ls extension)

Promoted Models (improved and no longer “unverified”):

ProbLab Genetics

Traffic 2 Lanes

Revised Sample Models:

Giant Component: added text in the info tab.

Team Assembly: removed unused switch widget.

Traffic Basic, Traffic Grid, Traffic Intersection: revised info tab.

Voting: stopped the model when voting stabilizes.

Wealth Distribution: fixed typos in info tab, improved code formatting.

Revised HubNet Activities:

Bug Hunters Competition HubNet, Critter Designers HubNet, Fish Spotters HubNet: removed unnecessary call to hubnet-set-client-interface .

Gridlock HubNet, Gridlock Alternate HubNet: revised info tab.

Revised Curricular Models:

DNA Replication Fork: fixed a a monitor and runtime error when using a time limit.

Revised IABM models:

Agentset Efficiency: clarified description of go-2 in info tab.

Agentset Ordering: fixed typos in into tab.

Arduino Example: improved model to demonstrate both directions of communication with the Arduino.

Heroes and Cowards: removed extra text in info tab.

Preferential Attachment Simple: removed extra pen in plot and extra “layout” button.

Random Network: made sure that the number of links is never too big for the number of nodes.

Segregation Simple Extension 1, 2 and 3: fixed number-of-ethnicities slider to avoid runtime errors.

Traffic Basic Adaptive Individuals, Traffic Basic Utility, Traffic Grid Goal: revised info tab.

Traffic Basic Adaptive: revised info tab, clarified comment in adaptive-go procedure.

Voting Component Verification: stopped the model when voting stabilizes.

Voting Sensitivity Analysis: improved code for stopping the model when voting stabilizes.

Revised Code Examples:

GoGoMonitorSerial, GoGoMonitorSimpleSerial: removed the models, as the gogo-serial and qtj extensions are no longer bundled.

Random Network Example: made sure that the number of links is never too big for the number of nodes.

Since the QuickTime extension (qtj) has been replaced by the vid extension, the following models have been converted to use the vid extension:

Movie Example, replaced by Movie Recording Example

QuickTime Movie Example, replaced by Movie Playing Example

QuickTime Camera Example, replaced by Video Camera Example

Demoted model:

El Farol Network Congestion, a previously “unverified” model, has been moved to the NetLogo User Community Models

Version 5.3.1 (February 2016)

Feature Changes

Mathematica Link is now included and has been tested to work with Mathematica 10.

A link to Introduction to Agent-Based Modelling has been added to the “Help” menu.

Extension Changes

The gogo extension now prompts the user for the location of Java upon opening. This version of Java is used to launch the gogo hid daemon.

The correct version of the network extension is now bundled, which will open properly

Bundles the cf extension, which adds match, case, and select primitives.

Bugfixes

Corrects a bug where turtles wrapping around a torus-shaped world with pen down would sometimes cause NetLogo to loop infinitely.

Fixes a bug where buttons would appear to remain pressed after a right click on Mac.

Fixes a bug where pressing the right mouse button while dragging would confuse the mouse-down? primitive.

Fixes agent type-checking of tasks (bug appeared in 5.2.1).

link-neighbor? now returns true if and only if the neighbor is connected through an undirected link.

Documentation fixes for my-links and mean primitives.

Version 5.3 (December 2015)

Feature Changes

Java 8 is now bundled with all versions of NetLogo, this removes the need for a separate Java 6 installation on Mac OS X

Separate 32-bit and 64-bit versions are available for both Windows and Linux

The Windows installer is now an msi instead of an exe

javax.media.opengl is no longer supported in Java 8, it has been replaced by com.jogamp.opengl

Mathematica Link is not distributed due to Java version changes

Extension Changes

A minor update to the nw extension makes nw:weighted-path-to behave as documented.

Most extensions should continue to work without change unless they rely on javax.media.opengl, which was renamed in the updated version of JOGL.

Version 5.2.1 (September 2015)

Extensions

An included Arduino extension for use with Arduino boards

New features

New file menu item to export models to NetLogo Web

Bug fixes

BehaviorSpace output type preference is now remembered

Output widget font is now saved at the proper size when zoomed

Reporter tasks are now evaluated in variable context

runresult arguments now only get evaluated once

The last used directory is now remembered on Linux

Whitespace is now stripped from models when saving

New Sample Models: Artificial Anasazi, Bacteria Food Hunt, Bacteria Hunt Speeds, BeeSmart - Hive Finding, Bug Hunt Disruptions, Bug Hunt Environmental Changes, Bug Hunt Predators and

Invasive Species - Two Regions, Hydrogen Diffusion 3D, Lennard-Jones, Paths

There are 46 new models in the new IABM Textbook folder: Turtles Circling Simple, Ants Simple, Heroes and Cowards, Life Simple, Simple Economy, 4 DLA extensions, 4 El Farol Extensions, 4

Fire Extensions, 4 Segregation Extensions, 5 Wolf Sheep Extensions, Agentset Efficiency, Agentset Ordering, Communication-T-T Network Example, Preferential Attachment Simple, Random

Network, Traffic Basic Adaptive, Traffic Basic Utility, Traffic Grid Goal, Spread of Disease, Voting Component Verification, Voting Sensitivity Analysis, Arduino Example, Disease With Android

Avoidance HubNet, Example HubNet, Run Example, Run Result Example, Simple Machine Learning, Simple Viral Marketing, Ticket Sales, Sandpile Simple

New models in the new Alternate Visualizations folder: Ethnocentrism - Alternative Visualization, Flocking - Alternative Visualizations, Heat Diffusion - Alternative visualization, Virus -

Alternative Visualization, Virus - Circle Visualization

Promoted models: Honeycomb, Minority Game

Many other bugfixes and upgrades

Model changes

Improved Sample Models: Altruism, Ant Lines, Artificial Anasazi, Cooperation, Daisyworld, Divide the Cake, Heat Diffusion, Hydrogen Diffusion 3D, Lennard-Jones, N-Bodies, PD Basic

Evolutionary, Sandpile, Robby the Robot, Segregation, Simple Kinetics 2 and 3, Traffic Grid, GridLock HubNet, GridLock HubNet Alternate

Revised Curricular Models: 4 Block Stalagmites, 4 Block Two Stalagmites, Bug Hunter Competition HubNet, Fish Spotters HubNet, Ising, Tijuana Bordertowns, Urban Suite - Tijuana

Bordertowns,

Revised Code Examples: Lottery Example, self Example, Network Import Example

Revised IABM Textbook models: Simple Economy, Fire Simple Extension 2 and 3, Segregation Simple, 1, 2 and 3, Agentset Efficiency, Preferential Attachment Simple, Random Network, Traffic

Basic Adaptive, Run Example, Traffic Grid Goal,

New IABM Textbook model: Traffic Basic Adaptive Individuals

Version 5.2.0 (April 2015)

Extensions

An included CSV extension to read and write CSV files

An included Palette extension to map different values to colors

The previous gogo extension has been removed. It has been replaced with two different gogo extensions, gogo and gogo-serial. The extensions work with different hardware. The gogo

extension works with the new style HID-interface gogo boards and the gogo-serial extension works with the old-style serial-interface gogo boards

Upgrade to the network extension including the following changes:

Support for many more file types, including GEXF, GDF, GML, Pajek NET, UCINET DL, and Netdraw VNA

Fixed bugs with GraphML support

Improved documentation

New features

New primitive netlogo-web? added to test whether you are currently running in NetLogo Web

New primitive behaviorspace-experiment-name added allowing you to get the name of the currently running experiment

New primitive stop-inspecting to stop inspecting agents

New primitive stop-inspecting-dead-agents and menu item to stop inspecting dead agents

__includes keyword now enables the Includes button when given an empty

hooks added for extensions to write custom log messages

Bug fixes

user-one-of will now signal an error earlier when provided an empty list of choices

hsb , extract-hsb , and approximate-hsb have been updated to represent true hsb conventions

new deprecated primitives __hsb-old , __extract-hsb-old , and __approximate-hsb-old work as the old hsb primitives did when older models using the hsb primitives are opened in

NetLogo 5.2, they will be auto-converted to use the deprecated primitives

extract-hsb – fixed bug where it didn’t work correctly on rgb lists

Model changes

New Sample Models: Artificial Anasazi, Bacteria Food Hunt, Bacteria Hunt Speeds, BeeSmart - Hive Finding, Bug Hunt Disruptions, Bug Hunt Environmental Changes, Bug Hunt Predators and

Invasive Species - Two Regions, Hydrogen Diffusion 3D, Lennard-Jones, Paths

There are 46 new models in the new IABM Textbook folder: Turtles Circling Simple, Ants Simple, Heroes and Cowards, Life Simple, Simple Economy, 4 DLA extensions, 4 El Farol Extensions, 4

Fire Extensions, 4 Segregation Extensions, 5 Wolf Sheep Extensions, Agentset Efficiency, Agentset Ordering, Communication-T-T Network Example, Preferential Attachment Simple, Random

Network, Traffic Basic Adaptive, Traffic Basic Utility, Traffic Grid Goal, Spread of Disease, Voting Component Verification, Voting Sensitivity Analysis, Arduino Example, Disease With Android

Avoidance HubNet, Example HubNet, Run Example, Run Result Example, Simple Machine Learning, Simple Viral Marketing, Ticket Sales, Sandpile Simple

New models in the new Alternate Visualizations folder: Ethnocentrism - Alternative Visualization, Flocking - Alternative Visualizations, Heat Diffusion - Alternative visualization, Virus -

Alternative Visualization, Virus - Circle Visualization

Promoted models: Honeycomb, Minority Game

Many other bugfixes and upgrades

Version 5.1.0 (July 2014)

bundle new network extension

File menu includes recently opened files

deprecate applets

support retina display on new MacBooks

Version 5.0.4 (March 2013)

upload models to the Modeling Commons

Version 5.0 (February 2012)

features:

open source (GPL license; source code online at https://github.com/NetLogo/NetLogo)

new license for Sample Models and Curricular Models is Creative Commons Attribution-NonCommercial-ShareAlike

international characters (Unicode) supported throughout application

GUI is localized in Spanish, Russian, and Chinese (volunteer translators wanted)

rich formatting and images in Info tabs using Markdown

plotting code goes inside plots instead of in code tab

authorable model speed (target frame rate setting)

buttons optionally disable until ticks start

translucent colors in 3D view and NetLogo 3D (for RGB colors only)

language changes:

“tasks” store code to be run later

aka first-class functions, closures, lambda

new primitives: task , is-command-task? , is-reporter-task?

these primitives accept tasks: run , runresult , foreach , map , reduce , filter , n-values , sort-by

improved overall list performance (many operations take near-constant time instead of linear time)

you must use reset-ticks to start the tick counter before using tick or tick-advance

new primitives setup-plots and update-plots

new primitive sort-on lets you say e.g., sort-on [size] turtles

new primitive error causes a runtime error

random-normal rejects negative standard deviations

HubNet:

activities can run headless

new primitives hubnet-clients-list , hubnet-kick-client , hubnet-kick-all-clients

hubnet-set-client-interface no longer required

other fixes and changes:

tabs renamed to Interface/Info/Code

Command Center allows reporters, adds show command automatically

NetLogo 3D uses .nlogo3d suffix, not .nlogo

import-world is much faster

startup no longer runs headless or in background BehaviorSpace runs

fixed 3D rendering bug where small turtles were too bright

Mac app runs in 64 bit mode by default

upgraded Windows installer

GoGo extension getting-started experience now smoother on all platforms

models:

new Sample Models: Sandpile, Lightning, Osmotic Pressure, Robby the Robot, Preferential Attachment 3D

new Curricular Models: Bug Hunt Consumers, Bug Hunt Predators and Invasive Species, Plant Speciation, epiDEM Basic, epiDEM Travel and Control, Connected Chemistry Atmosphere

new Code Examples: Info Tab Example, GoGoMonitorSimple

Version 4.1.3 (April 2011)

matrix extension

behaviorspace-run-number

Version 4.1 (December 2009)

parallel BehaviorSpace

controlling API allows embedding

automatic code indenter

searchable Models Library

translucent colors

mini-views in agent monitors

resize-world , set-patch-size

https://github.com/NetLogo/NetLogo

bitmap, QuickTime extensions

individualized HubNet client views

browser-based HubNet client

Version 4.0 (September 2007)

link agents

tick counter

view update modes (tick-based, continuous)

speed slider fast forwards

input boxes in interface tab

include multiple source files

RGB colors

slider bounds may be reporters

HubNet client editor

Mathematica-NetLogo link

array, table, profiler, GIS extensions

models run faster (partial compilation to JVM byte code)

logging

Version 3.1 (April 2006)

topologies (optional wrapping at world edges)

randomized agentset ordering

Version 3.0 (September 2005)

3D view (for 2D models)

formatted Info tabs

System Dynamics Modeler

follow , ride , watch

drawing layer

GoGo extension

Version 2.1 (December 2004)

“headless” mode for command line operation

“action keys” to trigger buttons by keypresses

makes QuickTime movies of models

let , carefully

Version 2.0.2 (August 2004)

extensions and controlling APIs

sound extension

Version 2.0 (December 2003)

fast, flicker-free, non-grid-based graphics

Version 1.3 (June 2003)

run , runresult , map , foreach , filter , reduce

Version 1.2 (March 2003)

computers as HubNet clients

Version 1.1 (July 2002)

Applets

Version 1.0 (April 2002)

first full release (after a series of betas)

System Requirements

NetLogo runs on almost any current computer. NetLogo doesn’t run on mobile devices or Chromebooks. For the web, check out NetLogo Web. For mobile devices and Chromebooks, check out

Turtle Universe.

If you have any trouble with NetLogo not working, see Contacting Us.

Application Requirements

Windows

NetLogo runs on Windows 11, 10, 8, 7, and Vista. NetLogo 5.2.1 was the last version to support Windows XP and Windows 2000.

The NetLogo installer for Windows includes Java 17 for NetLogo’s private use only. Other programs on your computer are not affected. NetLogo can run using a different Java installed on your

system of version 11 or higher.

Mac OS X

Mac OS X 10.8.3 or newer is required. (NetLogo 5.1 was the last version to support 10.5 and 10.4; NetLogo 5.2.1 was the last version to support 10.6 and 10.7)

The NetLogo application contains a distribution of the Java 17 runtime for NetLogo’s private use only. Other programs on your computer will not be affected. NetLogo can run using a different

Java installed on your system of version 11 or higher.

Linux

NetLogo should work on standard Debian-based and Red Hat-based Linux distributions. The NetLogo tarball includes a copy of the Java 17 runtime. NetLogo can run using a different Java

installed on your system of version 11 or higher.

Start NetLogo by running the provided NetLogo executable.

3D Requirements

Occasionally an older, less powerful system is not able to use the 3D view or NetLogo 3D. Try it and see.

Some systems can use 3D but can’t switch to full-screen mode. It depends on the graphics card or controller. (For example, the ATI Radeon IGP 345 and Intel 82845 probably will not work.)

32-bit or 64-bit?

For most users on Linux or Windows, the 64-bit version of NetLogo is the simplest way to a working NetLogo installation. Most desktop and laptop computers made since 2005 are 64-bit.

If you have a computer that was made before 2006 you may need to use the 32-bit version of NetLogo instead. To determine whether your version of Windows is 64-bit, see Is my PC running

the 32-bit or 64-bit version of Windows if you’re using Windows Vista, or Windows 7, or Which Windows operating system am I running? if you are running any other version of Windows.

For Linux users, the easiest way to determine whether your operating system is 64-bit is checking the output of

uname -m

If the output shows “x86_64” or “amd64”, you should be able to run the 64-bit version.

https://www.netlogoweb.org/
https://www.turtlesim.com/products/turtle-universe/
file:///tmp/sbt_6c39b28e/contact.html
https://support.microsoft.com/en-us/help/15056/windows-7-32-64-bit-faq
https://support.microsoft.com/en-us/help/15056/windows-7-32-64-bit-faq
https://support.microsoft.com/en-us/help/13443/windows-which-operating-system

Contact Us

Feedback from users is essential to us in designing and improving NetLogo. We’d like to hear from you.

Web site

Our website is https://www.netlogo.org/. NetLogo is created at the Center for Connected Learning (CCL). The CCL website, http://ccl.northwestern.edu/, includes our mailing address and

phone number. It also has information about our staff and our various research activities.

Feedback, questions, etc.

For help using NetLogo, ask questions on the NetLogo Forum or try this group: http://groups.google.com/d/forum/netlogo-users.

If you have feedback, suggestions, or questions, you may write us at feedback@ccl.northwestern.edu.

Reporting bugs

Our public bug tracker is on GitHub at https://github.com/NetLogo/NetLogo/issues. You can look here to report a new bug, check if a bug has already been reported, and so on.

You can also report bugs on our forum at: https://forum.netlogo.org/c/bugs/5

When submitting a bug report, please try to include as much of the following information as possible:

A complete description of the problem and how it occurred.

The NetLogo model or code you are having trouble with. If possible, attach a complete model. (It’s best if you can reduce the amount of code in the model to the minimum necessary to

demonstrate the bug.)

Your system information: NetLogo version, OS version, Java version, and so on. This information is available from NetLogo’s “About NetLogo” menu item, then clicking the System tab.

Any error messages that were displayed. Please copy and paste the entire error message into your email, or make a screen capture if you are unable to copy and paste.

We also accept bug reports by email at bugs@ccl.northwestern.edu.

Open source

NetLogo is free, open source software. The source code is hosted at https://github.com/NetLogo/NetLogo. Contributions from interested users are welcome.

For discussion of NetLogo API’s and the development of NetLogo itself, try https://groups.google.com/group/netlogo-devel.

https://www.netlogo.org/
http://ccl.northwestern.edu/
https://forum.netlogo.org/
http://groups.google.com/d/forum/netlogo-users
https://github.com/NetLogo/NetLogo/issues
https://forum.netlogo.org/c/bugs/5
https://github.com/NetLogo/NetLogo
https://groups.google.com/group/netlogo-devel

Sample Model: Party

This activity gets you thinking about computer modeling and how you can use it. It also gives you insight into NetLogo itself. We encourage beginning users to start here.

At a Party

Have you ever been at a party and noticed how people cluster in groups? You may have also noticed that people don’t just stay in a group. As they circulate, the groups change. If you watched

these changes over time, you might notice patterns.

For example, in social settings, people may exhibit different behavior than at work or home. Individuals who are confident within their work environment may become shy and timid at a social

gathering. And others who are reserved at work may be the “party starter” with friends.

These patterns can depend on the type of gathering. In some settings, people are trained to organize themselves into mixed groups; for example, party games or school-like activities. But in a

non-structured atmosphere, people tend to group in a more random manner.

Is there any type of pattern to this kind of grouping?

Let’s take a closer look at this question by using the computer to model human behavior at a party. NetLogo’s “Party” model looks specifically at the question of grouping by gender at parties:

why do groups tend to form that are mostly men, or mostly women?

Let’s use NetLogo to explore this question.

What to do:

1. Start NetLogo.

2. Choose “Models Library” from the File menu.

3. Open the “Social Science” folder.

4. Click on the model called “Party”.

5. Press the “open” button.

6. Press the “setup” button.

In the view of the model, you will see pink and blue groups with numbers:

These lines represent mingling groups at a party. Men are shown as blue, women pink. The numbers are the sizes of the groups.

Do all the groups have about the same number of people?

Do all the groups have about the same number of each sex?

Let’s say you are having a party and invited 150 people. You are wondering how people will gather together. Suppose 10 groups form at the party.

How do you think they will group?

Instead of asking 150 of your closest friends to gather and randomly group, let’s have the computer simulate this situation for us.

What to do:

1. Press the “go” button. (Pressing “go” again will stop the model manually.)

2. Observe the movement of people until the model stops.

3. Watch the plots to see what’s happening in another way.

4. Use the speed slider if you need to slow the model down.

Now how many people are in each group?

Originally, you may have thought 150 people splitting into 10 groups, would result in about 15 people in each group. From the model, we see that people did not divide up evenly into the 10

groups. Instead, some groups became very small, whereas other groups became very large. Also, the party changed over time from all mixed groups of men and women to all single-sex

groups.

What could explain this?

There are lots of possible answers to this question about what happens at real parties. The designer of this simulation thought that groups at parties don’t just form randomly. The groups are

determined by how the individuals at the party behave. The designer chose to focus on a particular variable, called “tolerance”:

Tolerance is defined here as the percentage of people of the opposite sex an individual is “comfortable” with. If the individual is in a group that has a higher percentage of people of the opposite

sex than their tolerance allows, then they become “uncomfortable” and leave the group to find another group.

For example, if the tolerance level is set at 25%, then males are only “comfortable” in groups that are less than 25% female, and females are only “comfortable” in groups that are less than 25%

male.

As individuals become “uncomfortable” and leave groups, they move into new groups, which may cause some people in that group to become “uncomfortable” in turn. This chain reaction con‑

tinues until everyone at the party is “comfortable” in their group.

Note that in the model, “tolerance” is not fixed. You, the user, can use the tolerance “slider” to try different tolerance percentages and see what the outcome is when you start the model over

again.

How to start over:

1. If the “go” button is pressed (black), then the model is still running. Press the button again to stop it.

2. Adjust the “tolerance” slider to a new value by dragging its red handle.

3. Press the “setup” button to reset the model.

4. Press the “go” button to start the model running again.

Challenge

As the host of the party, you would like to see both men and women mingling within the groups. Adjust the tolerance slider on the side of the view to get all groups to be mixed as an end result.

To make sure all groups of 10 have both sexes, at what level should we set the tolerance?

Test your predictions on the model.

Can you see any other factors or variables that might affect the male to female ratio within each group?

Make predictions and test your ideas within this model.

As you are testing your hypotheses, you will notice that patterns are emerging from the data. For example, if you keep the number of people at the party constant but gradually increase the tol‑

erance level, more mixed groups appear.

How high does the tolerance value have to be before you get mixed groups?

What percent tolerance tends to produce what percentage of mixing?

Thinking with models

Using NetLogo to model a situation like a party allows you to experiment with a system in a rapid and flexible way that would be difficult to do in the real world. Modeling also gives you the

opportunity to observe a situation or circumstance with less prejudice, as you can examine the underlying dynamics of a situation. You may find that as you model more and more, many of your

preconceived ideas about various phenomena will be challenged. For example, a surprising result of the Party model is that even if tolerance is relatively high, a great deal of separation

between the sexes occurs.

This is a classic example of an “emergent” phenomenon, where a group pattern results from the interaction of many individuals. This idea of “emergent” phenomena can be applied to almost

any subject.

What other emergent phenomena can you think of?

To see more examples and gain a deeper understanding of this concept and how NetLogo helps learners explore it, you may wish to explore NetLogo’s Models Library. It contains models that

demonstrate these ideas in systems of all kinds.

For a longer discussion of emergence and how NetLogo helps learners explore it, see “Modeling Nature’s Emergent Patterns with Multi-agent Languages” (Wilensky, 2001).

What’s next?

The section of the User Manual called Tutorial #1: Running Models goes into more detail about how to use the other models in the Models Library.

If you want to learn how to explore the models at a deeper level, Tutorial #2: Commands will introduce you to the NetLogo modeling language.

Eventually, you’ll be ready for Tutorial #3: Procedures. There you can learn how to alter and extend existing models to give them new behaviors, and you can start to build your own models.

http://ccl.northwestern.edu/papers/MEE/
file:///tmp/sbt_6c39b28e/tutorial1.html
file:///tmp/sbt_6c39b28e/tutorial2.html
file:///tmp/sbt_6c39b28e/tutorial3.html

Tutorial #1: Models

If you read the Sample Model: Party section, you got a brief introduction to what it’s like to explore a NetLogo model. This section will go into more depth about the features that are available

while you’re exploring the models in the Models Library.

Throughout all of the tutorials, we’ll be asking you to make predictions about what the effects of making changes to the models will be. Keep in mind that the effects are often surprising. We

think these surprises are exciting and provide excellent opportunities for learning.

You may want to print out the tutorials to make them easier to refer to while you’re using NetLogo.

Sample Model: Wolf Sheep Predation

We’ll open one of the Sample Models and explore it in detail. Let’s try a biology model: Wolf Sheep Predation, a predator-prey population model.

Open the Models Library from the File menu.

Choose “Wolf Sheep Predation” from the Biology section and press “Open”.

The Interface tab will fill up with lots of buttons, switches, sliders and monitors. These interface elements allow you to interact with the model. Buttons are dark blue; they set up, start, and stop

the model. Sliders and switches are light blue; they alter model settings. Monitors and plots are gray; they display data.

If you’d like to make the window larger so that everything is easier to see, you can use the Zoom menu.

When you first open the model, you will notice that the “view” (the graphical display of the agents in the model) is empty (all black). To begin the model, you will first need to set it up.

Press the “setup” button.

What do you see appear in the view?

Press the “go” button to start the simulation.

As the model is running, what is happening to the wolf and sheep populations?

Press the “go” button to stop the model.

Controlling the Model: Buttons

When a button is pressed, the model responds with an action. A button can be a “once” button, or a “forever” button. You can tell the difference between these two types of buttons by a symbol

on the face of the button. Forever buttons have two arrows in the bottom right corners, like this:

Once buttons don’t have the arrows, like this:

Once buttons do one action and then stop. When the action is finished, the button pops back up.

Forever buttons do an action over and over again. When you want the action to stop, press the button again. It will finish the current action, then pop back up. You may have noticed that the “go”

button was gray when you first opened the model. That is because it is inactive until the “setup” button is pressed. Pressing an inactive button will have no effect.

Most models, including Wolf Sheep Predation, have a once button called “setup” and a forever button called “go”. Many models also have a once button called “go once” or “step once” which is

like “go” except that it advances the model by one tick (time step) instead of over and over. Using a once button like this lets you watch the progress of the model more closely.

Stopping a forever button is the normal way to pause or stop a model. After pausing you can make it resume by pressing the button again. (You can also stop a model with the “Halt” item on the

Tools menu, but you should only do this if the model is stuck for some reason. Using “Halt” may interrupt the model in the middle of an action, and as the result the model could get confused.)

If you like, experiment with the “setup” and “go” buttons in the Wolf Sheep Predation model.

Do you ever get different results if you run the model several times with the same settings?

Controlling speed: Speed Slider

The speed slider allows you to control the speed of a model, that is, the speed at which turtles move, patches change color, and so on.

file:///tmp/sbt_6c39b28e/sample.html

When you move the slider to the left the model slows down so there are longer pauses between each tick (time step). That makes it easier to see what is happening. You might even slow the

model down so far as to see exactly what a single turtle is doing.

When you move the speed slider to the right the model speeds up. NetLogo will start skipping frames, that is, it won’t update the view at the end of every tick, only some ticks. Updating takes

time, so fewer view updates means the model progresses faster.

Note that if you push the speed slider well to the right, the view may update so infrequently that the model appears to have slowed down. It hasn’t, as you can see by watching the tick counter

race ahead. Only the frequency of view updates has lessened.

Adjusting Settings: Choosers, Sliders, and Switches

A model’s settings let you explore different scenarios or hypotheses. Altering the settings and then running the model to see how it reacts can give you a deeper understanding of the phenom‑

ena being modeled.

Choosers, switches, and sliders give you access to a model’s settings. Here are the choosers, switches, and sliders in Wolf Sheep Predation:

Let’s experiment with their effect on the behavior of the model.

Open Wolf Sheep Predation if it’s not open already.

Press “setup” and “go” and let the model run for about 100 ticks. (The tick count is shown above the view.)

Stop the model by pressing the “go” button.

What happened to the sheep over time?

Let’s take a look and see what would happen to the sheep if we change a setting.

Change the “model-version” chooser from “sheep-wolves” to “sheep-wolves-grass”.

Press “setup” and “go” and let the model run for a similar amount of time as before.

What did the chooser do? Was the outcome the same as your previous run?

Changing the “model-version” dropdown to “sheep-wolves-grass” affected the outcome of the model. With the chooser set to “sheep-wolves”, the amount of grass available always stayed the

same. This is not a realistic look at the predator-prey relationship; so by setting and turning on a grass regrowth rate, we were able to model all three factors: sheep, wolf, and grass populations.

Another type of setting is called a slider.

Besides choosers, a model may also have sliders. While choosers have a short list of preset options, a slider has a whole range of numeric values. For example, the “initial-number-sheep” slider

has a minimum value of 0 and a maximum value of 250. The model could run with 0 sheep or it could run with 250 sheep, or anywhere in between. Try this out and see what happens. As you

move the marker from the minimum to the maximum value, the number on the right side of the slider changes; this is the number the slider is currently set to.

Let’s investigate Wolf Sheep Predation’s sliders.

Change from the Interface to the Info tab to learn what each of this models’ sliders represents.

The Info tab offers guidance and insight into the model. Within this tab you will find an explanation of the model, suggestions on things to try, and other information. You may want to read the

Info tab before running a model, or you might want to just start experimenting, then look at the Info tab later.

What would happen to the sheep population if there were more sheep and less wolves initially?

Change the “model-version” chooser from “sheep-wolves-grass” to “sheep-wolves”.

Set the “initial-number-sheep” slider to 100.

Set the “initial-number-wolves” slider to 20.

Press “setup” and then “go”.

Let the model run for about 100 ticks.

Try running the model several times with these settings.

What happened to the sheep population?

Did this outcome surprise you? What other sliders can be adjusted to help out the sheep population?

Set “initial-number-sheep” to 80 and “initial-number-wolves” to 50. (This is close to how they were when you first opened the model.)

Set “sheep-reproduce” to 10.0%.

Press “setup” and then “go”.

Let the model run for about 100 time ticks.

What happened to the wolves in this run?

One more type of widget is called a switch. A switch has only two values, on and off.

There is a switch in this model called “show-energy?”

Click “show-energy?” to check the box next to it and then click “setup” and “go”.

How did the appearance of the wolves in the world view change?

Uncheck the “show-energy?” switch while the model is still running.

What happened to the energy labels you saw before?

When you open a model, all the choosers, sliders, and switches are on a default setting. If you open a new model or exit the program, your changed settings will not be saved, unless you

choose to save them.

(Note: in addition to choosers, sliders, and switches, some models have input boxes. The Wolf Sheep Predation doesn’t have any of those, though.)

Gathering Information: Plots and Monitors

The view lets you see what’s going on in a model. NetLogo also provides has other ways of giving you information about model run, such as plots and monitors.

Plots

The plot in Wolf Sheep Predation contains three lines: sheep, wolves, and grass / 4. (The grass count is divided by four so it doesn’t make the plot too tall.) The lines show what’s happening in

the model over time. The plot legend shows what each line indicates. In this case, it’s the population counts.

When a plot gets close to becoming filled up, the horizontal axis is compressed and all of the data from before gets squeezed into a smaller space. In this way, more room is made for the plot to

grow.

If you want to save the data from a plot to view or analyze it in another application, use the “Export Plot” item on the File menu. It saves the plot data in a format that can by read back by spread‑

sheet and database programs such as Excel. You can also export a plot by right-clicking it and choosing “Export…” from the popup menu.

Monitors

Monitors are another means of displaying information from a model. Here are the monitors in Wolf Sheep Predation:

The monitors show us the population of sheep and wolves, and the amount of grass. (Remember, the amount of grass is divided by four to keep the plot from getting too tall.)

The numbers displayed in the monitors change as the model runs, whereas the plots show you data from the whole course of the model run.

Controlling the View

In the Interface tab, you’ll see a toolbar of controls. Some of these control aspects of the view.

Let’s experiment with the effect of these controls.

Press “setup” and then “go” to start the model running.

As the model runs, move the speed slider to the left.

What happens?

This slider is helpful if a model is running too fast for you to see what’s going on in detail.

Move the speed slider to the middle.

Try moving the speed slider to the right.

Now try checking and unchecking the “view updates” checkbox.

What happens?

Fast forwarding the model and turning off view updates are useful if you’re impatient and want a model to run faster. Fast forwarding (moving the speed slider to the right) drops view updates so

the model can run fast, since updating the view takes time that could be used for running the model itself.

When view updates are off completely, the model continues to run in the background, and plots and monitors still update. But if you want to see what’s happening, you need to turn view updates

back on by rechecking the box. Many models run much faster when view updates are off. For others, it makes little difference.

The size of the view is determined by five separate settings: min-pxcor, max-pxcor, min-pycor, max-pycor, and patch size. Let’s take a look at what happens when we change the size of the

view in the “Wolf Sheep Predation” model.

There are more model settings than there’s room for in the toolbar. The “Settings…” button lets you get to the rest of the settings.

Press the “Settings…” button in the toolbar.

A dialog will open containing all the settings for the view:

What are the current settings for min-pxcor, max-pxcor, min-pycor, max-pycor, and patch size?

Press “cancel” to make this window go away without changing the settings.

Place your mouse pointer next to, but still outside of, the view.

You will notice that the pointer turns into a crosshair.

Hold down the mouse button and drag the crosshair over the view.

The view is now selected, which you know because it is now surrounded by a gray border.

Drag one of the square black “handles”. The handles are found on the edges and at the corners of the view.

Unselect the view by clicking anywhere in the white background of the Interface tab.

Press the “Settings…” button again and look at the settings.

What numbers changed?

What numbers didn’t change?

The NetLogo world is a two dimensional grid of “patches”. Patches are the individual squares in the grid. In Wolf Sheep Predation, when the “model-version” is set to “sheep-wolves-grass” the

individual patches are easily seen, because some are green, others brown.

Think of the patches as being like square tiles in a room with a tile floor. By default, exactly in the middle of the room is a tile labeled (0,0); meaning that if the room was divided in half one way

and then the other way, these two dividing lines would intersect on this tile. We now have a coordinate system that will help us locate objects within the room:

How many tiles away is the (0,0) tile from the right side of the room?

How many tiles away is the (0,0) tile from the left side of the room?

In NetLogo, the number of tiles from right to left is called world-width. And the number of tiles from top to bottom is world-height. These numbers are defined by top, bottom, left and right

boundaries.

In these diagrams, max-pxcor is 3 , min-pxcor is -3, max-pycor is 2 and min-pycor is -2.

When you change the patch size, the number of patches (tiles) doesn’t change, the patches only get larger or smaller in the view.

Let’s look at the effect of changing the minimum and maximum coordinates in the world.

Using the Settings dialog that is still open, change max-pxcor to 30 and max-pycor value to 10. Notice that min-pxcor and min-pycor change too. That’s because

by default the origin (0,0) is in the center of the world.

What happened to the shape of the view?

Press the “setup” button.

Now you can see the new patches you have created.

Edit the view by pressing the “Settings…” button again.

Change the patch size to 20 and press “OK”.

What happened to the size of the view? Did its shape change?

Editing the view also lets you change other settings. Feel free to experiment with these.

Once you are done exploring the Wolf Sheep Predation model, you may want to take some time just to explore some of the other models available in the Models Library.

Models Library

The library contains four sections: Sample Models, Curricular Models, Code Examples, and HubNet Activities.

Sample Models

The Sample Models section is organized by subject area and currently contains more than 200 models. We are continuously working on adding new models to it, so come visit this section at a

later date to view the new additions to the library.

Some of the folders in Sample Models have folders inside them labeled “(unverified)”. These models are complete and functional, but are still in the process of being reviewed for content, accu‑

racy, and quality of code.

Curricular Models

These are models designed to be used in schools in the context of curricula developed by the CCL at Northwestern University. Some of these are models are also listed under Sample Models;

others are unique to this section. See the Info tabs of the models for more information on the curricula they go with.

Code Examples

These are simple demonstrations of particular features of NetLogo. They’ll be useful to you later when you’re extending existing models or building new ones. For example, if you wanted to add

a histogram to your model, you’d look at “Histogram Example” to find out how.

HubNet Activities

This section contains participatory simulations for use with groups. For more information about HubNet, see the HubNet Guide.

What’s Next?

If you want to learn how to explore models at a deeper level, Tutorial #2: Commands will introduce you to the NetLogo modeling language.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build new ones.

file:///tmp/sbt_6c39b28e/hubnet.html
file:///tmp/sbt_6c39b28e/tutorial2.html
file:///tmp/sbt_6c39b28e/tutorial3.html

Tutorial #2: Commands

So far you’ve successfully navigated your way through opening and running models, pressing buttons, changing sliders and switches, and gathering information from a model using plots and

monitors.

In this section, the focus will start to shift from observing models to manipulating models. You will start to see the inner workings of the models and be able to change how they look.

Sample Model: Traffic Basic

Open the Models Library (from the File menu).

Open Traffic Basic, found in the “Social Science” section.

Run the model for a while to get a feel for it.

Consult the Info tab for any questions you may have.

In this model, you will notice one red car in a stream of blue cars. The stream of cars are all moving in the same direction. Every so often they “pile up” and stop moving. This is modeling how

traffic jams can form without a specific cause like an accident.

You may alter the settings and observe a few runs to get a fuller understanding of the model.

As you are using the Traffic Basic model, have you noticed any additions you would like to make to the model?

Looking at the Traffic Basic model, you may notice the environment is fairly simple; a black background with a white street and number of blue cars and one red car. Changes that could be

made to the model include: changing the color and shape of the cars, adding a house or street light, creating a stop light, or even creating another lane of traffic. Some of these suggested

changes are visual, to enhance the look of the model, while others are more behavioral. We will be focusing more on the simpler or cosmetic changes throughout most of this tutorial. (Tutorial

#3 will go into greater detail about behavioral changes, which require changing the Code tab.)

To make these simple changes we will be using the Command Center.

Command Center

The Command Center is found in the Interface tab. It allows you to enter commands or directions to a model. Commands are instructions you can give to NetLogo’s agents: turtles, patches,

links, and the observer.

In Traffic Basic:

Press the “setup” button.

Locate the Command Center.

Click the mouse in the white box at the bottom of the Command Center.

Type the text shown here:

Press the return key.

What happened to the View?

You may have noticed the background of the View has turned all yellow and the street has disappeared.

Why didn’t the cars turn yellow too?

Looking back at the command that was written, we asked only the patches to change their color. In this model, the cars are represented by a different kind of agent,

called “turtles”. Therefore, the cars did not receive these instructions and thus did not change.

What happened in the Command Center?

You may have noticed that the command you just typed is now displayed in the Command Center as shown below:

Type in the bottom of the Command Center the text shown below:

Was the result what you expected?

file:///tmp/sbt_6c39b28e/tutorial3.html
file:///tmp/sbt_6c39b28e/tutorial3.html

The view should have a yellow background with a line of brown cars in the middle:

The NetLogo world is a two dimensional world that is made up of turtles, patches, links, and an observer. The patches are the ground over which the turtles move. Links are connections

between turtles. And the observer is a being that oversees everything that is going on. (For more specifics, refer to the NetLogo Programming Guide.)

In the Command Center you can give commands to any of these types of agents. You choose which type to talk to by using the popup menu located in the bottom left corner. You can also use

the tab key on your keyboard to cycle through the different types.

In the Command Center, click on the “observer>” in the bottom left corner:

Choose “turtles” from the popup menu.

Type set color pink and press return.

Press the tab key until you see “patches>” in the bottom left corner.

Type set pcolor white and press return.

What does the View look like now?

Do you notice any differences between these two commands and the observer commands from earlier?

The observer oversees the world and therefore can give a command to the patches or turtles using ask . Like in the first example (observer> ask patches [set pcolor yellow]), the observer

has to ask the patches to set their pcolor to yellow. But when a command is directly given to a group of agents like in the second example (patches> set pcolor white), you only have to give

the command itself.

Press “setup”.

What happened?

Why did the View revert back to the old version, with the black background and white road? Upon pressing the “setup” button, the model will reconfigure itself back to the settings outlined in the

Code tab. The Command Center doesn’t permanently change the model. It allows you to manipulate the NetLogo world directly to further answer those “What if” questions that pop up as you

are investigating the models. (The Code tab is explained in the next tutorial, and in the Programming Guide.)

Now that we have familiarized ourselves with the Command Center, let’s look at some more details about how colors work in NetLogo.

Working with colors

You may have noticed in the previous section that we used two different words for changing color: color and pcolor .

What is the difference between color and pcolor?

Choose “turtles” from the popup menu in the Command Center (or use the tab key).

Type set color blue and press return.

What happened to the cars?

Think about what you did to make the cars turn blue, and try to make the patches turn red.

If you try to ask the patches to set color red , an error message occurs:

Type set pcolor red instead and press return.

We call color and pcolor “variables”. Some commands and variables are specific to turtles and some are specific to patches. For example, the color variable is a turtle variable, while the

pcolor variable is a patch variable.

Go ahead and practice altering the colors of the turtles and patches using the set command and these two variables.

To be able to make more changes to the colors of turtles and patches, or shall we say cars and backgrounds, we need to gain a little insight into how NetLogo deals with colors.

In NetLogo, colors have a numeric value. In all of the exercises we have been using the name of the color. This is because NetLogo recognizes 16 different color names. This does not mean that

NetLogo only recognizes 16 colors. There are many shades in between these colors that can be used too. Here’s a chart that shows the whole NetLogo color space:

file:///tmp/sbt_6c39b28e/programming.html
file:///tmp/sbt_6c39b28e/programming.html

To get an intermediate shade, you refer to it by a number instead, or by adding or subtracting a number from a name. For example, when you type set color red , this does the same thing as if

you had typed set color 15 . And you can get a lighter or darker version of the same color by using a number that is a little larger or a little smaller, as follows.

Choose “patches” from the popup menu in the Command Center (or use the tab key).

Type set pcolor red - 2 (The spacing around the “-” is important.)

By subtracting from red, you make it darker.

Type set pcolor red + 2

By adding to red, you make it lighter.

You can use this technique on any of the colors listed in the chart. NetLogo allows you to use the whole spectrum of For information on the different ways colors are represented in NetLogo see

the Colors section of the NetLogo Programming Guide. The Color Picker Guide explains how to choose colors using a dialog.

Agent Monitors and Agent Commanders

In the previous activity, we used the set command to change the colors of all the cars. But if you recall, the original model contained one red car amongst a group of blue cars. Let’s look at how

to change only one car’s color.

Press “setup” to get the red car to reappear.

Right-click on the red car.

If there is another turtle close to the red turtle you’ll see more than one turtle listed at the bottom of the menu. Move your mouse over the turtle selections, notice

when your mouse highlights a turtle menu item that turtle is highlighted in the view. Select “inspect turtle” from the sub-menu for the red turtle.

A turtle monitor for that car will appear:

The mini-view at the top of the agent monitor will always stay centered on this agent. You can zoom the view in and out using the slider below the view and you can watch this turtle in the main

view by pressing the “watch-me” button.

Taking a closer look at this turtle monitor, we can see all of the variables that belong to the red car. A variable is a location that holds a value.

Let’s take a closer look at the turtle monitor:

file:///tmp/sbt_6c39b28e/colorpicker.html

What is this turtle’s who number?

What color is this turtle?

What shape is this turtle?

This turtle monitor is showing a turtle that has a who number of 0, a color of 15 (red – see chart above), and the shape of a car.

There are two other ways to open a turtle monitor besides right-clicking. One way is to choose “Turtle Monitor” from the Tools menu, then type the who number of the turtle you want to inspect

into the “who” field and press return. The other way is to type inspect turtle 0 (or other who number) into the Command Center.

You close a turtle monitor by clicking the close box in the upper left hand corner (Mac) or upper right hand corner (other operating systems).

Now that we know more about Agent Monitors, we have three ways to change an individual turtle’s color.

One way is to use the box called an Agent Commander found at the bottom of an Agent Monitor. You type commands here, just like in the Command Center, but the commands you type here

are only done by this particular turtle.

In the Agent Commander of the Turtle Monitor for turtle 0, type set color pink .

What happens in the View?

Did anything change in the Turtle Monitor?

A second way to change one turtle’s color is to go directly to the color variable in the Turtle Monitor and change the value.

Select the text to the right of “color” in the Turtle Monitor.

Type in a new color such as green + 2 .

What happened?

The third way to change an individual turtle’s or patch’s color is to use the observer. Since, the observer oversees the NetLogo world, it can give commands that affect individual turtles, as well

as groups of turtles.

In the Command Center, select “observer” from the popup menu (or use the tab key).

Type ask turtle 0 [set color blue] and press return.

What happens?

Just as there are Turtle Monitors, there are also Patch Monitors, which work very similarly.

Can you make a patch monitor and use it to change the color of a single patch?

If you try to have the observer ask patch 0 [set pcolor blue] , you’ll get an error message:

To ask an individual turtle to do something, we use its who number. But patches don’t have who numbers, therefore we need to refer to them some other way.

Remember, patches are arranged on a coordinate system. Two numbers are needed to plot a point on a graph: an x-axis value and a y-axis value. Patch locations are designated in the same

way as plotting a point.

Open a patch monitor for any patch.

The monitor shows that for the patch in the picture, its pxcor variable is -19 and its pycor variable is 0. If we go back to the analogy of the coordinate plane and wanted

to plot this point, the point would be found on the x axis left of the origin, where x=-19 and y=0.

To tell this particular patch to change color:

In the bottom of the patch monitor, enter set pcolor blue and press return.

Typing a command in a turtle or patch monitor addresses only that turtle or patch.

You can also talk to a single patch from the Command Center:

In the Command Center, enter ask patch -19 0 [set pcolor green] and press return.

What’s Next?

At this point, you may want to take some time to try out the techniques you’ve learned on some of the other models in the Models Library.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build your own models.

file:///tmp/sbt_6c39b28e/tutorial3.html

Tutorial #3: Procedures

This tutorial leads you through the process of building a complete model, built up in stages, with every step explained along the way.

Agents and procedures

In Tutorial #2, you learned how to use the command center and agent monitors to inspect and modify agents and make them do things. Now you’re ready to learn about the real heart of a

NetLogo model: the Code tab.

You’ve seen that agents in NetLogo are divided into patches, turtles, links, and the observer. Patches are stationary and arranged in a grid. Turtles move over that grid. Links connect two turtles.

The observer oversees everything that’s going on and does whatever the turtles, patches and links can’t do for themselves.

All four types of agents can run NetLogo commands. All four can also run “procedures”. A procedure combines a series of NetLogo commands into a single new command that you define.

You will now learn to write procedures that make turtles move, eat, reproduce, and die. You will also learn how to make monitors, sliders, and plots. The model we’ll build is a simple ecosystem

model not unlike Wolf Sheep Predation from Tutorial #1.

Making the setup button

To start a new model, select “New” from the File menu. Then begin by creating a setup button:

Click the “Add” icon in the toolbar at the top of the Interface tab.

On the menu next to Add, select Button (if it isn’t already selected).

Click wherever you want the button to appear in the empty white area of the Interface tab.

A dialog box for editing the button opens. Type setup in the box labeled “Commands”.

Press the OK button when you’re done; the dialog box closes.

Now you have a setup button. Pressing the button runs a procedure called “setup”. A procedure is a sequence of NetLogo commands that we assign a new name. We’ll define that procedure

soon, but we haven’t yet. The button refers to a procedure that doesn’t exist, so the button turns red:

If you want to see the actual error message, click the button.

Now we’ll create the “setup” procedure, so the error message will go away:

Switch to the Code tab.

Type the following:

to setup

 clear-all

 create-turtles 100 [setxy random-xcor random-ycor]

 reset-ticks

end

When you’re done, the Code tab looks like this:

Note that some lines are indented. Most people find it helpful to indent their code. It isn’t mandatory, but it makes the code easier to read and change.

Your procedure begins with to and ends with end . Every procedure begins and ends with these words.

Let’s look at what you typed in and see what each line of your procedure does:

to setup begins defining a procedure named “setup”.

clear-all resets the world to an initial, empty state. All the patches turn black and any turtles you might have created disappear. Basically, it wipes the slate clean for a new model run.

create-turtles 100 creates 100 turtles. They start out standing at the origin, that is, the center of patch 0,0.

After create-turtles we can put commands for the new turtles to run, enclosed by square brackets.

setxy random-xcor random-ycor is a command using “reporters”. A reporter, as opposed to a command, reports a result. First each turtle runs the reporter random-xcor which will report a

random number from the allowable range of turtle coordinates along the X axis. Then each turtle runs the reporter random-ycor , same for the Y axis. Finally each turtle runs the setxy

command with those two numbers as inputs. That makes the turtle move to the point with those coordinates.

reset-ticks starts the tick counter, now that setup is otherwise complete.

end completes the definition of the “setup” procedure.

When you’re done typing, switch to the Interface tab and press the setup button you made before. You will see the turtles scattered around the world:

Press setup a couple more times, and see how the arrangement of turtles is different each time. Note that some turtles may be right on top of each other.

Think a bit about what you needed to do to make this happen. You needed to make a button in the interface and make a procedure that the button uses. The button only worked once you com‑

pleted both of these separate steps. In the remainder of this tutorial, you will often have to complete two or more similar steps to add another feature to the model. If something doesn’t appear to

work after you completed what you thought is the final step for that new feature, continue to read ahead to see if there is still more to do. After reading ahead for a couple of paragraphs, you

should then go back over the directions to see if there is any step you might have missed.

Switching to tick-based view updates

Now that we’re using the tick counter (with reset-ticks), we should tell NetLogo that it only needs to update the view once per tick, instead of continuously updating it.

Find the view updates menu. It’s above the view and by default says “continuous”.

Choose “on ticks” instead.

This makes your model run faster and ensures a consistent appearance (since the updates will happen at consistent times). See the Programming Guide for a fuller discussion of view updates.

Making the go button

Now make a button called “go”. Follow the same steps you used to make the setup button, except:

For Commands enter go instead of setup .

Check the “Forever” checkbox in the edit dialog.

Check the “Disable until ticks start” checkbox too.

The “Forever” checkbox makes the button stay down once pressed, so its commands run over and over again, not just once.

The “Disable until ticks start” prevents you from pressing go before setup.

Then add a go procedure to the Code tab:

to go

 move-turtles

 tick

end

tick is a primitive that advances the tick counter by one tick.

But what is move-turtles ? Is it a primitive (in other words, built-in to NetLogo)? No, it’s another procedure that you’re about to add. So far, you have introduced two procedures that you added

yourself: setup and go .

Add the move-turtles procedure after the go procedure:

to go

 move-turtles

 tick

end

to move-turtles

 ask turtles [

 right random 360

 forward 1

]

end

Note there are no spaces around the hyphen in move-turtles . In Tutorial #2 we used red - 2 , with spaces, in order to subtract two numbers, but here we want move-turtles , without spa‑

ces. The “-” combines “move” and “turtles” into a single name.

Here is what each command in the move-turtles procedure does:

ask turtles [...] says that each turtle should run the commands in the brackets.

right random 360 is another command that uses a reporter. First, each turtle picks a random whole number between 0 and 359. (random doesn’t include the number you give it as a

possible result.) Then the turtle turns right this number of degrees.

forward 1 makes the turtle move forward one step.

Why couldn’t we have just written all of these commands in go instead of in a separate procedure? We could have, but during the course of building your project, it’s likely that you’ll add many

other parts. We’d like to keep go as simple as possible, so that it is easy to understand. Eventually, it will include many other things you want to have happen as the model runs, such as calculat‑

ing something or plotting the results. Each of these things to do will have its own procedure and each procedure will have its own unique name.

The ‘go’ button you made in the Interface tab is a forever button, meaning that it will continually run its commands until you shut it off (by clicking on it again). After you have pressed ‘setup’

once, to create the turtles, press the ‘go’ button. Watch what happens. Turn it off, and you’ll see that all the turtles stop in their tracks.

Note that if a turtle moves off the edge of the world, it “wraps”, that is, it appears on the other side. (This is the default behavior. It can be changed; see the Topology section of the Programming

Guide for more information.)

Experimenting with commands

We suggest you start experimenting with other turtle commands.

Type commands into the Command Center (like turtles> set color red), or add commands to setup , go , or move-turtles .

Note that when you enter commands in the Command Center, you must choose turtles> , patches> , links> , or observer> in the popup menu on the left, depending on which agents are

going to run the commands. It’s just like using ask turtles or ask patches , but saves typing. You can also use the tab key to switch agent types, which you might find more convenient than

using the menu.

You might try typing turtles> pen-down into the Command Center and then pressing the go button.

Also, inside the move-turtles procedure you can try changing right random 360 to right random 45 .

Play around. It’s easy and the results are immediate and visible – one of NetLogo’s many strengths.

When you feel you’ve done enough experimenting for now, you’re ready to continue improving the model you are building.

Patches and variables

Now we’ve got 100 turtles aimlessly moving around, completely unaware of anything else around them. Let’s make things a little more interesting by giving these turtles a nice background

against which to move.

Go back to the setup procedure. We can rewrite it as follows:

to setup

 clear-all

 setup-patches

 setup-turtles

 reset-ticks

end

The new definition of setup refers to two new procedures. To define setup-patches , add this:

to setup-patches

 ask patches [set pcolor green]

end

The setup-patches procedure sets the color of every patch to green to start with. (A turtle’s color variable is color ; a patch’s is pcolor .)

The only part remaining in our new ‘setup’ that is still undefined is setup-turtles .

Add this procedure too:

to setup-turtles

 create-turtles 100

 ask turtles [setxy random-xcor random-ycor]

end

Did you notice that the new setup-turtles procedure has most of the same commands as the old setup procedure?

Switch back to the Interface tab.

Press the setup button.

Voila! A lush NetLogo landscape complete with turtles and green patches appears:

After seeing the new setup procedure work a few times, you may find it helpful to read through the procedure definitions again.

Turtle variables

So we have some turtles running around on a landscape, but they aren’t doing anything with it. Let’s add some interaction between the turtles and the patches.

We’ll make the turtles eat “grass” (the green patches), reproduce, and die. The grass will gradually grow back after it is eaten.

We’ll need a way of controlling when a turtle reproduces and dies. We’ll determine that by keeping track of how much “energy” each turtle has. To do that we need to add a new turtle variable.

You’ve already seen built-in turtle variables like color . To make a new turtle variable, we add a turtles-own declaration at the top of the Code tab, before all the procedures. Call it energy :

turtles-own [energy]

to go

 move-turtles

 eat-grass

 tick

end

Let’s use this newly defined variable (energy) to allow the turtles to eat.

Switch to the Code tab.

Rewrite the go procedure as follows:

to go

 move-turtles

 eat-grass

 tick

end

Add a new eat-grass procedure:

to eat-grass

 ask turtles [

 if pcolor = green [

 set pcolor black

 set energy energy + 10

]

]

end

We are using the if command for the first time. Look at the code carefully. Each turtle, when it runs these commands, compares the value of the patch color it is on (pcolor) to the value for

green . (A turtle has direct access to the variables of the patch it is standing on.) If the patch color is green, the comparison reports true , and only then will the turtle run the commands inside

the brackets (otherwise it skips them). The commands make the turtle change the patch color to black and increase its own energy by 10. The patch turns black to signify that the grass at that

spot has been eaten. And the turtle is given more energy, from having just eaten.

Next, let’s make the movement of turtles use up some of the turtle’s energy.

Rewrite move-turtles as follows:

to move-turtles

 ask turtles [

 right random 360

 forward 1

 set energy energy - 1

]

end

As each turtle wanders, it will lose one unit of energy at each step.

Switch to the Interface tab now and press the setup button and the go button.

You’ll see the patches turn black as turtles travel over them.

Monitors

Next you will create two monitors in the Interface tab with the toolbar. (You make them just like buttons and sliders, using the Add icon on the toolbar.) Let’s make the first monitor now.

Create a monitor by clicking the Add icon on the toolbar, selecting Monitor next to it, and clicking on an open spot in the Interface.

A dialog box will appear.

In the dialog type: count turtles (see image below).

Press the OK button to close the dialog.

turtles is an “agentset”, the set of all turtles. count tells us how many agents are in that set.

Let’s make the second monitor now:

Create a monitor by clicking the Add icon on the toolbar, selecting Monitor next to it, and clicking on an open spot in the Interface.

A dialog box will appear.

In the Reporter section of the dialog box type: count patches with [pcolor = green] (see image below).

In the Display name section of the dialog box type: green patches

Press the OK button to close the dialog box.

Here we’re using count again to see how many agents are in an agentset. patches is the set of all the patches, but we don’t just want to know how many patches there are total, we want to

know how many of them are green. That’s what with does; it makes a smaller agentset of just those agents for whom the condition in the brackets is true. The condition is pcolor = green , so

that gives us just the green patches.

Now we have two monitors that will report how many turtles and green patches we have, to help us track what’s going on in our model. As the model runs, the numbers in the monitors will auto‑
matically change.

Use the setup and go buttons and watch the numbers in the monitors change.

Switches and labels

The turtles aren’t just turning the patches black. They’re also gaining and losing energy. As the model runs, try using a turtle monitor to watch one turtle’s energy go up and down.

It would be nicer if we could see every turtle’s energy all the time. We will now do exactly that, and add a switch so we can turn the extra visual information on and off.

Click on the Add icon on the toolbar (in the Interface tab).

Select Switch from the menu next to Add.

Click on an open spot in the interface.

A dialog will appear.

Into the Global variable field, type show-energy? Don’t forget to include the question mark in the name. (See image below.)

Now go back to the ‘go’ procedure using the Code tab with the Toolbar.

Rewrite the eat-grass procedure as follows:

to eat-grass

 ask turtles [

 if pcolor = green [

 set pcolor black

 set energy energy + 10

]

 ifelse show-energy?

 [set label energy]

 [set label ""]

]

end

The eat-grass procedure introduces the ifelse command. Look at the code carefully. Each turtle, when it runs these new commands, checks the value of show-energy? (determined by the

switch). If the switch is on, comparison is true and the turtle will run the commands inside the first set of brackets. In this case, it assigns the value for the energy to the label of the turtle. If the

comparison is false (the switch is off) then the turtle runs the commands inside the second set of brackets. In this case, it removes the text labels (by setting the label of the turtle to be nothing).

(In NetLogo, a piece of text is called a “string”, short for string of characters. A string is a sequence of letters or other characters, written between double quotes. Here we have two double

quotes right next to each other, with nothing in between them. That’s an empty string. If a turtle’s label is an empty string, no text is attached to the turtle.)

Test this in the Interface tab, by running the model (using the setup and go buttons) switching the show-energy? switch back and forth.

When the switch is on, you’ll see the energy of each turtle go up each time it eats grass. You’ll also see its energy going down whenever it moves.

More procedures

Now our turtles are eating. Let’s make them reproduce and die, too. And let’s make the grass grow back. We’ll add all three of these of these behaviors now, by making three separate proce‑
dures, one for each behavior.

Go to the Code tab.

Rewrite the go procedure as follows:

to go

 move-turtles

 eat-grass

 reproduce

 check-death

 regrow-grass

 tick

end

Add the procedures for reproduce , check-death , and regrow-grass as shown below:

to reproduce

 ask turtles [

 if energy > 50 [

 set energy energy - 50

 hatch 1 [set energy 50]

]

]

end

to check-death

 ask turtles [

 if energy <= 0 [die]

]

end

to regrow-grass

 ask patches [

 if random 100 < 3 [set pcolor green]

]

end

Each of these procedures uses the if command. Each turtle, when it runs check-death it will check to see if its energy is less or equal to 0. If this is true, then the turtle is told to die (die is a

NetLogo primitive).

When each turtle runs reproduce , it checks the value of the turtle’s energy variable. If it is greater than 50, then the turtle runs the commands inside the first set of brackets. In this case, it

decreases the turtle’s energy by 50, then ‘hatches’ a new turtle with an energy of 50. The hatch command is a NetLogo primitive which looks like this: hatch number [commands]. This turtle

creates number new turtles, each identical to its parent, and asks the new turtle(s) that have been hatched to run commands. You can use the commands to give the new turtles different colors,

headings, or whatever. In our case we run one command. We set the energy for the newly hatched turtle to be 50.

When each patch runs regrow-grass it will check to see if a random integer from 0 to 99 is less than 3. If so, the patch color is set to green. This will happen 3% of the time (on average) for

each patch, since there are three numbers (0, 1, and 2) out of 100 possible that are less than 3.

Switch to the Interface tab now and press the setup and go buttons.

You should see some interesting behavior in your model now. Some turtles die off, some new turtles are created (hatched), and some grass grows back. This is exactly what we set out to do.

If you continue to watch your monitors in your model, you will see that the count turtles and green patches monitors both fluctuate. Is this pattern of fluctuation predictable? Is there a relation‑
ship between the variables?

It’d be nice if we had a easier way to track the changes in the model behavior over time. NetLogo allows us to plot data as we go along. That will be our next step.

Plotting

To make plotting work, we’ll need to create a plot in the Interface tab and put some commands inside it.

The commands we put in the plots will run automatically when our setup procedure calls reset-ticks and when our go procedure calls tick .

Create a plot by clicking the Add icon on the toolbar, selecting Plot next to it, and clicking on an open spot in the Interface.

Set its Name to “Totals” (see image below)

Set the X axis label to “time”

Set the Y axis label to “totals”

Change the name of the “default” pen to “turtles”.

Enter plot count turtles under Pen Update Commands.

Press the “Add Pen” button.

Change the name of the new pen to “grass”.

Enter plot count patches with [pcolor = green] under Pen Update Commands.

When you’re done, the dialog should look like this:

Press OK in the Plot dialog to finish editing.

Note that when you create the plot you can also set the minimum and maximum values on the X and Y axes. You’ll want to leave the “Auto Scale” checkbox checked, so that if anything you plot

exceeds the minimum and maximum values for the axes, the axes will automatically grow so you can see all the data.

Note that we used the plot command to add the next point to a plot. This command moves the current plot pen to the point that has an X coordinate equal to 1 greater than the previously plot‑

ted X coordinate and a Y coordinate equal to the value given in the plot command (in the first case, the number of turtles, and in the second case, the number of green patches). As the pens

move they each draw a line.

Setup and run the model again.

You can now watch the plot being drawn as the model is running. Your plot should have the general shape of the one below, though your plot might not look exactly the same.

Remember that we left “Auto Scale?” on. This allows the plot to readjust itself when it runs out of room.

If you forget which pen is which, you can edit the plot and check the “Show legend?” checkbox.

You might try running the model several times to see what aspects of the plot are the same and which are different from run to run.

Tick counter

To make comparisons between plots from one model run and another, it is often useful to do the comparison for the same length of model run. Learning how to stop or start an action at a spe‑
cific time can help make this happen by stopping the model at the same point each model run. Keeping track of how many times the go procedure is run is a useful way to cue these actions.

That’s what the tick counter does.

You’re already using the tick counter in your model, with the reset-ticks and tick commands, which also trigger plotting.

You can also use the tick counter for other things, such as to set a limit on the total length of a run.

Change the go procedure:

to go

 if ticks >= 500 [stop]

 move-turtles

 eat-grass

 check-death

 reproduce

 regrow-grass

 tick

end

Now setup and run the model.

The graph and model won’t keep running forever. They should stop automatically when the tick counter in the Interface tab’s toolbar reaches 500.

The tick command advances the tick counter by 1. ticks is a reporter which reports the current value of the tick counter. reset-ticks , in your setup procedure, takes care of restarting the

tick counter at 0 when a new run is set up and ready to begin.

Some more details

First, instead of always using 100 turtles, you can have a varying number of turtles.

Create a slider named “number”: click the Add icon on the toolbar, select Slider next to it, and click on an open spot in the interface.

Try changing the minimum and maximum values in the slider.

Then inside of setup-turtles , instead of create-turtles 100 you can type:

to setup-turtles

 create-turtles number [setxy random-xcor random-ycor]

end

Test this change and compare how having more or fewer turtles initially affect the plots over time.

Second, wouldn’t it be nice to adjust the energy the turtles gain and lose as they eat grass and reproduce?

Make a slider called energy-from-grass .

Make another slider called birth-energy .

Then, inside of eat-grass, make this change:

to eat-grass

 ask turtles [

 if pcolor = green [

 set pcolor black

 set energy (energy + energy-from-grass)

]

 ifelse show-energy?

 [set label energy]

 [set label ""]

]

end

And, inside of reproduce , make this change:

to reproduce

 ask turtles [

 if energy > birth-energy [

 set energy energy - birth-energy

 hatch 1 [set energy birth-energy]

]

]

end

Finally, what other slider could you add to vary how often grass grows back? Are there rules you can add to the movement of the turtles or to the newly hatched turtles that happen only at cer‑

tain times? Try writing them.

What’s next?

So now you have a simple model of an ecosystem. Patches grow grass. Turtles wander, eat the grass, reproduce, and die.

You have created an interface containing buttons, sliders, switches, monitors, and a plot. You’ve even written a series of procedures to give the turtles something to do.

That’s where this tutorial leaves off.

If you’d like to look at some more documentation about NetLogo, the Interface Guide section of the manual walks you through every element of the NetLogo interface in order and explains its

function. For a detailed description and specifics about writing procedures, refer to the Programming Guide. All of the primitives are listed and described in the NetLogo Dictionary.

Also, you can continue experimenting with and expanding this model if you’d like, experimenting with different variables and behaviors for the agents.

Alternatively, you may want to revisit the first model in the tutorial, Wolf Sheep Predation. This is the model you used in Tutorial #1 . In the Wolf Sheep Predation model, you saw sheep move

around, consume resources that are replenished occasionally (grass), reproduce under certain conditions, and die if they ran out of resources. But that model had another type of creature mov‑

file:///tmp/sbt_6c39b28e/interface.html
file:///tmp/sbt_6c39b28e/programming.html
file:///tmp/sbt_6c39b28e/dictionary.html

ing around – wolves. The addition of wolves requires some additional procedures and some new primitives. Wolves and sheep are two different “breeds” of turtle. To see how to use breeds,

study Wolf Sheep Predation.

Alternatively, you can look at other models (including the many models in the Code Examples section of the Models Library) or even go ahead and build your own model. You don’t even have to

model anything. It can be interesting just to watch patches and turtles forming patterns, to try to create a game to play, or whatever.

Hopefully you have learned some things, both in terms of the NetLogo language and about how to go about building a model. The entire set of procedures that was created above is shown

below.

Appendix: Complete code

The complete model is also available in NetLogo’s Models Library, in the Code Examples section. It’s called “Tutorial 3”.

Notice that this listing is full of “comments”, which begin with semicolons. Comments let you mix an explanation the code right in with the code itself. You might use comments to help others

understand your model, or you might use them as notes to yourself.

In the Code tab, comments are gray, so your eyes can pick them out easily.

turtles-own [energy] ;; for keeping track of when the turtle is ready

 ;; to reproduce and when it will die

to setup

 clear-all

 setup-patches

 setup-turtles

 reset-ticks

end

to setup-patches

 ask patches [set pcolor green]

end

to setup-turtles

 create-turtles number ;; uses the value of the number slider to create turtles

 ask turtles [setxy random-xcor random-ycor]

end

to go

 if ticks >= 500 [stop] ;; stop after 500 ticks

 move-turtles

 eat-grass

 check-death

 reproduce

 regrow-grass

 tick ;; increase the tick counter by 1 each time through

end

to move-turtles

 ask turtles [

 right random 360

 forward 1

 set energy energy - 1 ;; when the turtle moves it looses one unit of energy

]

end

to eat-grass

 ask turtles [

 if pcolor = green [

 set pcolor black

 ;; the value of energy-from-grass slider is added to energy

 set energy energy + energy-from-grass

]

 ifelse show-energy?

 [set label energy] ;; the label is set to be the value of the energy

 [set label ""] ;; the label is set to an empty text value

]

end

to reproduce

 ask turtles [

 if energy > birth-energy [

 set energy energy - birth-energy ;; take away birth-energy to give birth

 hatch 1 [set energy birth-energy] ;; give this birth-energy to the offspring

]

]

end

to check-death

 ask turtles [

 if energy <= 0 [die] ;; removes the turtle if it has no energy left

]

end

to regrow-grass

 ask patches [;; 3 out of 100 times, the patch color is set to green

 if random 100 < 3 [set pcolor green]

]

end

Interface Guide

This section of the manual explains the function of each element in NetLogo’s user interface.

In NetLogo, you have the choice of viewing models found in the Models Library, adding to existing models, or creating your own models. The NetLogo interface was designed to meet all these

needs.

The interface can be divided into two main parts: NetLogo menus, and the main NetLogo window. The main window is divided into tabs.

Menus

On a Mac, if you are running the NetLogo application, the menu bar is located at the top of the screen. On other platforms, the menu bar is found at the top of the NetLogo window.

The functions available from the menus in the menubar are listed in the following chart.

Chart: NetLogo menus

File

New Starts a new model.

Open… Opens any NetLogo model on your computer.

Models Library A collection of demonstration models.

Recent Files Re-opens any previously model opened with "File -> Open."

Save Save the current model, or the currently selected source file.

Save As… Save the current model, or the currently selected source file, using a different name.

Save All Save the current model and all open source files. This option is only available when one or more source files are open.

Upload to Modeling Commons Uploads the current model to the Modeling Commons. See Modeling Commons for more details.

Save As NetLogo Web… Saves your model as an HTML web page that runs using NetLogo Web.

Note: The version of NetLogo Web used for this is bundled with NetLogo, so it may not be up to date with the latest changes and features. You can also

upload your model to NetLogo Web and export it to HTML from there to get the most recent updates included.

Perhaps the easiest way of sharing your model with others via NetLogo Web is to use its "hotlinking" functionality instead. This allows you to host your

.nlogox file somewhere and share a stable NetLogo Web "hotlink" with others. In that case, you only need to update your hosted .nlogox file, and

everything else happens automatically. This also provides faster load times. More information on how to use the hotlinking functionality, and the trade-

offs that it presents, can be found here.

Manage Bundled Resources Add, edit, and remove resources bundled with the model. See Resource Manager.

Export World… Saves all variables, the current state of all turtles and patches, the drawing , the plots, the output area and the random state information to a file.

Export Plot… Saves the data in a plot to a file.

Export All Plots… Saves the data in all the plots to a file.

Export View… Save a picture of the current view (2D or 3D) to a file (in PNG format).

Export Interface… Save a picture of the current Interface tab (in PNG format).

Export Output… Save the contents of the output area or the output section of the command center to a file.

Export Code… Save the model's code to an HTML file, preserving colors.

Import World… Load a file that was saved by Export World.

Import Patch Colors… Load an image into the patches; see the import-pcolors command.

Import Patch Colors RGB… Load an image into the patches using RGB colors; see the import-pcolors-rgb command.

Import Drawing… Load an image into the drawing, see the import-drawing command.

Import HubNet Client Interface… Load the interface from another model into the HubNet Client Editor.

file:///tmp/sbt_6c39b28e/modelingcommons.html
https://netlogoweb.org/
https://netlogoweb.org/whats-new
https://netlogoweb.org/docs/faq#loading
https://netlogoweb.org/docs/faq#saving
https://netlogoweb.org/docs/faq#hotlinking
file:///tmp/sbt_6c39b28e/resource-manager.html

File

Print… Sends the contents of the currently showing tab to your printer.

Quit Exits NetLogo. On a Mac, this item is on the NetLogo menu instead.

Edit

Undo Undo last text editing action you performed.

Redo Redo last undo action you performed.

Cut Cuts out or removes the selected text and temporarily saves it to the clipboard.

Copy Copies the selected text.

Paste Places the clipboard text where cursor is currently located.

Delete Deletes selected text.

Select All Select all the text in the active window.

Find… Finds a word or sequence of characters within the Info or Code tabs.

Find Next Find the next occurrence of the word or sequence you last used Find with.

Comment /

Uncomment

Used in the Code tab to add or remove semicolons from code (semicolons are used in NetLogo code to indicate comments).

Shift Left / Shift Right Used in the Code tab to change the indentation level of code.

Show Usage Used in the Code tab to show all usages of variable name or primitive that has been right-clicked.

Jump to Declaration Used in the Code tab to show where in the file a variable name that has been right-clicked is declared.

Format Used in the Code tab to correct the indentation of the currently selected code.

Snap to Grid Available only in the Interface Tab. When enabled new widgets stay on a 5 pixel grid so it is easier to line them up. (Note: this feature is disabled when zoomed in

or out.)

Convert from 5.3.1 to 6.0 Available only in an ".nls" code tab. Treats the code in this tab as though it were written in 5.3.1 and converts it to run in NetLogo 6. Note that this will not take into

account code defined in the main code tab. "Undo" doesn't take this operation into account, so you won't want to save unless you're satisfied with the changes.

Tools

Preferences… Opens the [Preferences dialog](netlogopreferences.html), where you can customize various NetLogo settings. On a Mac, this item is on the NetLogo

menu instead.

Extensions… Opens the Extension Manager, where you can discover and manage Extensions. See the Extension Manager Guide for more information.

Halt Stops all running code, including buttons and the command center. (Warning: since the code is interrupted in the middle of whatever it was doing, you

may get unexpected results if you try to continue running the model without first pressing "setup" to start the model run over.)

Globals Monitor Displays the values of all global variables.

Turtle Monitor Displays the values of all of the variables in a particular turtle. You can can also edit the values of the turtle's variables and issue commands to the turtle.

(You can also open a turtle monitor via the View; see the View section below.)

Patch Monitor Displays the values of all of the variables in a particular patch. You can can also edit the values of the patch's variables and issue commands to the patch.

(You can also open a patch monitor via the View; see the View section below.)

Link Monitor Displays the values of all of the variables in a particular link. You can can also edit the values of the link's variables and issue commands to the link. (You

can also open a link monitor via the View; see the View section below.)

Close All Agent Monitors Closes all open agent monitor windows.

Close Monitors for Dead Agents Closes all open agent monitor windows targeting dead agents.

Hide/Show Command Center Makes the command center visible or invisible. (Note that the command center can also be shown or hidden, or resized, with the mouse.) This option is

only available when the Interface Tab is active.

3D View Opens the 3D view. See the Views section of the Interface Tab Guide for more information.

Color Picker Opens the Color Picker. See the Color Section of the Programming Guide for details.

Turtle Shapes Editor Draw turtle shapes. See the Shapes Editor Guide for more information.

Link Shapes Editor Draw link shapes. See the Shapes Editor Guide for more information.

BehaviorSpace Runs the model over and over with different settings. See the BehaviorSpace Guide for more information.

System Dynamics Modeler Opens the System Dynamics Modeler. See the System Dynamics Modeler Guide for more details.

Preview Commands Editor Allows for easy editing of the commands sequence used to create preview images for models. Gives a way to specify what code will be used (or specify

that the image is manually made) and preview the resulting image.

HubNet Client Editor Opens the HubNet Client Editor. See the HubNet Authoring Guide for more details.

HubNet Control Center Disabled if no HubNet activity is open. See the HubNet Guide for more information.

Convert Widgets to New Sizes Change the size of widgets created before NetLogo 7 to the current size. Optionally automatically rearrange their locations. See the Widget Sizes section

of the NetLogo7 Guide for more information.

Zoom

Larger Increase the overall screen size of the model. Useful on large monitors or when using a projector in front of a group. Keyboard shortcut: Mac Command =, On

Windows or Linux, Control =.

Normal Size Reset the screen size of the model to the normal size. Keyboard shortcut: Mac Command 0, On Windows or Linux, Control 0.

Smaller Decrease the overall screen size of the model. Keyboard shortcut: Mac Command -, On Windows or Linux, Control -.

Tabs

This menu offers keyboard shortcuts for each of the tabs. On a Mac, it's Command 1 through Command 3. On Windows or Linux, it's Control 1 through Control 3.

Additional numbers are used for tabs containing ".nls" files.

Help

Look Up In Dictionary Opens a browser with the dictionary entry for the selected command or reporter. (You may also use the F1 key for this.)

NetLogo User Manual Opens this manual in a web browser.

NetLogo Dictionary Opens the NetLogo Dictionary in a web browser.

NetLogo Users Group Opens the NetLogo Users Group site in a web browser.

file:///tmp/sbt_6c39b28e/extension-manager.html
file:///tmp/sbt_6c39b28e/shapes.html
file:///tmp/sbt_6c39b28e/shapes.html
file:///tmp/sbt_6c39b28e/behaviorspace.html
file:///tmp/sbt_6c39b28e/systemdynamics.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet.html

Help

Introduction to Agent-Based Modeling Opens the MIT Press page for "Introduction to Agent-Based Modeling" (by Uri Wilensky and William Rand) in a web browser.

Donate Opens the NetLogo donation page in a web browser.

About NetLogo 7.0.2… Information on the current NetLogo version you are running. On a Mac, this menu item is on the NetLogo menu instead.

Tabs

At the top of NetLogo’s main window are three tabs labeled “Interface”, “Info” and “Code”. Only one tab at a time can be visible, but you can switch between them by clicking on the tabs at the

top of the window.

Right below the row of tabs is a toolbar containing a row of controls. The controls available vary from tab to tab.

International Usage

Character sets

NetLogo always saves and loads models in the UTF-8 character encoding, which includes a wide range of international characters.

If you are in a locale other than U.S. English, let us know if you have any trouble using your local character set.

The Transition Guide has advice on converting models containing international characters from earlier NetLogo versions.

Languages

Most of NetLogo’s GUI, and some of its error messages, are now “internationalized”. This means that it is now possible to display NetLogo in different languages.

We say “possible” here because the current release of NetLogo only supports English, Spanish, Chinese, Russian, and Japanese.

The work on internationalization is not complete. We are asking for help from the user community in helping us localize items such as the menus and error messages.

Default language

By default, NetLogo uses the same language your operating system is set to, if available. (If unavailable, you get English.)

You can record a preference for a different language by changing the “User Interface Language” option in the preferences dialog. Once a new language is chosen you will have to restart

NetLogo.

Support for translators

We hope NetLogo will become available in many different languages. If you would like to translate NetLogo to your language, see this wiki page for instructions.

file:///tmp/sbt_6c39b28e/transition.html
https://github.com/NetLogo/NetLogo/wiki/Localization

Interface Tab Guide

The Interface tab is where you watch your model run. It also has tools you can use to inspect and alter what’s going on inside the model.

When you first open NetLogo, the Interface tab is empty except for the view, where the turtles and patches appear, and the Command Center, which allows you to issue NetLogo commands.

Overview: Working with interface elements (widgets)

The elements you can use to create the interface for a NetLogo model are: buttons, sliders, switches, choosers, inputs, monitors, plots, the output area, and notes. These interface elements are

often referred to as widgets. More details are in the Chart: Interface Widgets.

The Interface toolbar includes four tool buttons which control the meaning of user actions. They are the Interaction Tool, the Selection Tool, the Edit Tool, and the Delete Tool. There are also

two pull-down menu tools, Add Widgets Menu, and Align Widgets Menu. For details on the use of these features to create, select, edit, delete, and adjust widgets, click on the tool and menu

links above. They are located after the widgets chart.

Tool Buttons

One of the four tools is always active unless the user is currently adding a widget. The active tool is colored in with blue. From left to right on the Interface Toolbar are the Add Widgets and Align

Widgets pull-down menus, the Interaction Tool (a finger icon) Selection Tool (a cursor with dotted box icon) the Edit Tool (a pencil icon) and the Delete Tool (a garbage can icon).

Here is a brief introduction to working with widgets.

Adding: To add a widget, select it from the “Add Widget” drop-down menu, or right click on the background and select it from the popup menu. A light image of the widget will appear at the

mouse cursor. Move the mouse to the desired location and left click to insert the widget. A dialog will appear so you can set the appropriate values. To cancel the addition of the widget, right

click or press the Escape key.

Selecting: With the Selection Tool active you can select a single widget by clicking it, and can select one or more widgets by dragging a rectangle around the widget(s) with your mouse. A out‑

line with square handles will appear around the widget to show that it is selected. Alternatively you can right-click a widget and choose “Select” from the popup menu.

Unselecting: To unselect all interface elements, click the mouse on the white background of the Interface tab. To unselect an individual widget, right-click the widget and choose “Deselect”

from the popup menu, or hold Ctrl/Cmd and left click on the widget.

Copying You can copy one or more selected widgets using Ctrl/Cmd + C. Using Ctrl/Cmd + V, these can be pasted into the same model, a different model, or a different instance of NetLogo.

The popup menu you get by right-clicking a widget also has options to copy and paste widgets. After pasting the copied widgets, a light image of the widget(s) will appear. This preview

behaves the same way as adding a new widget. Copied widgets can be pasted multiple times. Note that when copied into the same model the new widget(s) refer to the same global variable as

the original, so you will probably want to edit them. You can copy the View, but pasting it into a model which already has a View will cause the old view to be replaced. The same logic applies to

the Output widget.

Editing: With the Editing Tool active you can click on a widget to bring up its edit dialog. Alternatively you can right-click the widget and choose “Edit” from the popup menu.

Moving: Select the widget, then drag it with your mouse to its new location. If you hold down the shift key while dragging, the widget will move only straight up and down or straight left and

right.

Resizing: Select the widget, then drag the handles in the selection border.

Deleting: With the Delete Tool active you can click on a widget to delete it. Clicking the Delete button will delete any selected widgets. You may also delete a widget by right-clicking it and

choosing “Delete” from the popup menu.

Adjusting: After selecting multiple widgets you can use the Align Widget menu to align, stretch or distribute them.

To learn more about the different kinds of interface elements, refer to the chart below.

Charts: Interface Widgets

Buttons perform actions when clicked. The input widgets set values for global variables. The input widgets are: sliders, switches, choosers and inputs. Monitors and plots are two output widgets

that display a global variable value. There is also the output area which can be written to by the model as it runs. Notes are used to add labels, instructions and other information to the interface.

Buttons are blue. Input widgets are a shades of blue (lighter for the Light Theme, darker for the Dark Theme). Output widgets are shades of grey. The background and font colors for notes are

user settable.

Widget Appearance: Light and Dark Themes

Description Widget Light Color Theme Widget Dark Color Theme

Buttons

Forever Turtle Button

Input Widgets

Slider

file:///tmp/sbt_6c39b28e/add-widgets-menu
file:///tmp/sbt_6c39b28e/align-widgets-menu

Description Widget Light Color Theme Widget Dark Color Theme

Switch

Chooser

Input (Color)

Output Widgets

Monitor

Plot

Output

Notes

Note

Editing a Note

Widget Icons and Functionality

Icon Name Description

Button A button is either once or forever. When you click on a once button, it executes its instructions once. The forever button executes the instructions over and

over, until you click on the button again to stop the action. By default the instructions are executed by the observer. However there is an agents pull-down

menu that lets you specify that turtles, patches, or links will execute the instructions. This will be indicated by an icon on the left side of the button.

If you have assigned an action key to the button, pressing the corresponding keyboard key will act just like a button press when the button is in focus.

Buttons with action keys have a letter in the upper right corner of the button to show what the action key is. If the keyboard focus is in the Command

Center, or otherwise not in the main Interface Tab area, pressing the action key won't trigger the button. The letter in the upper right hand corner of the

button will be dimmed in this situation. To enable action keys, click in the white background of the Interface tab.

Slider Sliders are used in models as a quick way to change a variable without having to recode the procedure every time. Instead, the user moves the slider to a

value and observes what happens in the model. The value can also be set by typing a number in the slider's text box, or by clicking on the background of

the slider and using the left and right or up and down arrow keys. Most of the fields in the edit dialog that open after you place the slider will be familiar.

However, it is important to notice the minimum, maximum and increment fields will take any reporter, not just constants. So, for example, you could make

the minimum min-pxcor and the maximum max-pxcor and the slider bounds will automatically adjust when you change the size of the world.

Switch Switches are a visual representation for a true/false global variable. You may set the variable to either on (true) or off (false) by flipping the switch.

Chooser Choosers let you choose a value for a global variable from a list of choices, presented in a drop-down menu. The choices may be strings, numbers,

booleans, or lists.

Input

Box

Input Boxes represent global variables that contain numbers, strings or colors. The model author chooses what types of values you can enter. Number

input boxes read any type of constant number reporter which allows more expressivity than a slider. When clicked, color input boxes open a NetLogo

color picker. Currently colors are NetLogo colors, which are represented by numbers, but in future releases they may be RGB or RGBA colors. Therefore

the global variable should only be used with Color commands or variables. If the global variable type is String(reporter), it can be evaluated using the

runresult primitive. If the type is String(commands), it can be executed using the run primitive.

Monitor Monitors display the value of any reporter. The reporter could be a variable, a complex reporter, or a call to a reporter procedure. Monitors automatically

update several times per second.

Plot Plots show data the model is generating.

Output The output area is a scrolling area of text which can be used to create a log of activity in the model. A model may only have one output area.

Note Notes let you add informative text labels to the Interface tab. The contents of notes do not change as the model runs.

Other Interface Toolbar controls

The other controls in the Interface toolbar allow you to control the view updates and various other model properties.

The speed slider is located in the Interface Toolbar. You can make the model run faster by moving the slider to the right, or by clicking one or more times on the “+“ button, and slower by moving

the slider to the left, or by clicking one or more times on the “-“ button. Twenty clicks on the “-“ or “+“ button will move the slider thumb from the center to its minimum or maximum rate. The

increase or decrease in speed is not linear with the amount the slider knob is moved.

The speed slider lets you control how fast the model runs by changing the frequency of view updates. You can fast-forward the model by moving the slider to the right or by clicking one or

more times on the “+“ button, or slow down the the model by moving the slider to the left or by clicking one or more times on the “-“ button. Slower can be valuable since some models run so

fast they’re hard to follow. Twenty clicks on the “-“ or “+“ button will move the slider thumb from the center to its minimum or maximum rate. The increase or decrease in speed is not linear

with the amount the slider knob is moved.

The view updates checkbox controls whether view updates happen at all.

The update mode menu allows you to switch between continuous and tick-based updates. “Continuous” updates means that NetLogo updates (that is, redraws) the view many times a

second, regardless of what is going on in the model. “Tick-based” updates means that the view only updates when the tick counter advances. (For a fuller discussion of view updates, see the

Programming Guide.)

The “Settings” button allows you to change model settings.

Interface Menus

Add Widgets Menu

file:///tmp/sbt_6c39b28e/programming.html

This menu allows users to add widgets. This tool is entered by clicking the “Add Widget” dropdown menu on the Interface toolbar and making a widget selection. The movement of the mouse is

accompanied by a light image of the widget and there is no cursor. Clicking places the widget in its current location. Right-clicking allows you to change the widget type. You can also add a wid‑

get by right-clicking anywhere in the white background. This brings up a menu, allowing you to select the widget type and place the widget.

The Interaction Tool will be activated once you close the widget’s Edit dialog by clicking “OK” to insert the widget or “Cancel” to abort the process.

Align Widgets Menu

The Align Widgets is a popup menu of options to align, distribute, and stretch widgets. These options require at least two widgets to be selected. If an action is not possible it will be greyed out.

This can happen if not enough widgets are selected, or if the action would result in undesireable overlap of widgets. See Widget Overlap for more details. The items remain selected after the

action is completed. The Align Widgets menu can also be accessed by right clicking on a widget when multiple widgets are selected.

Aligning

With Align Left the left-most widget remains in place. The other widgets move to align to left-most widget edge. There are similar alignment options for the right, top and bottom. Widgets can

also centered vertically or horizontally.

Distributing

Distribute Vertically keeps the top and bottom widgets fixed, and moves the other widgets so the vertical spacing between the widgets is the same. Distribute Horizontally works similarly.

Stretching

If Stretch Left is selected the widget with the left-most widget remains in place. All the other widgets stretch so they have the same left-most edge. There are similar alignment options for the

right, top and bottom.

Widget Overlap

The actions of aligning, distributing or stretching will not be completed if they would create a new overlap of widgets. Not completing an action may result in unexpected behavior, but protects

users from other unexpected behavior, such as one widget becoming completely hidden behind another.

Interface Tools

Interaction Tool

The Interaction Tool is for making direct use of widgets to run commands and change global variables.

The effect of clicking is widget specific, as described in the widget chart.

Right-clicking

file:///tmp/sbt_6c39b28e/widget-overlap

Users can Select, Edit and Delete widgets in interaction mode by right-clicking and bringing up a menu. With Plots one can also Copy Image, Export, and Clear. With the Output widget one can

Copy Selected Text, Clear, and Export. The View cannot be deleted. The available options are Select, Edit, Copy View, Export View, Switch to 3D View, Inspect Globals, Inspect a patch, and

Inspect, Watch or Follow a turtle.

Ctrl-clicking or Cmd-clicking

Selection of a widget can be toggled on and off using Ctrl-click (Windows and Linux) or Cmd-click (MacOS). Performing this action when using the Interaction Tool will activate the Selection

Tool.

Drag Select

One option that is not available with the Interaction Tool is using Drag-Select to select one or more widgets. To Drag-Select first press the Selection Tool. However Ctrl+Drag does work with the

Interaction tool.

Exiting

Pressing the Selection, Editing or Deletion icons exits the Interaction Tool. One can also activate the Selection Tool by using Ctrl-Click (Windows or Linux) or Cmd-Click (macOS) on a widget, or

by using the Select option with the right-click pull-down menu. Using the Edit or Delete option with the right-click pull-down menu does not exit the Interaction Tool because they are “transient”

actions.

Selection, Editing and Deletion Tools

These explicit tools are new for NetLogo 7, although they incorporate behaviors associated with certain NetLogo 6.4 icons.

Each of these tools can be entered by pressing the appropriate icon. When one of these tools is active widgets will be faintly dimmed to indicate that they are not currently interactive, and all

“forever” buttons will halt. Each can be exited by selecting a different tool icon. The Esc key will return you to the Interaction Tool. Moving the focus to another context such as the Command

Center, the Info Tab, or the Code Tab will activate the Interaction Tool.

Selection Tool

This tool allows users to select and subsequently edit or move a widget or change its size. Enter this tool by pressing the “Selection Tool” icon on the Interface toolbar (cursor with dashed

rectangle).

Selecting

Press the “Selection Tool” Icon. Widgets will dim. Clicking on a widget selects it. A line border with square handles will appear around the widget to show it is selected. This will be black for the

Light Color Theme, and grey for the Dark Color Theme. A widget can also be selected by dragging a rectangle around it with your mouse or by right-clicking a widget and choosing Select from

the menu. You can toggle selection and deselection by using Ctrl+Click (Windows/Linux) or Cmd+Click(MacOS) on a widget. Any method of selecting one or more widgets will activate the

Selection Tool. Clicking the background area will deselect any selected widgets. Dragging one widget will move all selected widget(s). You can also click and drag an individual widget before

the selection markers appear.

Selecting multiple items

You can select multiple interface elements at the same time by including them in the rectangle you drag. Additional elements can also be added by using the alternative methods.

Deselecting

An individual selected widget can be selected by pressing Ctrl+Click (Windows/Linux) or Cmd+Click (MacOS) or by right-clicking the widget and choosing “Deselect” from the popup menu. To

deselect all selected interface elements, click the mouse on the white background of the Interface tab. The Selection Tool will remain active. Any method of choosing a different tool will exit

Selection tool.

The following actions require that at least one widget is selected:

Moving

Select one or more widgets, then drag with your mouse to the new location. You can use the arrow keys to move the widgets a small increment right, left, up, or down. Using shift plus an arrow

key increases the increment. If you hold down the shift key while dragging, the elements will move only straight up and down or straight left and right. The items remain selected.

Resizing

Select the widget, then drag the square handles in the selection border. If multiple elements are selected the handles can be dragged one at a time, and the items remain selected.

Editing Tool

This tool allows users to change the characteristics of an interface widget Enter this tool by pressing the “Editing Tool” Icon on the Interface toolbar (a pencil).

Editing: Press the “Editing Tool” Icon and click on a widget to edit it. When the user finishes editing a widget, the Editing Tool remains active. Clicking another widget will edit it.

If a widget is already selected you can press the editing icon to activate the Editing Tool and open the widget for editing. Clicking the Edit icon when multiple items have already been selected

deselects the items, and enters the Edit tool. You can also begin editing by double-clicking a selected widget, or right-clicking an unselected widget and choosing “Edit” from the popup menu.

Deletion Tool

This tool allows users to delete interface elements. Enter this tool by pressing the “Deletion Tool” icon on the Interface toolbar (trashcan). After a widget is deleted the user will remain in the

Deletion Tool and ready to delete more items. The view cannot be deleted.

You can also select the widget(s) you want to delete, then press the “Delete” button to delete them all at once.

Deleting

Press the widget. You may also delete a widget by right-clicking it and choosing “Delete” from the popup menu. If you use this latter method, it is not necessary to select the widget first.

The 2D and 3D views

The large black square in the Interface tab is the 2D view. It’s a visual representation of the NetLogo world of turtles and patches. Initially it’s all black because the patches are black and there

are no turtles yet. You can open the 3D View, an alternate visual representation of the world, by right clicking (ctrl-clicking on Mac) on the View and choosing “Switch to 3D View” (this option is

also available in the “Tools” menu).

There are a number of settings for the View (accessible by editing the View, or by pressing the “Settings” button in the Interface Toolbar):

Notice that the settings are broken up into three groups. There are world, view, and tick counter settings. World settings affect the properties of the world that the turtles live in (changing them

may require resetting the world). View and tick counter settings only affect the appearance, changing them will not affect the outcome of the model.

World Settings

The world settings allow you to define the boundaries and topology of the world. At the top of the left side of the world panel you can choose a location for the origin of the world either

“Center”, “Corner”, “Edge”, or “Custom”. By default the world has a center configuration where (0, 0) is at the center of the world and you define the number of patches from the center to the

right and left boundaries and the number of patches from the center to the top and bottom boundaries. For example: if you set max-pxcor = 10, then min-pxcor will automatically be set to -10,

thus there are 10 patches to the left of the patch at (0, 0) and 10 patches to the right of the patch at (0, 0), for a total of 21 patches in each row.

A Corner configuration allows you to define the location of the origin as one of the corners of the world, upper left, upper right, lower left, or lower right. Then you define the far boundary in the

x and y directions. For example if you choose to put the origin in the lower left corner of the world you define the right and top (positive) boundaries.

Edge mode allows you to place the origin along one of the edges (x or y) then define the far boundary in that direction and both boundaries in the other. For example if you select edge mode

along the bottom of the world, you must also define the top boundary, as well as the left and the right.

Finally, Custom mode allows you to place the origin at any location in the world, though the patch at (0, 0) must still exist in the world.

As you change the settings you will notice that the changes you make are reflected in the preview on the right side of the panel which shows the origin and the boundaries. The width and height

of the world are displayed below the preview.

Also below the preview there are two checkboxes, the world wrap settings. These allow you to control what happens to a turtle when it reaches the edge of the world. Notice when you click the

check boxes the preview indicates which directions allow wrapping, and the name of the topology is displayed next to the world dimensions. See the Topology section of the Programming

Guide for more information.

View Settings

The view settings allow you to customize the look of the view without changing the world. Changing view settings will never force a world reset. To change the size of the 2D View adjust the

“Patch Size” setting, measured in pixels. This does not change the number of patches, only how large the patches appear in the 2D View. (Note that the patch size does not affect the 3D View,

as you can simply make the 3D View larger by making the window larger.)

The font size setting lets you control the size of turtle, patch, and link labels.

The frame rate controls how often the view gets updated. This can have a dramatic effect on the default speed at which a model runs. For more details, see the view updates section of the

Programming Guide.

The “Smooth edges” checkbox controls the use of anti-aliasing in the 3D view only and only appears when editing from the 3D view. Unchecking it makes lines appear more jagged but may

speed up rendering.

Tick Counter Settings

Tick counter settings control the appearance of the tick counter which is visible (or not) in the view control strip.

Interacting with Agents

Turtle, patch and link monitors are easily available through the View, just right-click on the turtle or patch you want to inspect, and choose “inspect turtle …” or “inspect patch …” from the popup

menu. You can also watch, follow or ride a turtle by selecting the appropriate item in the turtle sub-menu. (Turtle, patch and link monitors can also be opened from the Tools menu or by using

the inspect command.)

Some NetLogo models let you interact with the turtles and patches with your mouse by clicking and dragging in the View.

Manipulating the 3D View

At the bottom of the 3D View window there are buttons to move the observer, or change the perspective from which you are looking at the world.

While you are adjusting one of these settings, a blue cross will appear at the current focus point of the 3D observer. The little blue triangle will always point along the y-axis in the positive direc‑

tion, so you can orient yourself in case you get lost.

To look at the world from a different angle, press the “Orbit” button, then click and drag the mouse. The observer will continue to face the same point as before (where the blue cross is) but its

position in the relation to the xy-plane will change.

To move closer or farther away from the world or the agent you are watching, following or riding, press the “Zoom” button and drag up and down. Note when you are in follow or ride mode

zooming will switch you between ride and follow, since ride is just a special case of follow where the distance at which you are following is 0.

To change the position of the observer without changing the direction it is facing select the “Move” button and drag the mouse inside the 3D View while holding down the mouse button.

To allow the mouse position and state to be passed to the model select the “Interact” button and it will function just as the mouse does in the 2D view.

To return the observer and focus point to their default positions press the “Reset Perspective” button (or use the reset-perspective command).

Fullscreen Mode

Fullscreen mode makes the 3D view of NetLogo Desktop fit on the entire screen. It is often useful for exhibits in museums and other locations.

To enter fullscreen mode, press the “Full Screen” button, and to exit fullscreen mode, press the Esc key.

Note: Fullscreen mode doesn’t work on every computer. It depends on your graphics card. See the System Requirements for details.

3D Shapes

Some shapes are automatically mapped to true 3D counterparts in the 3D view. For example, the 2D circle shape becomes a sphere in the 3D view.

Shape name 3D shape

default 3D turtle shape

circle sphere

dot small sphere

square cube

triangle cone

line 3D line

cylinder 3D cylinder

line-half 3D line-half

car 3D car

All other shapes are based on their 2D forms. If a shape is a rotatable shape, it is assumed to be a top view and it is extruded as if through a cookie cutter and oriented parallel to the xy-plane,

as in Ants.

Or, if a shape is non-rotatable, it is assumed to be a side view, and it is drawn always facing the observer, as in Wolf Sheep Predation.

Command Center

The Command Center allows you to issue commands directly, without adding them to the model’s procedures. This is useful for inspecting and manipulating agents on the fly.

(Tutorial #2: Commands is an introduction to using commands in the Command Center.)

Let’s take a look at the design of the Command Center.

The smaller box, below the large box, is where you type a command. After typing it press the Return or Enter key to run it. You can use the up arrow to access the commands you previously

typed, and the down arrow to navigate back through the list.

To the left of where you type is a label that initially says “observer>”. Clicking on the label will open a popup menu where you can choose either observer, turtles, or patches, to specify which

agents run the command you type.

Tip: a quicker way to change agent types is to use the Tab key.

Reporters

If you enter a reporter into the Command Center, the show command will be inserted before it automatically.

Accessing previous commands

After you type a command, it appears in the large scrolling box above the command line. You can select a section of the text in this box and use Ctrl+C (Windows/Linux) or Cmd+C (Mac) or

select Copy from the Edit menu to copy commands and then paste them elsewhere, such as the Code tab.

file:///tmp/sbt_6c39b28e/tutorial2.html

You can also access previous commands using the history popup, which is the small downward pointing triangle to the right of where you type commands. Click on the triangle and a menu of

previously typed commands appears, so you can pick one to use again.

Tip: a quicker way to access previous commands is with the up and down arrow keys on your keyboard.

Clearing

To clear the large scrolling area containing previous commands and output, click “Clear” in the top right corner.

To clear the command history, choose “Clear History” on the history popup menu (accessed using the small downward pointing triangle to the right of where you type commands).

Arranging

You can hide and show the command center using the Hide Command Center and Show Command Center items on the Tools menu.

To resize the command center, drag the dark gray bar that separates it from the model interface. Or, click one of the little arrows on the left end of the bar to make the command center either fill

the interface or be hidden altogether.

To switch between a vertical command center and a horizontal one, click the button with the double-headed arrow, just to the left of “Clear”.

Plots

When the mouse pointer is over the white area of a plot, the x and y coordinates of the mouse location appear. (Note that the mouse location might not correspond exactly to any actual data

points in the plot. If you need to know the exact coordinates of plotted points, use the Export Plot menu item and inspect the resulting file in another program.)

When you create a plot, as with all widgets, the edit dialog automatically appears.

Many of the fields are fairly self-explanatory, such as the name of the plot, labels for the x and y axes, ranges for the axes, and the “Show legend?” checkbox.

Points added to a plot using plot or plotxy will not be visible if they are outside the extent of the axes. The x and y axes can be automatically (and independently) readjusted by checking the

Auto scale x-axis? and Auto scale y-axis? boxes respectively. Note that if you use histogram Auto scale y-axis? will work but Auto scale x-axis? will have no effect. Note that these checkboxes

can be overridden by Plotting commands such as auto-plot-x-on , auto-plot-y-on , auto-plot-x-off , auto-plot-y-off , set-plot-x-range and set-plot-y-range .

Under “Plot setup commands” and “Plot update commands” you can enter commands that will automatically be run at appropriate times. Click the little triangle to open the text box for the com‑

mands. Plot commands are explained in more detail in the Plotting section of the Programming Guide.

Plot Pens

In the plot pens section of the dialog, you can create and customize your plot’s pens. Each table row represents a pen. By default there is one pen named “default”. (You may wish to change it to

a name that has meaning in your model.)

To edit the color of a pen click the colored rectangle to the left of the pen’s name. This will bring up a dialog that allows you to set the color to one of the NetLogo base hues or a custom color

using the color swatches.

To edit the pen’s name, double click the name.

In the “Pen Update Commands” column you can enter commands that will be run when reset-ticks , tick , or update-plots commands are run. This is explained in more detail in the Plotting

section of the Programming Guide.

The last column has two buttons. Clicking the pencil icon will bring up an edit dialog with additional pen settings. The trash can button deletes the pen.

Plot Pen Advanced Settings

Clicking a pen’s edit button will open this dialog:

Mode allows you to change the appearance of the plot pen: line, bar (for a bar chart), or point (a scatter plot of individual points).

Interval is the amount by which x advances every time you use the plot command.

If the “Show in legend” checkbox is checked the selected pen will be a part of the legend below the plot.

In the “Setup commands” field you can enter commands that will be run when reset-ticks or setup-plots runs.

In the “Update commands” field you can enter commands that will be run when tick or update-plots runs. This field reappears in the advanced dialog to provide space for editing lengthier

sets of commands.

For more detailed information on how each of these features works you can see the Plotting Section of the Programming Guide.

Agent Monitors

Agent monitors display both the values of all the variables for a particular agent and a mini-view that shows the agent and a small area around it.

You can open agent monitors through the Tools menu or the inspect command.

You can zoom in or out using the slider beneath the view and you can watch the agent in the main view using the “Watch” button.

Below the slider the current value of each agent variable is displayed. You can enter a new value, and press the Enter or Return key. It will be as if, for example, the code set pcolor ... had

run.

Below the agent variable area there is a miniature command center. Rather than running code as the observer, or talking to all of the turtles, patches, or links, the code entered in this command

center is run only by the agent shown in the window.

You can close an agent monitor by clicking the window’s close button, or by pressing the Esc key. You can close all the agent monitors by using the “Close All Monitors” option in the Tools Menu

or close just those for dead agents by choosing “Close Monitors for Dead Agents.”

Info Tab

The Info tab provides an introduction to a model. It explains what system is being modeled, how the model was created, and and how to use it. It may also suggest things to explore and ways to

extend the model, or call your attention to particular NetLogo features the model uses.

You may wish to read the Info tab of an existing model before interacting with its widgets or its code.

Editing

The normal, formatted view of the Info tab is not editable. To make edits, click the "Edit" button. When done editing, click the "Edit" button again.

You edit the Info tab as unformatted plain text. When you're done editing, the plain text you entered is displayed in a more attractive format.

To control how the formatted display looks, you use a "markup language" called Markdown. You may have encountered Markdown elsewhere; it is used on a number of web sites. (There are

other markup languages in use on the web; for example, Wikipedia used a markup language called MediaWiki. Markup languages differ in details.)

The remainder of this guide is a tour of Markdown.

Headings

Paragraphs

Italicized and bold text

Ordered lists

Unordered lists

Links

Images

Block quotations

Code

Code blocks

Superscripts and subscripts

Notes on usage

Other features

Headings

A heading begins with one or more hash marks (#). The number of hash marks used controls the size and prominence of the header, with one hash mark indicating the largest header.

Input

First-level heading

Second-level heading

Third-level heading

Fourth-level heading

Paragraphs

Example

This is a paragraph. There are no spaces before the word 'This'.

This is another paragraph. The first line has two sentences.

The entire paragraph has one line with three sentences.

Single line breaks in the input

do not make line breaks in the output,

as demonstrated here.

Formatted

This is a paragraph. There are no spaces before the word ‘This’.

This is another paragraph. The first line has two sentences. The entire paragraph has one line with three sentences.

Single line breaks in the input do not make line breaks in the output, as demonstrated here.

Italicized and bold text

Example

For italics, surround text with underscores:

hello, world.

For bold, surround text with two asterisks:

hello, world.

You can also combine them:

**hello** and **_goodbye_**

Formatted

For italics, surround text with underscores: hello, world.

For bold, surround text with two asterisks: hello, world.

You can also combine them: hello and goodbye

Ordered lists

Example

We are about to start an ordered list.

 1. Ordered lists are indented 2 spaces.

 a) Subitems are indented 2 more spaces (4 in all).

 2. The next item in the list starts with the next number.

 3. And so on...

Formatted

We are about to start an ordered list.

1. Ordered lists are indented 2 spaces. a) Subitems are indented 2 more spaces (4 in all for a second level item).

2. The next item in the list starts with the next number.

3. And so on…

Unordered lists

Example

We are about to start an unordered list.

 * Like ordered lists, unordered lists are also indented 2 spaces.

 * Unlike ordered lists, unordered lists use stars instead of numbers.

 * Sub items are indented 2 more spaces.

 * Here's another sub item.

Formatted

We are about to start an unordered list.

Like ordered lists, unordered lists are also indented 2 spaces.

Unlike ordered lists, unordered lists use stars instead of numbers.

Sub items are indented 2 more spaces.

Here’s another sub item.

Links

Automatic links

The simplest way to create a link is to just type it in:

Example

http://ccl.northwestern.edu/netlogo/

Formatted

http://ccl.northwestern.edu/netlogo/

Links with text

If you want to use your own text for the link, here’s how:

[link text here](link.address.here)

Example

[NetLogo](http://ccl.northwestern.edu/netlogo/)

Formatted

NetLogo

Local links

It is also possible to link to a page on your computer, instead of a page somewhere on the Internet.

Local links have this form:

[alt text](file:path)

Any spaces in the path must be converted to %20. For example, this:

file:my page.html

must be written as:

file:my%20page.html

The path is relative to the directory that the model file is in.

Example

The easiest way to link to files on your computer is to put them into the same directory as your model. Assuming you have a file named index.html in the same directory as your model, the link

would look like this:

[Home](file:index.html)

Example

Here is another example where the file lives in a directory called docs, and docs is in the same directory as your model:

[Home](file:docs/index.html)

Images

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

Images are very similar to links, but have an exclamation point in front:

![alt text](http://location/of/image)

(The alternate text is the text that gets displayed if the image is not found.)

Example

![NetLogo](http://ccl.northwestern.edu/netlogo/images/netlogo-title-new.jpg)

Formatted

Local images

Also very similar to links, it is possible to display an image on your computer instead of an image somewhere on the Internet. Assuming you have an image named image.jpg , local images look

like this:

![alt text](file:path)

The path is relative to the directory that the model file is in.

As with local links, any spaces in the name of the file or the path must be converted to %20.

Example

Like local links, the easiest way to display images on your computer is to put them into the same directory as your model. This example displays the image “Perspective Example.png”, which

resides in the same directory as this model (Info Tab Example).

![Example](file:Perspective%20Example.png)

Formatted

Bundled images

Images that are bundled with the model (See Resource Manager) can also be displayed in the Info tab. To display a bundled image, use the same syntax as for local files above, but omit the

file: specifier. For example, if there is a bundled image called wolf-sheep , you can include it in the Info tab as follows:

![Wolf Sheep](wolf-sheep)

To control various properties of an image, such as its size, you can use the equivalent HTML tag instead of Markdown syntax, as follows:

In either case, if the provided name refers to a resource that is not an image, a dummy image will be displayed in its place.

Block quotations

Consecutive lines starting with > will become block quotations. You can put whatever text you like inside of it and you can also style it.

Example

file:///tmp/sbt_6c39b28e/resource-manager.html

> Let me see: four times five is twelve, and four times six is thirteen,

> and four times seven is --- _oh dear!_

> I shall never get to twenty at that rate!

Formatted

Let me see: four times five is twelve, and four times six is thirteen, and four times seven is — oh dear! I shall never get to twenty at that rate!

Code

To include a short piece of code in a sentence, surround it with backticks (`).

Example

You can create a single turtle with the `crt 1` command.

Formatted

You can create a single turtle with the crt 1 command.

Code blocks

It is also possible to have blocks of code. To create a code block, indent every line of the block by 4 spaces. Another way is to surround it with a three backticks line before and after the block.

(If you don’t want your code to be colored as NetLogo code, add text after the first three backticks.)

Example

About to start the code block.

Leave a blank line after this one, and then put the code block:

 ; a typical go procedure

 to go

 ask turtles

 [fd 1]

 tick

 end

or:

About to start the code block.

Leave a blank line after this one, and then put the code block:

```

; a typical go procedure

to go

  ask turtles

    [ fd 1 ]

  tick

end

```

Formatted

About to start the code block. Leave a blank line after this one, and then put the code block:

; a typical go procedure

to go

 ask turtles

 [fd 1]

 tick

end

Superscripts and subscripts

Superscripts and subscripts are useful for writing formulas, equations, footnotes and more. Subscripts appear half a character below the baseline, and are written using the HTML tag <sub> .

Superscripts appear half a character above the baseline, and are written using the HTML tag <sup> .

Example

H₂O

2x⁴ + x²

WWW^[1]

Formatted

H O

2x + x + 42

WWW

Notes on usage

Paragraphs, lists, code blocks and other features should be separated from each other with a blank line. If you find that something isn’t formatted the way you expected, it might be because

you need to add a blank line before it.

To prevent a special character from being treated as markup, put a backslash (\) before it.

Other features

Markdown has additional features that we have not shown here.

We have tested the features shown above on a variety of systems. If you use other Markdown features, you may find that they work on your computer, or not. Even a feature that works on your

computer might work differently, or not work at all, for someone with a different operating system or Java virtual machine.

If you want all NetLogo users to be able to read your Info tab, use only the features shown above.

More information about Markdown is at https://daringfireball.net/projects/markdown/. For rendering Markdown, NetLogo uses the Flexmark-java library.

2

4 2

[1]

https://daringfireball.net/projects/markdown/
https://github.com/vsch/flexmark-java

Code Tab Guide

The Code tab is where the code for the model is stored. Commands you only want to use once can be typed in the Command Center, but collections of commands that you want to save for later

use can be stored in the Code tab.

Many Code tab behaviors can be changed by using Code preferences. These preferences can be accessed via the “Preferences” button in the Code tab toolbar, or the Code Preferences tab of

the NetLogo Preferences dialog which is opened with the Tools menu “Preferences” item on Windows and Linux, and with the NetLogo menu “Settings” item on MacOS.

Code Tab Toolbar

Details for these items can be found in the corresponding sections.

Check

Find

Procedures

Separate code window

Preferences (also described in relevant sections of this document)

Procedures menu

This menu includes a list of all the procedures in the Code tab. Clicking on a procedure moves the cursor to that procedure. Typing in the text box at the top will filter the list, only showing proce‑
dures whose name contains the typed text. By default procedures are listed alphabetically, but this can be changed to their order of appearance by using the ‘Sort “Procedures” menu by’ code

preference.

Checking for Errors

To determine if the code has any errors, you may press the “Check” button. If there are any syntax errors, the Code tab will turn orange, the code that contains the error will be highlighted, the

cursor will move to the error location, and an error message will appear in an orange banner at the top of the code area. If you don’t want the cursor to move when there is a compilation error

(for example when there is more code than fits on the screen) uncheck the “Automatically jump to source of compilation error” preference. The error will not be highlighted. If the error occurs in

the Interface tab, for example if any button or plot commands result in a compilation error, the Interface tab will turn orange instead.

Switching tabs also causes the code to be checked, so if you just switch tabs, pressing the Check button first isn’t necessary.

Separate Code tab

The Code tab can be opened in a separate window from the main NetLogo window. It can then be moved and resized.

The “Code Tab in separate window” checkbox can be used to switch the Code tab location between the main NetLogo window and a separate window.

A Control-click with the mouse on the tab bar of the Code tab will also switch its location.

To separate a Code tab from the main NetLogo window you can use Command + Shift + W on Mac, Control + Shift + W on other operating systems.

To return a separated Code tab to the main NetLogo window you can use Command + W on Mac, Control + W on other operating systems or click the window’s close button.

There is a Code preference to “Open code tab in separate window on startup”.

Find & Replace

To find a fragment of code in the Code tab, click on the “Find” button in the Code toolbar and the Find dialog will appear.

You may enter a word or phrase to find, and optionally also a new word or phrase to replace it with. The “Ignore case” checkbox controls whether the capitalization must be the same to indicate

a match.

If the “Wrap around” checkbox is checked, the entire Code tab will be checked for the phrase, starting at the cursor position. When it reaches the end it will return to the top, otherwise only the

area from the cursor position to the end of the Code tab will be searched. The “Next” and “Previous” buttons will move down and up to find another occurrence of the search phrase.

“Replace” changes the currently selected phrase with the replace phrase and “Replace & Find” changes the selected phrase and moves to the next occurrence. “Replace All” will change all

instances of the find phrase in the search area with the replace phrase.

Automatic Indentation

When the “Auto-indent” Code preference is selected, NetLogo will automatically attempt to align your code in a logically structured format. For example, when you open a set of square brackets

“[” (perhaps after an if statement), NetLogo will automatically add spaces so that the following lines of code are two spaces further indented than the bracket. When you close the square

brackets the closing bracket will be lined up with the matching open bracket.

NetLogo will try to indent the code as you type, but you can also press the tab key anywhere on any line to ask NetLogo to indent the line immediately. Or, you can select a whole region of code

and press the tab key to re-indent all of it.

Line Numbers

By default line numbers are shown on the left edge of the code area. They can be removed by unselecting the “Show line numbers” Code preference.

More Editing Options

To find a particular procedure definition in your code, use the “Procedures” popup menu in the Code tab. The menu lists all procedures in the order they appear in the file. To search for a partic‑
ular procedure, use the search field at the top of the popup. It will filter the list of procedures using fuzzy matching as you type. Fuzzy match will include procedures whose names contain the

characters that you type in the order that they appear in the search field, but the characters do not have to be right next to each other. For instance, “fnn” will match"find-nearest-neighbors"

and “wolf-down-neighbor” but not “nearest-wolf-neighbor”. You may use the arrow keys or mouse to select a particular procedure and enter or click to jump to it. This can be a very convenient

way to navigate your file. To facilitate this, you can use the shortcut ctrl-g (cmd+g on Mac OS) to access the procedures menu.

The “Shift Left”, “Shift Right”, “Comment”, and “Uncomment” items on the Edit menu are used in the Code tab to change the indentation level of your code or add and remove semicolons, which

mark comments, from sections of code.

For more information about writing procedures, read Tutorial #3: Procedures and the Programming Guide.

file:///tmp/sbt_6c39b28e/tutorial3.html
file:///tmp/sbt_6c39b28e/programming.html

Included Files

Caution: The includes facility is still experimental.

If you have a file with the extension .nls all of its breeds, variables, and procedure definitions are available in the model if you add it by using the __includes keyword to a model. When that key‑

word is used the “Included Files” appears menu to the right of the procedures menu appears. This menu lists all the NetLogo source files (.nls) included in this model. You can choose a file

name from the menu to open a tab for that file, or you can open a new or existing file using the “New Source File” or “Open Source File” items .You can make this menu always visible using the

“Always show “Included Files” menu” Code preference.

Once you’ve opened new tabs they become accessible from the Tabs menu, and you can use the keyboard to move from tab to tab (Command + number on Mac, Control + number on other

operating systems). If the main Code tab is in a separate window, the tabs for included files will appear there too. When an included (.nls) file tab is selected it becomes blue. An included file tab

can be closed by clicking on the “x” on the right side of the tab. Each included file tab has a toolbar indentical to the main Code Tab’s toolbar; the options in this toolbar apply to all Code tabs,

not just the one that is currently visible.

Note that you can create or open an .nls file before including it in a model with an __includes statement. In this case, the contents of the file will not be compilable, which is indicated by a

warning label below the toolbar and by the Check button being disabled. This does not affect the rest of the model or cause any errors, but the contents of the file will not be accessible from

any other code tabs in the model.

Programming Guide

This section describes the NetLogo programming language in detail.

The Code Example models mentioned throughout can be found in the Code Examples section of the Models Library.

Agents and Agentsets

Agents

The NetLogo world is made up of agents. Agents are beings that can follow instructions.

In NetLogo, there are four types of agents: turtles, patches, links, and the observer.

Turtles are agents that move around in the world. The world is two dimensional and is divided up into a grid of patches. Each patch is a square piece of “ground” over which turtles can move.

Links are agents that connect two turtles. The observer doesn’t have a location – you can imagine it as looking out over the world of turtles and patches.

The observer doesn’t observe passively – it gives instructions to the other agents.

When NetLogo starts up, there are no turtles. The observer can make new turtles. Patches can make new turtles too. (Patches can’t move, but otherwise they’re just as “alive” as turtles.)

Patches have coordinates. The patch at coordinates (0, 0) is called the origin and the coordinates of the other patches are the horizontal and vertical distances from this one. We call the patch’s

coordinates pxcor and pycor . Just like in the standard mathematical coordinate plane, pxcor increases as you move to the right and pycor increases as you move up.

The total number of patches is determined by the settings min-pxcor , max-pxcor , min-pycor and max-pycor . When NetLogo starts up, min-pxcor , max-pxcor , min-pycor and max-pycor

are -16, 16, -16, and 16 respectively. This means that pxcor and pycor both range from -16 to 16, so there are 33 times 33, or 1089 patches total. (You can change the number of patches with

the Settings button.)

Turtles have coordinates too: xcor and ycor . A patch’s coordinates are always integers, but a turtle’s coordinates can have decimals. This means that a turtle can be positioned at any point

within its patch; it doesn’t have to be in the center of the patch.

Links do not have coordinates. Every link has two ends, and each end is a turtle. If either turtle dies, the link dies too. A link is represented visually as a line connecting the two turtles.

Agentsets

An agentset is exactly what its name implies, a set of agents. An agentset can contain either turtles, patches or links, but not more than one type at once.

An agentset is not in any particular order. In fact, it’s always in a random order. And every time you use it, the agentset is in a different random order. This helps you keep your model from treat‑
ing any particular turtles, patches or links differently from any others (unless you want them to be). Since the order is random every time, no one agent always gets to go first.

You’ve seen the turtles primitive, which reports the agentset of all turtles, the patches primitive, which reports the agentset of all patches and the links primitive which reports the agentset

of all links.

But what’s powerful about the agentset concept is that you can construct agentsets that contain only some turtles, some patches or some links. For example, all the red turtles, or the patches

with pxcor evenly divisible by five, or the turtles in the first quadrant that are on a green patch or the links connected to turtle 0. These agentsets can then be used by ask or by various

reporters that take agentsets as inputs.

One way is to use turtles-here or turtles-at , to make an agentset containing only the turtles on my patch, or only the turtles on some other patch at some x and y offsets. There’s also tur‑

tles-on so you can get the set of turtles standing on a given patch or set of patches, or the set of turtles standing on the same patch as a given turtle or set of turtles.

Here are some more examples of how to make agentsets:

;; all other turtles:

other turtles

;; all other turtles on this patch:

other turtles-here

;; all red turtles:

turtles with [color = red]

;; all red turtles on my patch

turtles-here with [color = red]

;; patches on right side of view

patches with [pxcor > 0]

;; all turtles less than 3 patches away

turtles in-radius 3

;; the four patches to the east, north, west, and south

patches at-points [[1 0] [0 1] [-1 0] [0 -1]]

;; shorthand for those four patches

neighbors4

;; turtles in the first quadrant that are on a green patch

turtles with [(xcor > 0) and (ycor > 0)

 and (pcolor = green)]

;; turtles standing on my neighboring four patches

turtles-on neighbors4

;; all the links connected to turtle 0

[my-links] of turtle 0

Note the use of other to exclude this agent. This is common.

Once you have created an agentset, here are some simple things you can do:

Use ask to make the agents in the agentset do something

Use any? to see if the agentset is empty

Use all? to see if every agent in an agentset satisfies a condition.

Use count to find out exactly how many agents are in the set

And here are some more complex things you can do:

Pick a random agent from the set using one-of . For example, we can make a randomly chosen turtle turn green:

ask one-of turtles [set color green]

Or tell a randomly chosen patch to sprout a new turtle:

ask one-of patches [sprout 1]

Use the max-one-of or min-one-of reporters to find out which agent is the most or least along some scale. For example, to remove the richest turtle, you could say

ask max-one-of turtles [sum assets] [die]

Make a histogram of the agentset using the histogram command (in combination with of).

Use of to make a list of values, one for each agent in the agentset. Then use one of NetLogo’s list primitives to do something with the list. (See the “Lists” section below.) For example, to find

out how rich turtles are on the average, you could say

show mean [sum assets] of turtles

Use turtle-set , patch-set and link-set reporters to make new agentsets by gathering together agents from a variety of possible sources.

Use no-turtles , no-patches and no-links reporters to make empty agentsets.

Check whether two agentsets are equal using = or != .

Use member? to see whether a particular agent is a member of an agentset.

This only scratches the surface. See the Models Library for many more examples, and consult the NetLogo Dictionary for more information about all of the agentset primitives.

More examples of using agentsets are provided in the individual entries for these primitives in the NetLogo Dictionary.

Special agentsets

The agentsets turtles and links have special behavior because they always hold the sets of all turtles and all links. Therefore, these agentsets can grow.

The following interaction shows the special behavior. Assume the Code tab has globals [g] . Then:

observer> clear-all

observer> create-turtles 5

observer> set g turtles

observer> print count g

5

observer> create-turtles 5

observer> print count g

10

observer> set g turtle-set turtles

observer> print count g

10

observer> create-turtles 5

observer> print count g

10

observer> print count turtles

15

The turtles agentset grows when new turtles are born, but other agentsets don’t grow. If I write turtle-set turtles , I get a new, normal agentset containing just the turtles that currently

exist. New turtles don’t join when they’re born.

Breed agentsets are special in the same way as turtles and links . Breeds are introduced and explained below.

Agentsets and lists

Earlier, we said that agentsets are always in random order, a different random order every time. If you need your agents to do something in a fixed order, you need to make a list of the agents

instead. See the Lists section below.

Code Example: Ask Ordering Example

Breeds

NetLogo allows you to define different “breeds” of turtles and breeds of links. Once you have defined breeds, you can go on and make the different breeds behave differently. For example, you

could have breeds called sheep and wolves , and have the wolves try to eat the sheep or you could have link breeds called streets and sidewalks where foot traffic is routed on sidewalks

and car traffic is routed on streets.

You define turtle breeds using the breed keyword, at the top of the Code tab, before any procedures:

breed [wolves wolf]

breed [sheep a-sheep]

You can refer to a member of the breed using the singular form, just like the turtle reporter. When printed, members of the breed will be labeled with the singular name.

Some commands and reporters have the plural name of the breed in them, such as create-<breeds> . Others have the singular name of the breed in them, such as <breed> .

The order in which breeds are declared is also the order in which they are layered in the view. So breeds defined later will appear on top of breeds defined earlier; in this example, sheep will be

drawn over wolves.

When you define a breed such as sheep , an agentset for that breed is automatically created, so that all of the agentset capabilities described above are immediately available with the sheep

agentset.

The following new primitives are also automatically available once you define a breed: create-sheep , hatch-sheep , sprout-sheep , sheep-here , sheep-at , sheep-on , and is-a-sheep? .

Also, you can use sheep-own to define new turtle variables that only turtles of the given breed have. (It’s allowed for more than one breed to own the same variable.)

A turtle’s breed agentset is stored in the breed turtle variable. So you can test a turtle’s breed, like this:

if breed = wolves [...]

Note also that turtles can change breeds. A wolf doesn’t have to remain a wolf its whole life. Let’s change a random wolf into a sheep:

ask one-of wolves [set breed sheep]

The set-default-shape primitive is useful for associating certain turtle shapes with certain breeds. See the section on shapes below.

Who numbers are assigned irrespective of breeds. If you already have a frog 0 , then the first mouse will be mouse 1 , not mouse 0 , since the who number 0 is already taken.

Here is a quick example of using breeds:

breed [mice mouse]

breed [frogs frog]

mice-own [cheese]

to setup

 clear-all

 create-mice 50

 [set color white

 set cheese random 10]

 create-frogs 50

 [set color green]

 reset-ticks

end

Code Example: Breeds and Shapes Example

Link breeds

Link breeds are very similar to turtle breeds, however, there are a few differences.

When you declare a link breed you must declare whether it is a breed of directed or undirected links by using the directed-link-breed and undirected-link-breed keywords.

directed-link-breed [streets street]

undirected-link-breed [friendships friendship]

Once you have created a breeded link you cannot create unbreeded links and vice versa. (You can, however, have directed and undirected links in the same world, just not in the same breed)

Unlike with turtle breeds the singular breed name is required for link breeds, as many of the link commands and reports use the singular name, such as <link-breed>-neighbor? .

The following primitives are also automatically available once you define a directed link breed: create-street-from create-streets-from create-street-to create-streets-to in-

street-neighbor? in-street-neighbors in-street-from my-in-streets my-out-streets out-street-neighbor? out-street-neighbors out-street-to

And the following are automatically available when you define an undirected link breed: create-friendship-with create-friendships-with friendship-neighbor? friendship-neighbors

friendship-with my-friendships

Multiple link breeds may declare the same -own variable, but a variable may not be shared between a turtle breed and a link breed.

Just as with turtle breeds the order in which link breeds are declared defines the order in which the links are drawn, so the friendships will always be on top of streets (if for some reason these

breeds were in the same model). You can also use <link-breeds>-own to declare variables of each link breed separately.

You can change the breed of a link with set breed . (However, you cannot change a breeded link to an unbreeded one, to prevent having breeded and unbreeded links in the same world.)

ask one-of friendships [set breed streets]

ask one-of friendships [set breed links] ;; produces a runtime error

set-default-shape may also be used with link breeds to associate it with a particular link shape.

Code Example: Link Breeds Example

Variables

Agent variables

Agent variables are places to store values (such as numbers) in an agent. An agent variable can be a global variable, a turtle variable, a patch variable, or a link variable.

If a variable is a global variable, there is only one value for the variable, and every agent can access it. You can think of global variables as belonging to the observer.

Turtle, patch, and link variables are different. Each turtle has its own value for every turtle variable. The same goes for patches and links.

Some variables are built into NetLogo. For example, all turtles and links have a color variable, and all patches have a pcolor variable. (The patch variable begins with “p” so it doesn’t get con‑

fused with the turtle variable, since turtles have direct access to patch variables.) If you set the variable, the turtle or patch changes color. (See next section for details.)

Other built-in turtle variables including xcor , ycor , and heading . Other built-in patch variables include pxcor and pycor . (There is a complete list here .)

You can also define your own variables. You can make a global variable by adding a switch, slider, chooser, or input box to your model, or by using the globals keyword at the beginning of

your code, like this:

globals [score]

You can also define new turtle, patch and link variables using the turtles-own , patches-own and links-own keywords, like this:

turtles-own [energy speed]

patches-own [friction]

links-own [strength]

These variables can then be used freely in your model. Use the set command to set them. (Any variable you don’t set has a starting value of zero.)

Global variables can be read and set at any time by any agent. As well, a turtle can read and set patch variables of the patch it is standing on. For example, this code:

ask turtles [set pcolor red]

causes every turtle to make the patch it is standing on red. (Because patch variables are shared by turtles in this way, you can’t have a turtle variable and a patch variable with the same name.)

In other situations where you want an agent to read a different agent’s variable, you can use of . Example:

show [color] of turtle 5

;; prints current color of turtle with who number 5

You can also use of with a more complicated expression than just a variable name, for example:

show [xcor + ycor] of turtle 5

;; prints the sum of the x and y coordinates of

;; turtle with who number 5

Local variables

A local variable is defined and used only in the context of a particular procedure or part of a procedure. To create a local variable, use the let command. If you use let at the top of a proce‑
dure, the variable will exist throughout the procedure. If you use it inside a set of square brackets, for example inside an “ask”, then it will exist only inside those brackets.

to swap-colors [turtle1 turtle2]

 let temp [color] of turtle1

 ask turtle1 [set color [color] of turtle2]

 ask turtle2 [set color temp]

end

Links

A link is an agent that connects two turtles. These turtles are sometimes also called nodes.

The link is always drawn as a line between the two turtles. Links do not have a location as turtles do, they are not considered to be on any patch and you cannot find the distance from a link to

another point.

There are two link designations: undirected and directed. A directed link is out of, or from, one node and into, or to, another node. The relationship of a parent to a child could be modeled as a

directed link. An undirected link appears the same to both nodes, each node has a link with another node. The relationship between spouses, or siblings, could be modeled as an undirected link.

There is a global agentset of all links, just as with turtles and patches. You can create undirected links using the create-link-with and create-links-with commands; and directed links

using the create-link-to , create-links-to , create-link-from , and create-links-from commands. Once the first link has been created directed or undirected, all unbreeded links must

match (links also support breeds, much like turtles, which will be discussed shortly); it’s impossible to have two unbreeded links where one is directed and the other is undirected. A runtime

error occurs if you try to do it. (If all unbreeded links die, then you can create links of that breed that are different in designation from the previous links.)

In general, link primitive names indicate what kind of links they deal with:

Primitives that have “out” in their name utilize outgoing and undirected links. You can think of these as “the links I can use to get from the current node to other nodes.” In general, these are

probably the primitives you want to use.

Primitives that have “in” in their name utilize incoming and undirected links. You can think of these as “the links I can use to get to the current node from other nodes.”

Primtives that do not specify “in” or “out”, or have “with” in their name utilize all links, both undirected and directed, incoming and outgoing.

A link’s end1 and end2 variables contain the two turtles the link connects. If the link is directed, it goes from end1 to end2. If the link is undirected, end1 is always the older of the two turtles,

that is, the turtle with the smaller who number.

Link breeds, like turtle breeds, allow you to define different types of links in your model. Link breeds must either be directed or undirected, unlike unbreeded links this is defined at compile time

rather than run time. You declare link breeds using the keywords undirected-link-breed and directed-link-breed . Breeded links can be created using the commands create-<breed>-

with and create-<breeds>-with for undirected breeds and the commands create-<breed>-to , create-<breeds>-to , create-<breed>-from , and create-<breeds>-from for directed links.

There cannot be more than one undirected link of the same breed (or more than one unbreeded undirected link) between a pair of agents, nor more than one directed link of the same breed in

the same direction between a pair of agents. You can have two directed links of the same breed (or two unbreeded directed links) between a pair if they are in opposite directions.

Layouts

As part of our network support we have also added several different primitives that will help you to visualize the networks. The simplest is layout-circle which evenly spaces the agents

around the center of the world given a radius.

layout-radial is a good layout if you have something like a tree structure, though even if there are some cycles in the tree it will still work, though as there are more and more cycles it will

probably not look as good. layout-radial takes a root agent to be the central node places it at (0,0) and arranges the nodes connected to it in a concentric pattern. Nodes one degree away

from the root will be arranged in a circular pattern around the central node and the next level around those nodes and so on. layout-radial will attempt to account for asymmetrical graphs

and give more space to branches that are wider. layout-radial also takes a breed as an input so you use one breed of links to layout the network and not another.

Given a set of anchor nodes layout-tutte places all the other nodes at the center of mass of the nodes it is linked to. The anchor set is automatically arranged in a circle layout with a user

defined radius and the other nodes will converge into place (this of course means that you may have to run it several times before the layout is stable.)

layout-spring is useful for many kinds of networks. The drawback is that is relatively slow since it takes many iterations to converge. In this layout the links act as springs that pull the nodes

they connect toward each other and the nodes repel each other. The strength of the forces is controlled by inputs to the primitives. These inputs will always have a value between 0 and 1; keep

in mind that very small changes can still affect the appearance of the network. The springs also have a length (in patch units), however, because of all the forces involved the nodes will not end

up exactly that distance from each other.

Code Examples: Network Example, Network Import Example, Giant Component, Small Worlds, Preferential Attachment

Tie

Tie connects two turtles so that the movement of one turtles affects the location and heading of another. Tie is a property of links so there must be a link between two turtles to create a tie

relationship.

When a link’s tie-mode is set to “fixed” or “free” end1 and end2 are tied together. If the link is directed end1 is the “root agent” and end2 is the “leaf agent”. That is when end1 moves (using

fd , jump , setxy , etc.) end2 also moves the same distance and direction. However when end2 moves it does not affect end1 .

If the link is undirected it is a reciprocal tie relationship, meaning, if either turtle moves the other turtle will also move. So depending on which turtle is moving either turtle can be considered the

root or the leaf. The root turtle is always the turtle that initiates the movement.

When the root turtle turns right or left, the leaf turtle rotates around the root turtle the same amount as if a stiff were attaching the turtles. When tie-mode is set to “fixed” the heading of the leaf

turtle changes by the same amount. If the tie-mode is set to “free” the heading of the leaf turtle is unchanged.

The tie-mode of a link can be set to “fixed” using the tie command and set to “none” (meaning the turtles are no longer tied) using untie to set the mode to “free” you need to: set tie-

mode "free" .

Code Example: Tie System Example

Drawing

The drawing is a layer where turtles can make visible marks.

In the view, the drawing appears on top of the patches but underneath the turtles. Initially, the drawing is empty and transparent.

You can see the drawing, but the turtles (and patches) can’t. They can’t sense the drawing or react to it. The drawing is just for people to look at.

Turtles can draw and erase lines in the drawing using the pen-down and pen-erase commands. When a turtle’s pen is down (or erasing), the turtle draws (or erases) a line behind it whenever it

moves. The lines are the same color as the turtle. To stop drawing (or erasing), use pen-up .

Lines drawn by turtles are normally one pixel thick. If you want a different thickness, set the pen-size turtle variable to a different number before drawing (or erasing). In new turtles, the vari‑
able is set to 1.

Lines made when a turtle moves in a way that doesn’t fix a direction, such as with setxy or move-to , the shortest path line that obeys the topology will be drawn.

Here’s some turtles which have made a drawing over a grid of randomly shaded patches. Notice how the turtles cover the lines and the lines cover the patch colors. The pen-size used here

was 2:

The stamp command lets a turtle leave an image of itself behind in the drawing and stamp-erase lets it remove the pixels below it in the drawing.

To erase the whole drawing, use the observer commmand clear-drawing . (You can also use clear-all , which clears everything else too.)

Importing an image

The observer command import-drawing command allows you to import an image file from disk into the drawing.

import-drawing is useful only for providing a backdrop for people to look at. If you want turtles and patches to react to the image, you should use import-pcolors or import-pcolors-rgb

instead.

Comparison to other Logos

Drawing works somewhat differently in NetLogo than some other Logos.

Notable differences include:

New turtles’ pens are up, not down.

Instead of using a fence command to confine the turtle inside boundaries, in NetLogo you edit the world and turn wrapping off.

There is no screen-color , bgcolor , or setbg . You can make a solid background by coloring the patches, e.g. ask patches [set pcolor blue] .

Drawing features not supported by NetLogo:

There is no window command. This is used in some other Logos to let the turtle roam over an infinite plane.

There is no flood or fill command to fill an enclosed area with color.

Turtle shapes

In NetLogo, turtle shapes are vector shapes. They are built up from basic geometric shapes; squares, circles, and lines, rather than a grid of pixels. Vector shapes are fully scalable and rotat‑
able. NetLogo caches bitmap images of vector shapes size 1, 1.5, and 2 in order to speed up execution.

A turtle’s shape is stored in its shape variable and can be set using the set command.

New turtles have a shape of “default”. The set-default-shape primitive is useful for changing the default turtle shape to a different shape, or having a different default turtle shape for each

breed of turtle.

The shapes primitive reports a list of currently available turtle shapes in the model. This is useful if, for example, you want to assign a random shape to a turtle:

ask turtles [set shape one-of shapes]

Use the Turtle Shapes Editor to create your own turtle shapes, or to add shapes to your model from our shapes library, or to transfer shapes between models. For more information, see the

Shapes Editor section of this manual.

The thickness of the lines used to draw the vector shapes can be controlled by the __set-line-thickness primitive.

Code Examples: Breeds and Shapes Example, Shape Animation Example

Link shapes

Link Shapes are similar to turtle shapes, only you use the Link Shape Editor to create and edit them. Link shapes consist of between 0 and 3 lines which can have different patterns and a direc‑
tion indicator that is composed of the same elements as turtle shapes. Links also have a shape variable that can be set to any link shape that is in the model. By default links have the “default”

shape, though you can change that using set-default-shape . The link-shapes reporter reports all the link shapes included in the current model.

The thickness of the lines in the link shape is controlled by the thickness link variable.

Programming

Procedures

In NetLogo, commands and reporters tell agents what to do. A command is an action for an agent to carry out, resulting in some effect. A reporter is instructions for computing a value, which

the agent then “reports” to whoever asked it.

Typically, a command name begins with a verb, such as “create”, “die”, “jump”, “inspect”, or “clear”. Most reporter names are nouns or noun phrases.

Commands and reporters built into NetLogo are called primitives. The NetLogo Dictionary has a complete list of built-in commands and reporters.

file:///tmp/sbt_6c39b28e/shapes.html
file:///tmp/sbt_6c39b28e/dictionary.html

Commands and reporters you define yourself are called procedures. Each procedure has a name, preceded by the keyword to or to-report , depending on whether it is a command proce‑

dure or a reporter procedure. The keyword end marks the end of the commands in the procedure. Once you define a procedure, you can use it elsewhere in your program.

Many commands and reporters take inputs – values that the command or reporter uses in carrying out its actions or computing its result.

Here are two command procedures:

to setup

 clear-all

 create-turtles 10

 reset-ticks

end

to go

 ask turtles [

 fd 1 ;; forward 1 step

 rt random 10 ;; turn right

 lt random 10 ;; turn left

]

 tick

end

Note the use of semicolons to add “comments” to the program. Comments can make your code easier to read and understand, but they don’t affect its behavior.

In this program,

setup and go are user-defined commands.

clear-all , create-turtles , reset-ticks , ask , lt (“left turn”), rt (“right turn”) and tick , are all primitive commands.

random and turtles are primitive reporters. random takes a single number as an input and reports a random integer that is less than the input (in this case, between 0 and 9). turtles

reports the agentset consisting of all the turtles. (We’ll explain about agentsets later.)

setup and go can be called by other procedures, or by buttons, or from the Command Center.

Many NetLogo models have a once button that calls a procedure called setup and a forever button that calls a procedure called go .

In NetLogo, you may specify which agents – turtles, patches, or links – are to run each command. If you don’t specify, the code is run by the observer. In the code above, the observer uses ask

to make the set of all turtles run the commands between the square brackets.

clear-all and create-turtles can only be run by the observer. fd , on the other hand, can only be run by turtles. Some other commands and reporters, such as set and ticks , can be run

by different agent types.

Here are some more advanced features you can take advantage of when defining your own procedures.

Procedures with inputs

Procedures can take inputs, just like many primitives do. To create a procedure that accepts inputs, put their names in square brackets after the procedure name. For example:

to draw-polygon [num-sides len] ;; turtle procedure

 pen-down

 repeat num-sides [

 fd len

 rt 360 / num-sides

]

end

Elsewhere in the program, you might use the procedure by asking the turtles to each draw an octagon with a side length equal to its who number:

ask turtles [draw-polygon 8 who]

Reporter procedures

Just like you can define your own commands, you can define your own reporters. You must do two special things. First, use to-report instead of to to begin your procedure. Then, in the

body of the procedure, use report to report the value you want to report.

to-report absolute-value [number]

 ifelse number >= 0

 [report number]

 [report (- number)]

end

Ask

NetLogo uses the ask command to give commands to turtles, patches, and links. All code to be run by turtles must be located in a turtle “context”. You can establish a turtle context in any of

three ways:

In a button, by choosing “Turtles” from the popup menu. Any code you put in the button will be run by all turtles.

In the Command Center, by choosing “Turtles” from the popup menu. Any commands you enter will be run by all the turtles.

By using ask turtles , hatch , or other commands which establish a turtle context.

The same goes for patches, links, and the observer, except that you cannot ask the observer. Any code that is not inside any ask is by default observer code.

Because agentset members are always read in a random order, when ask is used with an agentset each agent will take its turn in a random order. See Agentsets for more information.

Here’s an example of the use of ask in a NetLogo procedure:

to setup

 clear-all

 create-turtles 100 ;; create 100 turtles with random headings

 ask turtles

 [set color red ;; turn them red

 fd 50] ;; spread them around

 ask patches

 [if pxcor > 0 ;; patches on the right side

 [set pcolor green]] ;; of the view turn green

 reset-ticks

end

The models in the Models Library are full of other examples. A good place to start looking is in the Code Examples section.

Usually, the observer uses ask to ask all turtles, all patches or all links to run commands. You can also use ask to have an individual turtle, patch or link run commands. The reporters turtle ,

patch , link and patch-at are useful for this technique. For example:

to setup

 clear-all

 crt 3 ;; make 3 turtles

 ask turtle 0 ;; tell the first one...

 [fd 1] ;; ...to go forward

 ask turtle 1 ;; tell the second one...

 [set color green] ;; ...to become green

 ask turtle 2 ;; tell the third one...

 [rt 90] ;; ...to turn right

 ask patch 2 -2 ;; ask the patch at (2,-2)

 [set pcolor blue] ;; ...to become blue

 ask turtle 0 ;; ask the first turtle

 [ask patch-at 1 0 ;; ...to ask patch to the east

 [set pcolor red]] ;; ...to become red

 ask turtle 0 ;; tell the first turtle...

 [create-link-with turtle 1] ;; ...make a link with the second

 ask link 0 1 ;; tell the link between turtle 0 and 1

 [set color blue] ;; ...to become blue

 reset-ticks

end

Every turtle created has a who number. The first turtle created is number 0, the second turtle number 1, and so forth.

The turtle primitive reporter takes a who number as an input, and reports the turtle with that who number. The patch primitive reporter takes values for pxcor and pycor and reports the patch

with those coordinates. The link primitive takes two inputs, the who numbers of the two turtles it connects. And the patch-at primitive reporter takes offsets: distances, in the x and y direc‑

tions, from the first agent. In the example setup procedure above, the turtle with who number 0 is asked to get the patch east (and no patches north) of itself like this: ask turtle 0 [ask

patch-at 1 0 [set pcolor red]] .

You can also select a subset of turtles, or a subset of patches, or a subset of links and ask them to do something. This involves using agentsets. The next section explains them in detail.

When you ask a set of agents to run more than one command, each agent must finish before the next agent starts. One agent runs all of the commands, then the next agent runs all of them, and

so on. For example, if you write:

ask turtles

 [fd 1

 set color red]

first one turtle moves and turns red, then another turtle moves and turns red, and so on.

But if you write it this way:

ask turtles [fd 1]

ask turtles [set color red]

first all the turtles move, then they all turn red.

Ask-Concurrent

NOTE: The following information is included only for backwards compatibility. We don’t recommend using the ask-concurrent primitive at all in new models.

In very old versions of NetLogo, ask had simulated concurrent behavior by default. Since NetLogo 4.0 (2007), ask is serial, that is, the agents run the commands inside the ask one at a time.

The following information describes the behavior of the ask-concurrent command, which behaves the way the old ask behaved.

ask-concurrent produces simulated concurrency via a mechanism of turn-taking. The first agent takes a turn, then the second agent takes a turn, and so on until every agent in the asked

agentset has had a turn. Then we go back to the first agent. This continues until all of the agents have finished running all of the commands.

An agent’s “turn” ends when it performs an action that affects the state of the world, such as moving, or creating a turtle, or changing the value of a global, turtle, patch, or link variable. (Setting

a local variable doesn’t count.)

The forward (fd) and back (bk) commands are treated specially. When used inside ask-concurrent , these commands can take multiple turns to execute. During its turn, the turtle can only

move by one step. Thus, for example, fd 20 is equivalent to repeat 20 [fd 1] , where the turtle’s turn ends after each run of fd . If the distance specified isn’t an integer, the last fraction of

step takes a full turn. So for example fd 20.3 is equivalent to repeat 20 [fd 1] fd 0.3 .

The jump command always takes exactly one turn, regardless of distance.

To understand the difference between ask and ask-concurrent , consider the following two commands:

ask turtles [fd 5]

ask-concurrent turtles [fd 5]

With ask , the first turtle takes five steps forward, then the second turtle takes five steps forward, and so on.

With ask-concurrent , all of the turtles take one step forward. Then they all take a second step, and so on. Thus, the latter command is equivalent to:

repeat 5 [ask turtles [fd 1]]

Code Example: Ask-Concurrent Example shows the difference between ask and ask-concurrent .

The behavior of ask-concurrent cannot always be so simply reproduced using ask , as in this example. Consider this command:

ask-concurrent turtles [fd random 10]

In order to get the same behavior using ask , we would have to write:

turtles-own [steps]

ask turtles [set steps random 10]

while [any? turtles with [steps > 0]] [

 ask turtles with [steps > 0] [

 fd 1

 set steps steps - 1

]

]

To prolong an agent’s “turn”, use the without-interruption command. (The command blocks inside some commands, such as create-turtles and hatch , have an implied without-inter‑

ruption around them.)

Note that the behavior of ask-concurrent is completely deterministic. Given the same code and the same initial conditions, the same thing will always happen (if you are using the same ver‑
sion of NetLogo and begin your model run with the same random seed).

In general, we suggest you not use ask-concurrent at all. If you do, we suggest you write your model so that it does not depend on the exact details of how ask-concurrent works. We make

no guarantees that its semantics will remain the same in future versions of NetLogo, or that it will continue to be supported at all.

Syntax

Colors

In the Code tab and elsewhere in the NetLogo user interface, program code is color-coded by the following scheme:

Keywords are green

Constants are orange

Comments are gray

Primitive commands are blue

Primitive reporters are purple

Everything else is black

Notice

The remainder of this section contains technical terminology which will be unfamiliar to some readers.

Keywords

The only keywords in the language are globals , breed , turtles-own , patches-own , to , to-report , and end , plus extensions and the experimental __includes keyword. (Built-in primi‑
tive names may not be shadowed or redefined, so they are effectively a kind of keyword as well.)

Identifiers

All primitives, global and agent variable names, and procedure names share a single global case-insensitive namespace; local names (let variables and the names of procedure inputs) may

not shadow global names or each other. Identifiers may contain any Unicode letter or digit and the following ASCII characters:

.?=*!<>:#+/%$_^'&-

Some primitive names begin with two underscores to indicate that they are experimental and are especially likely to change or be removed in future NetLogo releases.

Scope

NetLogo is lexically scoped. Local variables (including inputs to procedures) are accessible within the block of commands in which they are declared, but not accessible by procedures called by

those commands.

Comments

The semicolon character introduces a comment, which lasts until the end of the line. There is no multi-line comment syntax.

Structure

A program consists of optional declarations (globals , breed , turtles-own , patches-own , <BREED>-own , extensions) in any order, followed by zero or more procedure definitions. Multiple

breeds may be declared with separate breed declarations; the other declarations may appear once only.

Every procedure definition begins with to or to-report , the procedure name, and an optional bracketed list of input names. Every procedure definition ends with end . In between are zero or

more commands.

Commands and reporters

Commands take zero or more inputs; the inputs are reporters, which may also take zero or more inputs. No punctuation separates or terminates commands; no punctuation separates inputs.

Identifiers must be separated by whitespace or by parentheses or square brackets. (So for example, a+b is a single identifier, but a(b[c]d)e contains five identifiers.)

All commands are prefix. All user-defined reporters are prefix. Most primitive reporters are prefix, but some (arithmetic operators, boolean operators, and some agentset operators like with and

in-points) are infix.

All commands and reporters, both primitive and user-defined, take a fixed number of inputs by default. (That’s why the language can be parsed though there is no punctuation to separate or ter‑
minate commands and/or inputs.) Some primitives are variadic, that is, may optionally take a different number of inputs than the default; parentheses are used to indicate this, e.g. (list 1 2

3) (since the list primitive only takes two inputs by default). Parentheses are also used to override the default operator precedence, e.g. (1 + 2) * 3 , as in other programming languages.

Sometimes an input to a primitive is a command block (zero or more commands inside square brackets) or a reporter block (a single reporter expression inside square brackets). User-defined

procedures may not take a command or reporter block as input.

Operator precedences are as follows, high to low:

with , with-min , with-max , at-points , in-radius , in-cone , who-are-not

of

All other primitives and user-defined procedures, including not

^

* , / , mod

+ , -

< , > , <= , >=

= , !=

and , or , xor

ifelse-value

When an expression contains multiple operators with the same precedence, they are read in code order left-to-right. Example: true or false and false is read as (true or false) and

false and so results in (true) and false , which is false . This is different than many other programming languages where or has a lower precedence than and , so the above statement

would be read as true or (false and false) , true or (false) , so true . You can surround expressions in parentheses to ensure you get your desired order of operations.

Compared to other Logos

There is no agreed-upon standard definition of Logo; it is a loose family of languages. We believe that NetLogo has enough in common with other Logos to earn the Logo name. Still, NetLogo

differs in some respects from most other Logos. The most important differences are as follows.

Surface differences

The precedence of mathematical operators is different. Infix math operators (like + , * , etc.) have lower precedence than reporters with names. For example, in many Logos, if you write sin

x + 1 , it will be interpreted as sin (x + 1) . NetLogo, on the other hand, interprets it the way most other programming languages would, and the way the same expression would be

interpreted in standard mathematical notation, namely as (sin x) + 1 .

The and and or reporters are special forms, not ordinary functions, and they “short circuit”, that is, they only evaluate their second input if necessary.

Procedures can only be defined in the Code tab, not interactively in the Command Center.

Reporter procedures, that is, procedures that “report” (return) a value, must be defined with to-report instead of to . The command to report a value from a reporter procedure is report ,

not output .

When defining a procedure, the inputs to the procedure must be enclosed in square brackets, e.g. to square [x] .

Variable names are always used without any punctuation: always foo , never :foo or "foo . (To make this work, instead of a make command taking a quoted argument we supply a set

special form which does not evaluate its first input.) As a result, procedures and variables occupy a single shared namespace.

The last three differences are illustrated in the following procedure definitions:

most Logos NetLogo

to square :x

output :x * :x

end

to-report square [x]

report x * x

end

Deeper differences

NetLogo’s local variables and inputs to procedures are lexically scoped, not dynamically scoped.

NetLogo has no “word” data type (what Lisp calls “symbols”). Eventually, we may add one, but since it is seldom requested, it may be that the need doesn’t arise much in agent-based

modeling. We do have strings. In most situations where traditional Logo would use words, we simply use strings instead. For example in Logo you could write [see spot run] (a list of

words), but in NetLogo you must write "see spot run" (a string) or ["see" "spot" "run"] (a list of strings) instead.

NetLogo’s run command works on anonymous procedures and strings, not lists (since we have no “word” data type), and does not permit the definition or redefinition of procedures.

Control structures such as if and while are special forms, not ordinary functions. You can’t define your own special forms, so you can’t define your own control structures. (You can do

something similar using anonymous procedures, but you must use the -> , run , and runresult primitives for that, you cannot make them implicit.)

Anonymous procedures (aka function values or lambda) are true lexically-scoped closures. This feature is available in NetLogo and in modern Lisps, but not in standard Logo.

Of course, the NetLogo language also contains other features not found in most Logos, most importantly agents and agentsets.

Multiple source files

The __includes keyword allows you to use multiple source files in a single NetLogo model.

The keyword begins with two underscores to indicate that the feature is experimental and may change in future NetLogo releases.

When you open a model that uses the __includes keyword, or if you add it to the top of a model and hit the Check button, the includes menu will appear in the toolbar. From the includes menu

you can select from the files included in this model.

When you open included files they appear in additional tabs. See the Interface Guide for more details.

You can have anything in external source files (.nls) that you would normally put in the Code tab: globals , breed , turtles-own , patches-own , breeds-own , procedure definitions, etc. Note

though that these declarations all share the same namespace. That is, if you declare a global my-global in the Code tab you cannot declare a global (or anything else) with the name my-

global in any file that is included in the model. my-global will be accessible from all the included files. The same would be true if my-global were declared in one of the included files.

Buttons

Buttons in the interface tab provide an easy way to control the model. Typically a model will have at least a “setup” button, to set up the initial state of the world, and a “go” button to make the

model run continuously. Some models will have additional buttons that perform other actions.

A button contains some NetLogo code. That code is run when you press the button.

A button may be either a “once button”, or a “forever button”. You can control this by editing the button and checking or unchecking the “Forever” checkbox. Once buttons run their code once,

then stop and pop back up. Forever buttons keep running their code over and over again.

A forever button stops if the user presses the button again to stop it. The button waits until the current iteration has finished, then pops up.

A forever button can also be stopped from code. If the forever button directly calls a procedure, then when that procedure stops, the button stops. (In a turtle or patch forever button, the button

won’t stop until every turtle or patch stops – a single turtle or patch doesn’t have the power to stop the whole button.)

Normally, a button is labeled with the code that it runs. For example, a button that says “go” on it usually contains the code “go”, which means “run the go procedure”. (Procedures are defined in

the Code tab; see below.) But you can also edit a button and enter a “display name” for the button, which is a text that appears on the button instead of the code. You might use this feature if

you think the actual code would be confusing to your users.

When you put code in a button, you must also specify which agents you want to run that code. You can choose to have the observer run the code, or all turtles, or all patches, or all links. (If you

want the code to be run by only some turtles or some patches, you could make an observer button, and then have the observer use the ask command to ask only some of the turtles or patches

to do something.)

When you edit a button, you have the option to assign an “action key”. This makes that key on the keyboard behave just like a button press. If the button is a forever button, it will stay down until

the key is pressed again (or the button is clicked). Action keys are particularly useful for games or any model where rapid triggering of buttons is needed.

Buttons take turns

More than one button can be pressed at a time. If this happens, the buttons “take turns”, which means that only one button runs at a time. Each button runs its code all the way through once

while the other buttons wait, then the next button gets its turn.

In the following examples, “setup” is a once button and “go” is a forever button.

Example #1: The user presses “setup”, then presses “go” immediately, before the “setup” has popped back up. Result: “setup” finishes before “go” starts.

Example #2: While the “go” button is down, the user presses “setup”. Result: the “go” button finishes its current iteration. Then the “setup” button runs. Then “go” starts running again.

Example #3: The user has two forever buttons down at the same time. Result: first one button runs its code all the way through, then the other runs its code all the way through, and so on,

alternating.

Note that if one button gets stuck in an infinite loop, then no other buttons will run.

Turtle, patch, and link forever buttons

There is a subtle difference between putting commands in a turtle, patch or link forever button, and putting the same commands in an observer button that does ask turtles , ask patches or

ask links . An “ask” doesn’t complete until all of the agents have finished running all of the commands in the “ask”. So the agents, as they all run the commands concurrently, can be out of

sync with each other, but they all sync up again at the end of the ask. The same isn’t true of turtle, patch and link forever buttons. Since ask was not used, each turtle or patch runs the given

code over and over again, so they can become (and remain) out of sync with each other.

At present, this capability is very rarely used in the models in our Models Library. A model that does use the capability is the Termites model, in the Biology section of Sample Models. The “go”

button is a turtle forever button, so each termite proceeds independently of every other termite, and the observer is not involved at all. This means that if, for example, you wanted to add ticks

and/or a plot to the model, you would need to add a second forever button (an observer forever button), and run both forever buttons at the same time. Note also that a model like this cannot be

used with BehaviorSpace.

Code Example: State Machine Example shows how Termites can be recoded in a tick-based way, without using a turtle forever button.

At present, NetLogo has no way for one forever button to start another. Buttons are only started when you press them.

Anonymous procedures

Anonymous procedures let you store code to be run later. Just like regular NetLogo procedures, an anonymous procedures can be either a command (anonymous command) or a reporter

(anonymous reporter).

Anonymous procedures are values, which means they may be passed as input, reported as a result, or stored in a variable.

An anonymous procedure might be run once, multiple times, or not at all.

In other programming languages anonymous procedures are known as first-class functions, closures, or lambda.

Anonymous procedure primitives

Primitives specific to anonymous procedures are -> , is-anonymous-command? , and is-anonymous-reporter? .

The -> creates an anonymous procedure. The anonymous procedure it reports might be a command or a reporter, depending on what kind of block you pass it. For example [-> fd 1]

reports an anonymous command, because fd is a command, while [-> count turtles] reports an anonymous reporter, because count is a reporter.

These primitives require anonymous procedures as input: foreach , map , reduce , filter , n-values , sort-by . When calling these primitives, using an -> is optional if your anonymous pro‑

cedure contains a single primitive which has requires no more inputs than are are provided by the primitive. For example one may write simply foreach mylist print instead of foreach

mylist [[x] -> print x] , though the latter is also accepted. Depending on the anonymous procedure, various parts of the anonymous procedure syntax can be omitted. For a summary of

optional syntax, see the table below.

The run command accepts anonymous commands as well as strings.

The runresult reporter accepts anonymous reporters as well as strings.

run and runresult allow passing inputs to an anonymous procedure. As with all primitives accepting varying number of inputs, the whole call must be surrounded with parentheses, so for

example (run my-anonymous-command 5) or (runresult my-anonymous-reporter "foo" 2) . When not passing input, no parentheses are required.

Anonymous procedure inputs

An anonymous procedure may take zero or more inputs. The inputs are referenced the variables declared before the arrow. For instance, in the anonymous reporter [[a b] -> a + b] , a

and b are inputs.

Anonymous procedures and strings

Creating and running anonymous procedures is fast. To use run or runresult on a new string for the first time is about 100x slower than running an anonymous procedure. Modelers should

normally use anonymous procedures instead of running strings, except when running strings entered by the user.

Concise syntax

Simple uses of foreach , map , reduce , filter , n-values , and sort-by can be written with an especially concise syntax. You can write:

map abs [1 -2 3 -4]

;; => [1 2 3 4]

reduce + [1 2 3 4]

;; => 10

filter is-number? [1 "x" 3]

;; => [1 3]

foreach [1 2 3 4] print

;; prints 1 through 4

In older NetLogo versions (4 and earlier), these had to be written:

map [abs ?] [1 -2 3 -4]

;; => [1 2 3 4]

reduce [?1 + ?2] [1 2 3 4]

;; => 10

filter [is-number? ?] [1 "x" 3]

;; => [1 3]

foreach [1 2 3 4] [print ?]

;; prints 1 through 4

Anonymous procedures as closures

Anonymous procedures are “closures”; that means they capture or “close over” the bindings (not just the current values) of local variables and procedure inputs. They do not capture agent vari‑
ables and do not capture the identity (or even the agent type) of the current agent.

Nonlocal exits

The stop and report commands exit from the dynamically enclosing procedure, not the enclosing anonymous procedure. (This is backward-compatible with older NetLogo versions.)

Anonymous procedures and extensions

The extensions API supports writing primitives that accept anonymous procedures as input. Write us for sample code.

Limitations

We hope to address at least some of the following limitations in future NetLogo versions:

import-world does not support anonymous procedures.

Anonymous procedures can’t be variadic (accept a varying number of inputs).

Anonymous reporters can’t contain commands, only a single reporter expression. So for example you must use ifelse-value not if , and you don’t use report at all. If your code is too

complex to be written as one reporter, you’ll need to move the code to a separate reporter procedure, and then call that procedure from your anonymous reporter, passing it any needed

inputs.

Anonymous procedures are not interchangeable with command blocks and reporter blocks. Only the primitives listed above accept anonymous procedures as input. Control primitives such as

ifelse and while and agent primitives such as of and with don’t accept anonymous procedures. So for example if I have an anonymous reporter let r [-> if random 2 == 0] and

two anonymous commands let c1 [-> tick] and let c2 [-> stop] , I can’t write ifelse r c1 c2 , I must write ifelse runresult r [run c1] [run c2] .

The concise syntax where -> may be omitted is only available to primitives and extension primitives, not ordinary procedures. So for example if I have a procedure p that accepts an

anonymous procedure as input, it must be called as e.g. p [-> ...] not p [...] .

What is Optional?

There are several different ways of writing anonymous procedures which allow users to omit part or all of the anonymous procedure syntax. These are summarized in the table below.

What is the anonymous procedure like? What can be left out? Examples

The anonymous procedure is a single primitive input names

arrow

block brackets

foreach mylist stamp ; no inputs

foreach mylist print ; single input

(foreach xs ys setxy) ; multiple inputs

map round [1.3 2.4 3.5] ; reporter, single input

(map + [1 2 3] [4 5 6]) ; reporter, multiple inputs

The anonymous procedure takes no inputs input names

arrow

foreach mylist [print "abc"]

map [4] mylist

What is the anonymous procedure like? What can be left out? Examples

The anonymous procedure has zero or one input(s) brackets around input names foreach mylist [-> stamp] ; no inputs

foreach mylist [x -> print x] ; single input

foreach mylist [x -> rt x fd x] ; multiple primitives, single input

map [-> world-width] mylist ; reporter, no inputs

map [x -> x ^ 2] mylist ; reporter, single input

Anonymous procedure takes more than one input nothing (foreach xs ys [[x y] -> setx x + y])

(map [[x y] -> x mod round y] xs ys)

Note: brackets around input names were always required in NetLogo 6.0.0. If you copy and paste code into NetLogo 6.0.0 using anonymous procedures with unbracketed input names, the

code will not compile until you add the brackets.

Code example

Code Example: State Machine Example

World

Tick counter

In many NetLogo models, time passes in discrete steps, called “ticks”. NetLogo includes a built-in tick counter so you can keep track of how many ticks have passed.

The current value of the tick counter is shown above the view. (You can use the Settings button to hide the tick counter, or change the word “ticks” to something else.)

In code, to retrieve the current value of the tick counter, use the ticks reporter. The tick command advances the tick counter by 1. The clear-all command clears the tick counter along

with everything else.

When the tick counter is clear, it’s an error to try to read or modify it. Use the reset-ticks command when your model is done setting up, to start the tick counter.

If your model is set to use tick-based updates, then the tick command will usually also update the view. See the later section, View Updates.

When to tick

Use reset-ticks at the end of your setup procedure.

Use tick at the end of your go procedure.

to setup

 clear-all

 create-turtles 10

 reset-ticks

end

to go

 ask turtles [fd 1]

 tick

end

Fractional ticks

In most models, the tick counter starts at 0 and goes up 1 at a time, from integer to integer. But it’s also possible for the tick counter to take on in-between floating point values.

To advance the tick counter by a fractional amount, use the tick-advance command. This command takes a numeric input specifying how far to advance the tick counter.

A typical use of fractional ticks is to approximate continuous or curved motion. See, for example, the GasLab models in the Models Library (under Chemistry & Physics). These models calculate

the exact time at which a future event is to occur, then advance the tick counter to exactly that time.

View updates

The “view” in NetLogo lets you see the agents in your model on your computer’s screen. As your agents move and change, you see them moving and changing in the view.

Of course, you can’t really see your agents directly. The view is a picture that NetLogo paints, showing you how your agents look at a particular instant. Once that instant passes and your agents

move and change some more, that picture needs to be repainted to reflect the new state of the world. Repainting the picture is called “updating” the view.

When does the view get updated? This section discusses how NetLogo decides when to update the view, and how you can influence when it gets updated.

NetLogo offers two updates modes, “continuous” updates and “tick-based” updates. You can switch between NetLogo’s two view update modes using a popup menu at the top of the Interface

tab.

Continuous updates are the default when you start up NetLogo or start a new model. Nearly every model in our Models Library, however, uses tick-based updates.

Continuous updates are simplest, but tick-based updates give you more control over when and how often updates happen.

It’s important exactly when an update happens, because when updates happen determines what you see on the screen. If an update comes at an unexpected time, you may see something

unexpected – perhaps something confusing or misleading.

It’s also important how often updates happen, because updates take time. The more time NetLogo spends updating the view, the slower your model will run. With fewer updates, your model

runs faster.

Continuous updates

Continuous updates are very simple. With continuous updates, NetLogo updates the view a certain number of times per second – by default, 30 times a second when the speed slider is in the

default, middle setting.

If you move the speed slider to a slower setting, NetLogo will update more than 30 times a second, effectively slowing down the model. On a faster setting, NetLogo will update less than 30

times a second. On the fastest setting, updates will be separated by several seconds.

At extremely slow settings, NetLogo will be updating so often that you will see your agents moving (or changing color, etc.) one at a time.

If you need to temporarily shut off continuous updates, use the no-display command. The display command turns updates back on, and also forces an immediate update (unless the user is

fast-forwarding the model using the speed slider).

Tick-based updates

As discussed above in the Tick Counter section, in many NetLogo models, time passes in discrete steps, called “ticks”. Typically, you want the view to update once per tick, between ticks.

That’s the default behavior with tick-based updates.

If you want additional view updates, you can force an update using the display command. (The update may be skipped if the user is fast-forwarding the model using the speed slider.)

You don’t have to use the tick counter to use tick-based updates. If the tick counter never advances, the view will update only when you use the display command.

If you move the speed slider to a fast enough setting, eventually NetLogo will skip some of the updates that would ordinarily have happened. Moving the speed slider to a slower setting doesn’t

cause additional updates; rather, it makes NetLogo pause after each update. The slower the setting, the longer the pause.

Even under tick-based updates, the view also updates whenever a button in the interface pops up (both once and forever buttons) and when a command entered in the Command Center fin‑
ishes. So it’s not necessary to add the display command to once buttons that don’t advance the tick counter. Many forever buttons that don’t advance the tick counter do need to use the dis‑

play command. An example in the Models Library is the Life model (under Computer Science -> Cellular Automata). The forever buttons that let the user draw in the view use the display com‑

mand so the user can see what they are drawing, even though the tick counter is not advancing.

Choosing a mode

Advantages of tick-based updates over continuous updates include:

1. Consistent, predictable view update behavior which does not vary from computer to computer or from run to run.

2. Continuous updates can confuse the user of your model by letting them see model states they aren’t supposed to see, which may be misleading.

3. Since setup buttons don’t advance the tick counter, they are unaffected by the speed slider; this is normally the desired behavior.

Nearly every model in our Models Library uses tick-based updates.

Continuous updates are occasionally useful for those rare models in which execution is not divided into short, discrete phases. An example in the Models Library is Termites. (See also, however,

the State Machine Example model, which shows how to re-code Termites using ticks.)

Even for models that would normally be set to tick-based updates, it may be useful to switch to continuous updates temporarily for debugging purposes. Seeing what’s going on within a tick,

instead of only seeing the end result of a tick, could help with troubleshooting. After switching to continuous updates, you may want to use the speed slider to slow the model down until you see

your agents moving one at a time. Don’t forget to change back to tick-based updates when you are done, as the choice of update mode is saved with the model.

Changing the update mode also affects model speed. Updating the view takes time; often enforcing a single update per tick (by using tick-based updates) will make your model faster. On the

other hand, continuous updates will be faster when running a single tick is faster than drawing a frame of the model. Most models run faster under tick-based updates, but for an example of a

model which is faster with continuous updates see the “Heroes and Cowards” library model.

Frame rate

One of the model settings in NetLogo’s “Settings…” dialog is “Frame rate” which defaults to 30 frames per second.

The frame rate setting affects both continuous updates and tick-based updates.

With continuous updates, the setting directly determines the frequency of updates.

With tick-based updates, the setting is a ceiling on how many updates per second you get. If the frame rate is 30, then NetLogo will ensure that the model never runs faster than that when the

speed slider is in the default position. If any frame takes less than 1/30 of a second to compute and display, NetLogo will pause and wait until the full 1/30 of a second has passed before

continuing.

The frame rate settings lets you set what you consider to be a normal speed for your model. Then you, or the user of your model, can use the speed slider to temporarily get a faster or slower

speed.

Topology

The way the world of patches is connected can change. By default the world is a torus which means it isn’t bounded, but “wraps” – so when a turtle moves past the edge of the world, it disap‑

pears and reappears on the opposite edge and every patch has the same number of “neighbor” patches. If you’re a patch on the edge of the world, some of your “neighbors” are on the oppo‑

site edge.

However, you can change the wrap settings with the Settings button. If wrapping is not allowed in a given direction then in that direction (x or y) the world is bounded. Patches along that bound‑

ary will have fewer than 8 neighbors and turtles will not move beyond the edge of the world.

The topology of the NetLogo world has four potential values, torus, box, vertical cylinder, or horizontal cylinder. The topology is controlled by enabling or disabling wrapping in the x or y direc‑

tions. The default world is a torus.

A torus wraps in both directions, meaning that the top and bottom edges of the world are connected and the left and right edges are connected. So if a turtle moves beyond the right edge of the

world it appears again on the left and the same for the top and bottom.

A box does not wrap in either direction. The world is bounded so turtles that try to move off the edge of the world cannot. Note that the patches around edge of the world have fewer than eight

neighbors; the corners have three and the rest have five.

Horizontal and vertical cylinders wrap in one direction but not the other. A horizontal cylinder wraps vertically, so the top of the world is connected to the bottom. but the left and right edges are

bounded. A vertical cylinder is the opposite; it wraps horizontally so the left and right edges are connected, but the top and bottom edges are bounded.

Code Example: Neighbors Example

When coordinates wrap, turtles and links wrap visually in the view, too. If a turtle shape or link extends past an edge, part of it will appear at the other edge. (Turtles themselves are points that

take up no space, so they cannot be on both sides of the world at once, but in the view, they appear to take up space because they have a shape.)

Wrapping also affects how the view looks when you are following a turtle. On a torus, wherever the turtle goes, you will always see the whole world around it:

Whereas in a box or cylinder the world has edges, so the areas past those edges show up in the view as gray:

Code Example: Termites Perspective Demo (torus), Ants Perspective Demo (box)

The topology settings also control the behavior of the distance(xy), in-radius, in-cone, face(xy), and towards(xy) primitives. The topology controls whether the primitives wrap or not. They

always use the shortest path allowed by the topology. For example, the distance from the center of the patches in the bottom left corner (min-pxcor, min-pycor) and the upper right corner (max-

pxcor, max-pycor) will be as follows for each topology given that the min and max pxcor and pycor are +/-2:

Torus - sqrt(2) ~ 1.414 (this will be the same for all world sizes since the patches are directly diagonal to each other in a torus.)

Box - sqrt(world-width^2 + world-height^2) ~ 7.07

Vertical Cylinder - sqrt(world-height^2 + 1) ~ 5.099

Horizontal Cylinder - sqrt(world-width^2 + 1) ~ 5.099

All the other primitives will act similarly to distance. If you formerly used -nowrap primitives in your model we recommend removing them and changing the topology of the world instead.

If your model has turtles that move around you’ll need to think about what happens to them when they reach the edge of the world, if the topology you’re using has some non-wrapping edges.

There are a few common options: the turtle is reflected back into the world (either systematically or randomly), the turtle exits the system (dies), or the turtle is hidden. It is no longer necessary

to check the bounds using turtle coordinates, instead we can just ask NetLogo if a turtle is at the edge of the world. There are a couple ways of doing this, the simplest is to use the can-move?

primitive.

if not can-move? distance [rt 180]

can-move? merely returns true if the position distance in front of the turtle is inside the NetLogo world, false otherwise. In this case, if the turtle is at the edge of the world it simple goes back

the way it came. You can also use patch-ahead 1 != nobody in place of can-move? . If you need to do something smarter that simply turning around it may be useful to use patch-at with dx

and dy .

if patch-at dx 0 = nobody [

 set heading (- heading)

]

if patch-at 0 dy = nobody [

 set heading (180 - heading)

]

This tests whether the turtle is hitting a horizontal or vertical wall and bounces off that wall.

In some models if a turtle can’t move forward it simply dies (exits the system, like in Conductor or Mousetraps).

if not can-move? distance[die]

If you are moving turtles using setxy rather than forward you should test to make sure the patch you are about to move to exists since setxy throws a runtime error if it is given coordinates

outside the world. This is a common situation when the model is simulating an infinite plane and turtles outside the view should simply be hidden.

let new-x new-value-of-xcor

let new-y new-value-of-ycor

ifelse patch-at (new-x - xcor) (new-y - ycor) = nobody

 [hide-turtle]

 [setxy new-x new-y

 show-turtle]

Several models in the Models Library use this technique, Gravitation, N-Bodies, and Electrostatics are good examples.

The diffuse and diffuse4 commands behave correctly in all topologies. Each patch diffuses and equal amount of the diffuse variable to each of its neighbors, if it has fewer than 8 neighbors

(or 4 if you are using diffuse4), the remainder stays on the diffusing patch. This means that the overall sum of patch-variable across the world remains constant. However, if you want the dif‑
fuse matter to still fall off the edges of the world as it would on an infinite plane you still need to clear the edges each step as in the Diffuse Off Edges Example.

Observer Perspective

The 2D and the 3D view show the world from the perspective of the observer. By default the observer is looking down on the world from the positive z-axis at the origin. You can change the

perspective of the observer by using the follow , ride and watch observer commands and follow-me , ride-me and watch-me turtle commands. watch-me is also a patch or link command.

When in follow or ride mode the observer moves with the subject agent around the world. The difference between follow and ride is only visible in the 3D view. In the 3D view the user can

change the distance behind the agent using the mouse. When the observer is following at zero distance from the agent it is actually riding the agent. When the observer is in watch mode it

tracks the movements of one turtle (or patch or link) without moving. In both views you will see a spotlight appear on the subject and in the 3D view the observer will turn to face the subject. To

determine which agent is the focus you can use the subject reporter. Use the reset-perspective command to stop the observer from watching, following, or riding. In the 3D view, the

observer also returns to its default position (above the origin, looking straight down).

Code Example: Perspective Example

Input/Output

Output

This section is about output to the screen. Output to the screen can also be later saved to a file using the export-output command. If you need a more flexible method of writing data to exter‑
nal files, see the next section, File I/O.

The basic commands for generating output to the screen in NetLogo are print , show , type , and write . These commands send their output to the Command Center.

For full details on these four commands, see their entries in the NetLogo Dictionary. Here is how they are typically used:

print is useful in most situations.

show lets you see which agent is printing what.

type lets you print several things on the same line.

write lets you print values in a format which can be read back in using file-read .

A NetLogo model may optionally have an “output area” in its Interface tab, separate from the Command Center. To send output there instead of the Command Center, use the output-print ,

output-show , output-type , and output-write commands.

The output area can be cleared with the clear-output command and saved to a file with export-output . The contents of the output area will be saved by the export-world command. The

import-world command will clear the output area and set its contents to the value in imported world file. It should be noted that large amounts of data being sent to the output area can

increase the size of your exported worlds.

If you use output-print , output-show , output-type , output-write , clear-output , or export-output in a model which does not have a separate output area, then the commands apply to

the output portion of the Command Center.

How Output Primitives Differ

This information is a quick reference for more advanced users.

The print , show , type , and write primitives differ on the following facets:

What types of values does the primitive accept?

Does the primitive output a newline at the end?

Are strings output with quotes surrounding them?

Does the primitive output the agent which printed it?

The following table summarizes the behavior of each primitive.

Primitive Acceptable values Adds newline? Strings quoted? Outputs self ?

print any NetLogo value yes no no

show any NetLogo value yes yes yes

type any NetLogo value no no no

write boolean, number, string, lists containing only these types no yes no

User Interaction Primitives

NetLogo features several primitives which allow a model to interact with the user. These primitives include user-directory, user-file, user-new-file, user-input, user-message, user-one-of, and

user-yes-or-no?.

These primitives differ in precisely what interaction they take with the user. user-directory , user-file , and user-new-file are all reporters which prompt the user to select an item from the

file system and report the path of the selected item to NetLogo. user-yes-or-no? , user-one-of , and user-input all prompt the user to provide input in the form of text or a selection. user-

message simply presents a message to the user.

Note that all active forever buttons will pause when one of these primitives is used and will resume only when the user completes the interaction with the button.

What does “Halt” mean?

The primitives which prompt the user for input, as well as user-message all provide a “Halt” button. The effect of this button is the same for all of these primitives - it halts the model. When the

model is halted all running code is stopped, including buttons and the command center. Since halting stops code in the middle of whatever it happened to be doing at the time it was halted, you

may see strange results if you continue to run the model after a halt without setting it up again.

File I/O

In NetLogo, there is a set of primitives that give you the power to interact with outside files. They all begin with the prefix file-.

There are two main modes when dealing with files: reading and writing. The difference is the direction of the flow of data. When you are reading in information from a file, data that is stored in

the file flows into your model. On the other hand, writing allows data to flow out of your model and into a file.

When working with files, always begin by using the primitive file-open . This specifies which file you will be interacting with. None of the other primitives work unless you open a file first.

The next file- primitive you use dictates which mode the file will be in until the file is closed, reading or writing. To switch modes, close and then reopen the file.

The reading primitives include file-read , file-read-line , file-read-characters , and file-at-end? . Note that the file must exist already before you can open it for reading.

Code Examples: File Input Example

The primitives for writing are similar to the primitives that print things in the Command Center, except that the output gets saved to a file. They include file-print , file-show , file-type ,

and file-write . Note that you can never “overwrite” data. In other words, if you attempt to write to a file with existing data, all new data will be appended to the end of the file. (If you want to

overwrite a file, use file-delete to delete it, then open it for writing.)

Code Examples: File Output Example

When you are finished using a file, you can use the command file-close to end your session with the file. If you wish to remove the file afterwards, use the primitive file-delete to delete it.

To close multiple opened files, one needs to first select the file by using file-open before closing it.

;; Open 3 files

file-open "myfile1.txt"

file-open "myfile2.txt"

file-open "myfile3.txt"

;; Now close the 3 files

file-close

file-open "myfile2.txt"

file-close

file-open "myfile1.txt"

file-close

Or, if you know you just want to close every file, you can use file-close-all .

Two primitives worth noting are file-write and file-read . These primitives are designed to easily save and retrieve NetLogo constants such as numbers, lists, booleans, and strings. file-

write will always output the variable in such a manner that file-read will be able to interpret it correctly.

file-open "myfile.txt" ;; Opening file for writing

ask turtles

 [file-write xcor file-write ycor]

file-close

file-open "myfile.txt" ;; Opening file for reading

ask turtles

 [setxy file-read file-read]

file-close

Code Examples: File Input Example and File Output Example

Letting the user choose

The user-directory , user-file , and user-new-file primitives are useful when you want the user to choose a file or directory for your code to operate on.

Lists

In the simplest models, each variable holds only one piece of information, usually a number or a string. Lists let you store multiple pieces of information in a single value by collecting that infor‑

mation in a list. Each value in the list can be any type of value: a number, or a string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in NetLogo. If your agents carry out a repetitive calculation on multiple variables, it might be easier to have a list variable, instead of multi‑

ple number variables. Several primitives simplify the process of performing the same computation on each value in a list.

The NetLogo Dictionary has a section that lists all of the list-related primitives.

Constant lists

You can make a list by simply putting the values you want in the list between brackets, like this: set mylist [2 4 6 8] . Note that the individual values are separated by spaces. You can make

lists that contain numbers and strings this way, as well as lists within lists, for example [[2 4] [3 5]] .

The empty list is written by putting nothing between the brackets, like this: [] .

Building lists on the fly

If you want to make a list in which the values are determined by reporters, as opposed to being a series of constants, use the list reporter. The list reporter accepts two other reporters,

runs them, and reports the results as a list.

If I wanted a list to contain two random values, I might use the following code:

file:///tmp/sbt_6c39b28e/dictionary.html

set random-list list (random 10) (random 20)

This will set random-list to a new list of two random integers each time it runs.

To make longer or shorter lists, you can use the list reporter with fewer or more than two inputs, but in order to do so, you must enclose the entire call in parentheses, e.g.:

(list random 10)

(list random 10 random 20 random 30)

For more information, see Varying number of inputs.

Some kinds of lists are most easily built using the n-values reporter, which allows you to construct a list of a specific length by repeatedly running a given reporter. You can make a list of the

same value repeated, or all the numbers in a range, or a lot of random numbers, or many other possibilities. See dictionary entry for details and examples.

The of primitive lets you construct a list from an agentset. It reports a list containing each agent’s value for the given reporter. (The reporter could be a simple variable name, or a more complex

expression – even a call to a procedure defined using to-report .) A common idiom is

max [...] of turtles

sum [...] of turtles

and so on.

You can combine two or more lists using the sentence reporter, which concatenates lists by combining their contents into a single, larger list. Like list , sentence normally takes two inputs,

but can accept any number of inputs if the call is surrounded by parentheses.

Changing list items

Technically, lists can’t be modified, but you can construct new lists based on old lists. If you want the new list to replace the old list, use set . For example:

set mylist [2 7 5 Bob [3 0 -2]]

; mylist is now [2 7 5 Bob [3 0 -2]]

set mylist replace-item 2 mylist 10

; mylist is now [2 7 10 Bob [3 0 -2]]

The replace-item reporter takes three inputs. The first input specifies which item in the list is to be changed. 0 means the first item, 1 means the second item, and so forth.

To add an item, say 42, to the end of a list, use the lput reporter. (fput adds an item to the beginning of a list.)

set mylist lput 42 mylist

; mylist is now [2 7 10 Bob [3 0 -2] 42]

But what if you changed your mind? The but-last (bl for short) reporter reports all the list items but the last.

set mylist but-last mylist

; mylist is now [2 7 10 Bob [3 0 -2]]

Suppose you want to get rid of item 0, the 2 at the beginning of the list.

set mylist but-first mylist

; mylist is now [7 10 Bob [3 0 -2]]

Suppose you wanted to change the third item that’s nested inside item 3 from -2 to 9? The key is to realize that the name that can be used to call the nested list [3 0 -2] is item 3 mylist . Then

the replace-item reporter can be nested to change the list-within-a-list. The parentheses are added for clarity.

set mylist (replace-item 3 mylist

 (replace-item 2 (item 3 mylist) 9))

; mylist is now [7 10 Bob [3 0 9]]

Iterating over lists

If you want to do some operation on each item in a list in turn, the foreach command and the map reporter may be helpful.

foreach is used to run a command or commands on each item in a list. It takes an input list and a command name or block of commands, like this:

foreach [1 2 3] show

=> 1

=> 2

=> 3

foreach [2 4 6]

 [n -> crt n

 show (word "created " n " turtles")]

=> created 2 turtles

=> created 4 turtles

=> created 6 turtles

In the block, the variable n holds the current value from the input list.

Here are some more examples of foreach :

foreach [1 2 3] [steps -> ask turtles [fd steps]]

;; turtles move forward 6 patches

foreach [true false true true] [should-move? -> ask turtles [if should-move? [fd 1]]]

;; turtles move forward 3 patches

map is similar to foreach , but it is a reporter. It takes an input list and a reporter name or reporter block. Note that unlike foreach , the reporter comes first, like this:

show map round [1.2 2.2 2.7]

;; prints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list. Again, use the variable named in the anonymous procedure (x in the examples below) to refer to

the current item in the list.

Here are a couple more examples of map :

show map [x -> x < 0] [1 -1 3 4 -2 -10]

;; prints [false true false false true true]

show map [x -> x * x] [1 2 3]

;; prints [1 4 9]

Besides map and foreach , other primitives for processing whole lists in a configurable way include filter , reduce , and sort-by .

These primitives aren’t always the solution for every situation in which you want to operate on an entire list. In some situations, you may need to use some other technique such as a loop using

repeat or while , or a recursive procedure.

The blocks of code we’re giving to map and foreach in these examples are actually anonymous procedures. Anonymous procedures are explained in more detail in Anonymous procedures,

below.

Varying number of inputs

Some commands and reporters involving lists and strings may take a varying number of inputs. In these cases, in order to pass them a number of inputs other than their default, the primitive

and its inputs must be surrounded by parentheses. Here are some examples:

show list 1 2

=> [1 2]

show (list 1 2 3 4)

=> [1 2 3 4]

show (list)

=> []

Note that each of these special primitives has a default number of inputs for which no parentheses are required. The primitives which have this capability are list , word , sentence , map ,

foreach , run , and runresult .

Lists of agents

Earlier, we said that agentsets are always in random order, a different random order every time. If you need your agents to do something in a fixed order, you need to make a list of the agents

instead.

There are two primitives that help you do this, sort and sort-by .

Both sort and sort-by can take an agentset as input. The result is always a new list, containing the same agents as the agentset did, but in a particular order.

If you use sort on an agentset of turtles, the result is a list of turtles sorted in ascending order by who number.

If you use sort on an agentset of patches, the result is a list of patches sorted left-to-right, top-to-bottom.

If you use sort on an agentset of links, the result is a list of links, sorted in ascending order first by end1 then by end2 any remaining ties are resolved by breed in the order they are declared

in the Code tab.

If you need descending order instead, you can combine reverse with sort , for example reverse sort turtles .

If you want your agents to be ordered by some other criterion than the standard ones sort uses, you’ll need to use sort-by instead.

Here’s an example:

sort-by [[a b] -> [size] of a < [size] of b] turtles

This returns a list of turtles sorted in ascending order by their turtle variable size .

There’s a common pattern to get a list of agents in a random order, using a combination of of and self , in the rare case that you cannot just use ask :

[self] of my-agentset

Asking a list of agents

Once you have a list of agents, you might want to ask them each to do something. To do this, use the foreach and ask commands in combination, like this:

foreach sort turtles [the-turtle ->

 ask the-turtle [

 ...

]

]

This will ask each turtle in ascending order by who number. Substitute “patches” for “turtles” to ask patches in left-to-right, top-to-bottom order.

Note that you can’t use ask directly on a list of turtles. ask only works with agentsets and single agents.

Performance of lists

The data structure underlying NetLogo’s lists is a sophisticated tree-based data structure on which most operations run in near-constant time. That includes fput , lput , butfirst , butlast ,

length , item , and replace-item .

One exception to the fast-performance rule is that concatenating two lists with sentence requires traversing and copying the whole second list. (This may be fixed in a future version.)

Technically, “near-constant time” is actually logarithmic time, proportional to the depth of the underlying tree, but these trees have large nodes and a high branching factor, so they are never

more than a few levels deep. This means that changes can be made in at most a few steps. The trees are immutable, but they share structure with each other, so the whole tree doesn’t need to

be copied to make a changed version.

The actual data structure used is the immutable Vector class from the Scala collections library. These are 32-wide hash array mapped tries, as implemented by Tiark Rompf, based in part on

work by Phil Bagwell and Rich Hickey.

Strings

Strings may contain any Unicode characters.

To input a constant string in NetLogo, surround it with double quotes.

The empty string is written by putting nothing between the quotes, like this: "" .

Most of the list primitives work on strings as well:

but-first "string" => "tring"

but-last "string" => "strin"

empty? "" => true

empty? "string" => false

first "string" => "s"

item 2 "string" => "r"

last "string" => "g"

length "string" => 6

member? "s" "string" => true

member? "rin" "string" => true

member? "ron" "string" => false

position "s" "string" => 0

position "rin" "string" => 2

position "ron" "string" => false

remove "r" "string" => "sting"

remove "s" "strings" => "tring"

replace-item 3 "string" "o" => "strong"

reverse "string" => "gnirts"

A few primitives are specific to strings, such as is-string? , substring , and word :

is-string? "string" => true

is-string? 37 => false

substring "string" 2 5 => "rin"

word "tur" "tle" => "turtle"

Strings can be compared using the =, !=, <, >, <=, and >= operators.

If you need to embed a special character in a string, use the following escape sequences:

\n = newline

\t = tab

\" = double quote

\\ = backslash

Mathematics

Math

All numbers in NetLogo are stored internally as double precision floating point numbers, as defined in the IEEE 754 standard. They are 64 bit numbers consisting of one sign bit, an 11-bit expo‑

nent, and a 52-bit mantissa. See the IEEE 754 standard for details.

An “integer” in NetLogo is simply a number that happens to have no fractional part. No distinction is made between 3 and 3.0; they are the same number. (This is the same as how most people

use numbers in everyday contexts, but different from some programming languages. Some languages treat integers and floating point numbers as distinct types.)

Integers are always printed by NetLogo without the trailing “.0”:

show 1.5 + 1.5

observer: 3

If a number with a fractional part is supplied in a context where an integer is expected, the fractional part is simply discarded. So for example, crt 3.5 creates three turtles; the extra 0.5 is

ignored.

The range of integers is +/-9007199254740992 (2^53, about 9 quadrillion). Calculations that exceed this range will not cause runtime errors, but precision will be lost when the least significant

(binary) digits are rounded off in order fit the number into 64 bits. With very large numbers, this rounding can result in imprecise answers which may be surprising:

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

show 2 ^ 60 + 1 = 2 ^ 60

=> true

Calculations with smaller numbers can also produce surprising results if they involve fractional quantities, since not all fractions can be precisely represented and roundoff may occur. For

example:

show 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6

=> 0.9999999999999999

show 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9

=> 1.0000000000000002

Any operation which produces the special quantities “infinity” or “not a number” will cause a runtime error.

Scientific notation

Very large or very small floating point numbers are displayed by NetLogo using “scientific notation”. Examples:

show 0.000000000001

=> 1.0E-12

show 50000000000000000000

=> 5.0E19

Numbers in scientific notation are distinguished by the presence of the letter E (for “exponent”). It means “times ten to the power of”, so for example, 1.0E-12 means 1.0 times 10 to the -12

power:

show 1.0 * 10 ^ -12

=> 1.0E-12

You can also use scientific notation yourself in NetLogo code:

show 3.0E6

=> 3000000

show 8.123456789E6

=> 8123456.789

show 8.123456789E7

=> 8.123456789E7

show 3.0E16

=> 3.0E16

show 8.0E-3

=> 0.0080

show 8.0E-4

=> 8.0E-4

These examples show that numbers with fractional parts are displayed using scientific notation if the exponent is less than -3 or greater than 6. Numbers outside of NetLogo’s integer range of

-9007199254740992 to 9007199254740992 (+/-2^53) are also always shown in scientific notation:

show 2 ^ 60

=> 1.15292150460684698E18

When entering a number, the letter E may be either upper or lowercase. When printing a number, NetLogo always uses an uppercase E:

show 4.5e20

=> 4.5E20

Floating point accuracy

Because numbers in NetLogo are subject to the limitations of how floating point numbers are represented in binary, you may get answers that are slightly inaccurate. For example:

show 0.1 + 0.1 + 0.1

=> 0.30000000000000004

show cos 90

=> 6.123233995736766E-17

This is an inherent issue with floating point arithmetic; it occurs in all programming languages that use floating point numbers.

If you are dealing with fixed precision quantities, for example dollars and cents, a common technique is to use only integers (cents) internally, then divide by 100 to get a result in dollars for

display.

If you must use floating point numbers, then in some situations you may need to replace a straightforward equality test such as if x = 1 [...] with a test that tolerates slight imprecision,

for example if abs (x - 1) < 0.0001 [...] .

Also, the precision primitive is handy for rounding off numbers for display purposes. NetLogo monitors round the numbers they display to a configurable number of decimal places, too.

Random numbers

The random numbers used by NetLogo are what is called “pseudo-random”. (This is typical in computer programming.) That means they appear random, but are in fact generated by a determin‑
istic process. “Deterministic” means that you get the same results every time, if you start with the same random “seed”. We’ll explain in a minute what we mean by “seed”.

In the context of scientific modeling, pseudo-random numbers are actually desirable. That’s because it’s important that a scientific experiment be reproducible – so anyone can try it themselves

and get the same result that you got. Since NetLogo uses pseudo-random numbers, the “experiments” that you do with it can be reproduced by others.

Here’s how it works. NetLogo’s random number generator can be started with a certain seed value, which must be an integer in the range -2147483648 to 2147483647. Once the generator has

been “seeded” with the random-seed command, it always generates the same sequence of random numbers from then on. For example, if you run these commands:

random-seed 137

show random 100

show random 100

show random 100

You will always get the numbers 79, 89, and 61 in that order.

Note, however, that you’re only guaranteed to get those same numbers if you’re using the same version of NetLogo. Sometimes when we make a new version of NetLogo the random number

generator changes. (Presently, we use a generator known as the Mersenne Twister.)

To create a number suitable for seeding the random number generator, use the new-seed reporter. new-seed creates a seed, evenly distributed over the space of possible seeds, based on the

current date and time. It never reports the same seed twice in a row.

Code Example: Random Seed Example

If you don’t set the random seed yourself, NetLogo sets it to a value based on the current date and time. There is no way to find out what random seed it chose, so if you want your model run to

be reproducible, you must set the random seed yourself ahead of time.

The NetLogo primitives with “random” in their names (random, random-float, and so on) aren’t the only ones that use pseudo-random numbers. Many other operations also make random

choices. For example, agentsets are always in random order, one-of and n-of choose agents randomly, the sprout command creates turtles with random colors and headings, and the down‑

hill reporter chooses a random patch when there’s a tie. All of these random choices are governed by the random seed as well, so model runs can be reproducible.

In addition to the uniformly distributed random integers and floating point numbers generated by random and random-float , NetLogo also offers several other random distributions. See the

dictionary entries for random-normal , random-poisson , random-exponential , and random-gamma .

Auxiliary generator

Code run by buttons or from the command center uses the main random number generator.

Code in monitors uses an auxiliary random generator, so even if a monitor does a calculation that uses random numbers, the outcome of the model is not affected. The same is true of code in

sliders.

Local randomness

You may want to explicitly specify that a section of code does not affect the state of the main random generator, so the outcome of the model is not affected. The with-local-randomness com‑

mand is provided for this purpose. See its entry in the NetLogo Dictionary for more information.

Saving a Random Seed for a Run

If you want to know what the random seed used by a “run” of a model was, you can add some simple code to track it. Then if an interesting behavior emerges or an intermittent error condition

occurs, you have a way to reproduce the run by grabbing the seed and re-using it.

Add a starting-seed global variable, then use new-seed to give it a value after you use clear-all in your setup procedure. Then give that value to the random-seed command so it will be

used for the rest of the run.

globals [starting-seed]

to setup

 clear-all

 set starting-seed new-seed

 random-seed starting-seed

 ; ... rest of normal setup code

end

to go

 ; ... the rest of normal model code will use the random seed set in `setup`

end

You can then add a monitor for the starting-seed global or simply output it to the command center whenever you want to know its value. If you are using BehaviorSpace to run experiments,

you can also include it in the output to be able to later reproduce runs that it generates.

Plotting

NetLogo’s plotting features let you create plots to help you understand what’s going on in your model.

Most plots can be created by creating and editing plot widgets in the Interface tab, as described in its Plots Section. However it is possible to control plots from procedures, although you need

to create them in the Interface tab first.

Plotting points

The two basic commands for actually plotting things are plot and plotxy .

With plot you need only specify the y value you want plotted. The x value will automatically be 0 for the first point you plot, 1 for the second, and so on. (That’s if the plot pen’s “interval” is the

default value of 1; you can change the interval.)

The plot command is especially handy when you want your model to plot a new point at every time step. Example:

plot count turtles

If you need to specify both the x and y values of the point you want plotted, then use plotxy instead. This example assumes that a global variable called time exists:

plotxy time count-turtles

Plot commands

Each plot and its pens have setup and update code fields that may contain commands (usually containing plot or plotxy). These commands are run automatically triggered by other com‑
mands in NetLogo.

Plot setup commands and pen setup commands are run when the either reset-ticks or setup-plots commands are run. If the stop command is run in the body of the plot setup commands

then the pen setup commands will not run.

Plot update commands and pen update commands are run when the either reset-ticks , tick or update-plots commands are run. If the stop command is run in the body of the plot update

commands then the pen update commands will not run.

Here are the four commands that trigger plotting explained in more detail.

setup-plots executes commands for one plot at a time. For each plot, the plot’s setup commands are executed. If the stop command is not encountered while running those commands, then

each of the plot’s pens will have their setup code executed.

update-plots is very similar to setup-plots . For each plot, the plot’s update commands are executed. If the stop command is not encountered while running those commands, then each of

the plot’s pens will have their update code executed.

tick is exactly the same as update-plots except that the tick counter is incremented before the plot commands are executed.

reset-ticks first resets the tick counter to 0, and then does the equivalent of setup-plots followed by update-plots .

A typical model will use reset-ticks and tick like so:

to setup

 clear-all

 ...

 reset-ticks

end

to go

 ...

 tick

end

Note that in this example we plot from both the setup and go procedures (because reset-ticks runs plot setup and plot update commands). We do this because we want our plot to include

the initial state of the system at the end of setup . We plot at the end of the go procedure, not the beginning, because we want the plot always to be up to date after the go button stops.

Models that don’t use ticks but still want to do plotting will instead use setup-plots and update-plots . In the previous code, replace reset-ticks with setup-plots update-plots and

replace tick with update-plots .

Code Example: Plotting Example

Other kinds of plots

By default, NetLogo plot pens plot in line mode, so that the points you plot are connected by a line.

If you want to move the pen without plotting, you can use the plot-pen-up command. After this command is issued, the plot and plotxy commands move the pen but do not actually draw

anything. Once the pen is where you want it, use plot-pen-down to put the pen back down.

If you want to plot individual points instead of lines, or you want to draw bars instead of lines or points, you need to change the plot pen’s “mode”. Three modes are available: line, bar, and point.

Line is the default mode.

Normally, you change a pen’s mode by editing the plot. This changes the pen’s default mode. It’s also possible to change the pen’s mode temporarily using the set-plot-pen-mode command.

That command takes a number as input: 0 for line, 1 for bar, 2 for point.

Histograms

A histogram is a special kind of plot that measures how frequently certain values, or values in certain ranges, occur in a collection of numbers that arise in your model.

For example, suppose the turtles in your model have an age variable. You could create a histogram of the distribution of ages among your turtles with the histogram command, like this:

histogram [age] of turtles

The numbers you want to histogram don’t have to come from an agentset; they could be any list of numbers.

Note that using the histogram command doesn’t automatically switch the current plot pen to bar mode. If you want bars, you have to set the plot pen to bar mode yourself. (As we said before,

you can change a pen’s default mode by editing the plot in the Interface tab.)

Like other types of plots, histograms can be set to auto scale. However, auto scaled histograms do not automatically resize themselves horizontally like other plot types do. To set the range pro‑
grammatically, you can use the set-plot-x-range primitive.

The width of the bars in a histogram is controlled by the plot pen’s interval. You can set a plot pen’s default interval by editing the plot in the Interface tab. You can also change the interval tem‑
porarily with the set-plot-pen-interval command or the set-histogram-num-bars . If you use the latter command, NetLogo will set the interval appropriately so as to fit the specified number

of bars within the plot’s current x range.

Code Example: Histogram Example

Clearing and resetting

You can clear the current plot with the clear-plot command, or clear every plot in your model with clear-all-plots . The clear-all command also clears all plots, in addition to clearing

everything else in your model.

If you want to remove only the points that a particular pen has drawn, use plot-pen-reset .

When a whole plot is cleared, or when a pen is reset, that doesn’t just remove the data that has been plotted. It also restores the plot or pen to its default settings, as they were specified in the

Interface tab when the plot was created or last edited. Therefore, the effects of such commands as set-plot-background-color , set-plot-x-range and set-plot-pen-color are only

temporary.

Ranges and auto scaling

The default x and y ranges for a plot are fixed numbers, but they can be changed at setup time or as the model runs.

To change the ranges at any time, use set-plot-x-range and set-plot-y-range . Or, you can let the ranges grow automatically. Either way, when the plot is cleared the ranges will return to

their default values.

By default, all NetLogo plots have the auto scaling feature enabled. This means that if the model tries to plot a point which is outside the current displayed range, the range of the plot will grow

along one or both axes so that the new point is visible. Histogram plots, however, do not auto scale horizontally.

In the hope that the ranges won’t have to change every time a new point is added, when the ranges grow they leave some extra room: 25% if growing horizontally, 10% if growing vertically.

If you want to turn off this feature, edit the plot and uncheck the “Auto Scale?” checkbox. At present, it is not possible to enable or disable this feature only on one axis; it always applies to both

axes.

Using a Legend

You can show the legend of a plot by checking the “Show legend” checkbox in the edit dialog. If you don’t want a particular pen to show up in the legend you can uncheck the “Show in Legend”

checkbox for that pen also in the advanced plot pen settings (the advanced plot pen settings can be opened by clicking the pencil button for that pen in the plot pens table in the plot edit

dialog).

Temporary plot pens

Most plots can get along with a fixed number of pens. But some plots have more complex needs; they may need to have the number of pens vary depending on conditions. In such cases, you

can make “temporary” plot pens from code and then plot with them. These pens are called “temporary” because they vanish when the plot is cleared (by the clear-plot , clear-all-plots , or

clear-all commands).

To create a temporary plot pen, use the create-temporary-plot-pen command. Typically, this would be done in the Code tab, but it is also possible to use this command from plot setup or plot

update code (in the edit dialog). By default, the new pen is down, is black in color, has an interval of 1, and plots in line mode. Commands are available to change all of these settings; see the

Plotting section of the NetLogo Dictionary.

Before you can use the pen, you’ll have to use the use the set-current-plot and set-current-plot-pen commands. These are explained in the next section.

set-current-plot and set-current-plot-pen

Before NetLogo 5, it was not possible to put plot commands in the plot itself. All of the plot code was written in the Code tab with the rest of the code. For backwards compatibility, and for tem‑

porary plot pens, this is still supported. Models in previous versions of NetLogo (and those using temporary plot pens) have to explicitly state which plot is the current plot with the set-cur‑

rent-plot command and which pen is the current pen with the set-current-plot-pen command.

To set the current plot use the set-current-plot command with the name of the plot enclosed in double quotes, like this:

set-current-plot "Distance vs. Time"

The name of the plot must be exactly as you typed it when you created the plot. Note that later if you change the name of the plot, you’ll also have to update the set-current-plot calls in your

model to use the new name. (Copy and paste can be helpful here.)

For a plot with multiple pens, you can manually specify which pen you want to plot with. If you don’t specify a pen, plotting will take place with the first pen in the plot. To plot with a different

pen, the set-current-plot-pen command was used with the name of the pen enclosed in double quotes, like this:

set-current-plot-pen "distance"

Once the current pen is set, then commands like plot count turtles can be executed for that pen.

Older models with plots usually had their own do-plotting procedure that looked something like this:

to do-plotting

 set-current-plot "populations"

 set-current-plot-pen "sheep"

 plot count sheep

 set-current-plot-pen "wolves"

 plot count wolves

 set-current-plot "next plot"

 ...

end

Once again, this is no longer necessary in NetLogo 5, unless you are using temporary plot pens.

Conclusion

Not every aspect of NetLogo’s plotting system has been explained here. See the Plotting section of the NetLogo Dictionary for information on additional commands and reporters related to

plotting.

Many of the Sample Models in the Models Library illustrate various advanced plotting techniques. Also check out the following code examples:

Code Examples: Plot Axis Example, Plot Smoothing Example, Rolling Plot Example

Color

NetLogo represents colors in different ways. A color can be number in the range 0 to 140, with the exception of 140 itself. Below is a chart showing the range of such NetLogo colors.

The chart shows that:

Some of the colors have names. (You can use these names in your code.)

Every named color except black and white has a number ending in 5.

On either side of each named color are darker and lighter shades of the color.

0 is pure black. 9.9 is pure white.

10, 20, and so on are all so dark they are very nearly black.

19.9, 29.9 and so on are all so light they are very nearly white.

Code Example: The color chart was made in NetLogo with the Color Chart Example model.

If you use a number outside the 0 to 140 range, NetLogo will repeatedly add or subtract 140 from the number until it is in the 0 to 140 range. For example, 25 is orange, so 165, 305, 445, and so

on are orange too, and so are -115, -255, -395, etc. This calculation is done automatically whenever you set the turtle variable color or the patch variable pcolor . Should you need to perform

this calculation in some other context, use the wrap-color primitive.

If you want a color that’s not on the chart, more exist between the integers. For example, 26.5 is a shade of orange halfway between 26 and 27. This doesn’t mean you can make any color in

NetLogo; the NetLogo color space is only a subset of all possible colors. It contains only a fixed set of discrete hues (one hue per row of the chart). Starting from one of those hues, you can

either decrease its brightness (darken it) or decrease its saturation (lighten it), but you cannot decrease both brightness and saturation. Also, only the first digit after the decimal point is signifi‑
cant. Thus, color values are rounded down to the next 0.1, so for example, there’s no visible difference between 26.5 and 26.52 or 26.58.

Color primitives

There are a few primitives that are helpful for working with colors.

We have already mentioned the wrap-color primitive.

The scale-color primitive is useful for converting numeric data into colors.

shade-of? will tell you if two colors are both “shades” of the same basic hue. For example, shade-of? orange 27 is true, because 27 is a lighter shade of orange.

See the color section of the NetLogo Dictionary for a full list of color commands.

Code Example: Scale-color Example demonstrates the scale-color reporter.

RGB and RGBA Colors

NetLogo also represents colors as RGB (red/green/blue) lists and RGBA (red/green/blue/alpha) lists. When using RGB colors the full range of colors is available to you. RGBA colors allow all the

colors that RGB allows and you can also vary the transparency of a color. RGB and RGBA lists are made up of three or four integers, respectively, between 0 and 255. You can set any color vari‑

ables in NetLogo (color for turtles and links and pcolor for patches) to an RGB list and that agent will be rendered appropriately. So you can set the color of patch 0 0 to pure red using the

following code:

set pcolor [255 0 0]

Turtles, links, and labels can all contain RGBA lists as their color variables. Patches only use the alpha value of an RGBA pcolors in NetLogo 3D, it’s ignored in 2D NetLogo. You can set the

color of a turtle to be approximately half transparent pure red with the following code:

set color [255 0 0 125]

Note that decimal values will be rounded towards 0 before the range is checked. An error will be thrown if a value is outside the range 0-255 after this rounding.

You can convert from a NetLogo color to RGB or HSB (hue/saturation/brightness) using extract-hsb and extract-rgb . You can use rgb to generate rgb lists and hsb to convert from an HSB

color to RGB.

Since many colors are missing from the NetLogo color space, approximate-hsb and approximate-rgb often can’t give you the exact color you ask for, but they try to come as close as

possible.

Example:

let my-color approximate-rgb 0 0 255 ;; my-color is now 104.7

show extract-rgb my-color ;; shows [48 88 161] which is pretty far from [0 0 255], the color we started with

This is an approximation, but it is still near NetLogo blue which is 105.

Using RGBA colors, the user has more options when it comes to an agent’s color.

Example: you can change any turtle from its existing NetLogo color to a sixty percent transparent version of that color using:

ask one-of turtles [set color lput 102 extract-rgb color]

Note: because 255 is fully opaque and sixty percent transparent is equal to forty percent opaque, the correct alpha value is 255 * .4 = 102. See the palette extension section below for an alter‑

nate implementation.

Code Examples: HSB and RGB Example (lets you experiment with the HSB and RGB color systems), Transparency Example

Palette Extension

The palette extension offers primitives that give the user more control over colors. It allows for direct manipulation of RGBA and HSB components without the requiring list manipulations.

Example: changing the transparency of any turtle to sixty percent transparent with the palette extension:

extensions [palette]

ask one-of turtles [palette:set-transparency 60]

The extension offers similar commands for Red, Green, Blue, Alpha, Hue, Saturation, and Brightness.

See the documentation of the palette extension for more information.

Code Examples: Palette Example, Color Bubbles, Color Painting, Color Reveal

Color Picker dialog

The Color Picker dialog helps you experiment with and choose colors. Open it by choosing Color Picker on the Tools Menu.

Movies

This section describes how to capture an “.mp4” movie of a NetLogo model.

First, use the vid:start-recorder command to start the video recorder.

To add a frame to your movie, use either vid:record-view or vid:record-interface , depending on whether you want the movie to show just the current view, or the entire Interface tab. In a

single movie, the resolution will be one of the following:

The resolution specified in the call to vid:start-recorder width height if you specified the resolution. These are optional parameters.

The resolution of the view if you did not specify a resolution in the call to vid:start-recorder and call vid:record-view before calling vid:record-interface

The resolution of the interface if you did not specify a resolution in the call to vid:start-recorder and call vid:record-interface before calling vid:record-view

Note that if the resolution of a recorded image doesn’t match the resolution of the recording it will be scaled to fit which can result in images which look blurry or out-of-focus.

When you’re done adding frames, use vid:save-recording . The filename you provide should end with .mp4 , the extension for MP4-encoded movies (playable in QuickTime and other

programs).

;; export a 30 frame movie of the view

extensions [vid]

;...

setup

vid:start-recorder

vid:record-view ;; show the initial state

repeat 30

[go

 vid:record-view]

vid:save-recording "out.mp4"

A movie will play back at 25 frames per second. To make the movie playback faster or slower, consider using a video postprocessing tool.

To check whether or not you are recording, call vid:recorder-status , which reports a string that describes the state of the current recorder.

To throw away the movie currently being recorded, call vid:reset-recorder .

Code Example: Movie Example

Movies generated when running headless, or by background runs in a parallel BehaviorSpace experiment may use only vid:record-view primitive. Movies generated in NetLogo GUI may also

use vid:record-interface and vid:record-source .

NetLogo movies are exported as H.264-encoded MP4 files. To play an MP4 movie, you can use the VLC Player, a free download from the VideoLAN organization.

Movies can take up a lot of disk space. You will probably want to compress your movies with third-party software. The software may give you a choice of different kinds of compression. Some

kinds of compression are lossless, while others are lossy. “Lossy” means that in order to make the files smaller, some of the detail in the movie is lost. Depending on the nature of your model,

you may want to avoid using lossy compression, for example if the view contains fine pixel-level detail.

file:///tmp/sbt_6c39b28e/palette.html
file:///tmp/sbt_6c39b28e/colorpicker.html
http://www.videolan.org/vlc/index.html

Transition Guide

Many models created in earlier versions of NetLogo also work in NetLogo 7.0. However, some models will need changes. If an old model isn’t working, this section of the User Manual may be

able to help you.

What issues may arise depends on what version of NetLogo the model was created with.

This guide only covers changes most likely to cause issues for users. See the release notes for more complete details on differences between versions.

Changes for NetLogo 7.0.0

See the following page for a list of important changes since NetLogo 6.4: NetLogo 7.0.0 Changes Overview.

Changes directly affecting models are the new file format and widget size conversion.

Changes for NetLogo 6.1.0

CF Extension Removal

The CF extension is no longer bundled with NetLogo. The multi-conditional cf:ifelse and cf:ifelse-value primitives are now now supported directly in NetLogo without an extension by

ifelse and ifelse-value . Simply remove the cf: from the primitives in your models and they should work as they did before with CF.

ifelse-value Precedence Change with Infix Operators

In previous versions, ifelse-value expressions would be parsed before infix expressions they were a part of, like + or - . Now ifelse-value has a lower precedence to let it work with a

variable number of clauses.

This used to work, but will now complain about finding a block or list where it wanted a number, since the + is parsed before the ifelse-value :

ifelse-value (true) [10] [3] + ifelse-value (false) [5] [7]

Now you just need to wrap your ifelse-value in parenthesis to tell NetLogo that you want to add the separate expressions:

(ifelse-value (true) [10] [3]) + (ifelse-value (false) [5] [7])

Changes for NetLogo 6.0.3

Arduino Extension Changes

The arduino extension has substantially changed the way it receives values from Arduino boards. Please consult the arduino example sketch (included within the “models” folder under

Chapter 8 of the IABM textbook) for an updated sketch compatible with the Arduino example model. If you have an existing arduino sketch, you will need to adjust the format used to send val‑

ues to NetLogo. Old sketches will have code which sends back messages like “;A,2.5;”. For the new version of the arduino extension to receive the same message, sketches should send

“;A,D,2.5;” instead. The added ‘D,’ informs Netlogo that the value being sent is a number and not a string.

CF Extension Changes

All primitives have been removed from the cf extension and replaced by the cf:ifelse and cf:ifelse-value multi-branch primitives. We encourage existing cf users to adjust their code to

use these new primitives. Over time, we hope to use these primitives as an example on which to remodel NetLogo’s existing ifelse and ifelse-value primitives. Because this would be a rela‑

tively large language change, we would love to hear any feedback address you may have from using these cf extension primitives.

Changes for NetLogo 6.0

Tasks replaced by Anonymous Procedures

In NetLogo 6.0, tasks have been replaced by anonymous procedures. This means that task is no longer a primitive, it’s been replaced by the new arrow syntax for creating anonymous proce‑

dures. Similarly, question mark variables like ? , ?1 , and ?2 are now just ordinary names in NetLogo and can be used to name procedure variables, let variables, or anonymous procedure vari‑
ables. Finally, is-reporter-task? and is-command-task? have been replaced by is-anonymous-reporter? and is-anonymous-command? .

To make this transition easier, we’ve added an automatic conversion step which should allow most models saved in NetLogo 5 to be converted to use the new syntax automatically. The autocon‑
verter has been a substantial piece of effort and we’ve tested it on all the models in the models library. To use it, ensure the model compiles and run properly in NetLogo 5 or later, then save it

from NetLogo 5 or later. Then, simply open the model in NetLogo 6. If all goes well, you’ll see the converter has changed code like task [?1 + ?2] to [[?1 ?2] -> ?1 + ?2] . The question

marks are meant to serve as temporary placeholders for conversion. They enable your model to run, but you can (and should) replace these variables with meaningful names. If you open a

https://github.com/NetLogo/NetLogo/wiki/Release-notes
file:///tmp/sbt_6c39b28e/netlogo7intro.html
mailto:ccl-feedback@ccl.northwestern.edu

model with tasks and it has not been converted, the autoconverter wasn’t able to convert your model. Rather than attempt to autoconvert your model and break something, the model will open,

you will be shown the appropriate errors and given a chance to edit your model.

While we have tested the autoconverter thoroughly, we expect there to be some cases it doesn’t cover.

If you make use of extensions that aren’t yet compiled for NetLogo 6, the autoconverter will not work until those extensions have been updated.

If your code uses run or runresult to evaluate strings containing tasks, the autoconverter will not change those strings to be anonymous procedures. To make run and runresult work as

expected, look at strings in your model and change any which rely on task or ? -variables to instead rely on anonymous procedures

If your model doesn’t fall into the above categories and doesn’t convert or converts incorrectly, please email our feedback address and we’ll be happy to offer whatever assistance we can.

Link reporters overhauled to be more consistent and flexible

In previous versions of NetLogo, link reporters have had a number of inconsistencies regarding directed and undirected links. For example, my-links would report all links connected to a turtle,

whereas link-neighbors would only report neighbors connected by undirected links. Furthermore, it was quite difficult to work with models where the links could either be directed or

undirected.

To alleviate these issues, the link primitives have been overhauled in 6.0. These changes only affect existing models that use both directed and undirected links while also using the unbreeded

link primitives.

The changes are as follows:

Link reporters that contain the word “out” now utilize both directed, outgoing links and undirected links. That is, they now specify links that can be used to get from the current node to other

nodes. For example, out-link-neighbor? will report true if the current turtle is connected to the given turtle by either an outgoing directed link or an undirected link. If you only want

directed, outgoing links, you can use a breed-specific reporter or my-out-links with [is-directed? self] . Generally, when working with models that have both directed and undirected

links, you will probably want to use the “out” primitives for most things now.

Link reporters that contain the word “in” now utilize both directed, incoming links and undirected links. That is, they now specify links that can be used to get to the current node from other

nodes. For example, in-link-neighbor? will report true if the current turtle is connected to the given turtle by either an incoming directed link or an undirected link. If you only want

directed, incoming links, you can use a breed-specific reporter or my-in-links with [is-directed? self] .

Link reporters that do not specify “out” or “in” utilize all links.

Furthermore, there are no longer restrictions regarding which reporters can be used with which breeds. For unbreeded links, this makes it possible to use the same primitives regardless of

whether your network ends up being directed or undirected.

The new behavior (including all changed primitives) is summarized by the following table, where “un” refers to undirected links, “out” refers to directed, outgoing links, and “in” refers to directed,

incoming links.

New link reporter behavior

Old link reporter behavior

Removal of Applets

Oracle, the company behind Java, has announced that Java applets are deprecated (see this blog post for more information). This comes as the major browsers have removed support for plug-

ins (like java applets) or announced that they plan to do so.

Instead of using applets to distribute your model, NetLogo offers the option to export to NetLogo Web. While NetLogo Web doesn’t yet offer the full functionality of desktop NetLogo (in particu‑
lar, extensions aren’t supported), it is now capable of running most of the models in the NetLogo models library and we hope that most model distributors will find that it meets their needs. To

export to NetLogo Web, choose the “Save As NetLogo Web” option from the “File” menu.

mailto:ccl-feedback@ccl.northwestern.edu
https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free

Changes to the NetLogo User Interface

Users will notice several tweaks to the NetLogo User interface when opening NetLogo 6 for the first time. We’ve removed the bar border above the view. To open the 3D View in 6.0, you can

right click on the view and choose “Switch to 3D View”, or choose the same option from the “Tools” menu. Ticks are now displayed in the interface tab toolbar beneath the speed slider. To

adjust the label used for “ticks” and other view properties, you can choose the “Settings” button at the far right of the interface tab toolbar or right-click on the view and choose “Edit…” from the

context menu that appears.

Nobody Not Permitted as a Chooser Value

In NetLogo 6.0, nobody is no longer a valid chooser value. Just as you can’t put turtle 0 or turtles , nobody refers to a non-literal value which isn’t supported in choosers. As part of this

transition, choosers containing nobody (or nobody within a nested list) will have all uses of nobody changed to "nobody" when opened in NetLogo 6.0.

Breeds must have singular and plural names

In NetLogo 6.0, you must specify both plural and singular breed names. In prior versions, declarations like breed [mice] were legal, but this support has been removed in 6.0. If you have mod‑

els which use only plural breed names, it is recommended that you convert them to specify both names before opening in 6.0 since doing so will permit the NetLogo converter to work most

effectively on any other code in your model which needs conversion.

Removal of “Movie” Prims

The NetLogo movie prims hadn’t been updated in quite some time and generated invalid quicktime movie files. They have been replaced by prims in the new vid extension. The full documen‑

tation for the vid extension is available in the Vid Extension section of the manual. As with all extensions, users will need to include vid in the extensions section of their NetLogo model.

Many of the movie primitives have direct parallels in the vid extension which can be found in the following table:

movie prim vid prim

movie-cancel vid:reset-recorder

movie-close vid:save-recording *file-name*

movie-grab-view vid:record-view

movie-grab-interface vid:record-interface

movie-start *file-name* vid:start-recorder *optional-width* *optional-height*

movie-status vid:recorder-status

When you first open a file in NetLogo 6.0, your file will be automatically converted to use the new primitives. This will include adding a new global variable - _recording-save-file-name to

track the name of the active recording, as well as adding the vid extension to the model. You should verify that the conversion took place correctly. There is no replacement for movie-set-

frame-rate . The vid extension records frames at 25 per second, slightly more than the default 15 frames-per-second of the movie prims. If your recording is sensitive to framerate, consider

recording each existing frame twice (2/25 is fairly close to 1/15) or consider using a postprocessing tool (like gstreamer or ffmpeg) to adjust the video playback speed.

Improved Name Collision Detection

In NetLogo 6.0, expanded error-checking in the NetLogo compiler causes models which define undirected-link-breed [undirected-links undirected-link] and/or directed-link-

breed [directed-links directed-link] to error for redefining a primitive reporter (either is-directed-link? or is-undirected-link?). If your model doesn’t use is-directed-link? or

is-undirected-link? at all, simply changing the breed names should resolve the error.

If you used either of the is-<directedness>-link? prim, there are several ways you might modify your model to account for this change. If your model has no other breeded links, consider

removing the link breed and using the built-in link primitives. If your model has other breeded links, but only of different directedness, simply changing the breed name (and all related primitive

names) should resolve the problem. Note that in this case is-directed-link? and/or is-undirected-link? continue to behave the same as before. If your model has other breeded links of

the same directedness, the change will vary depending on your model. The breed name(s) must be changed, but you must decide whether you used is-directed-link? / is-undirected-

link? to check link directedness or to check that link breed membership. If you used it to check link directedness leaving it as-is should keep the current behavior of the model. Otherwise, it

can simply be replaced by is-<breed>? .

Removal of hubnet-set-client-interface

The hubnet-set-client-interface primitive was rendered obsolete by the introduction of the HubNet client editor and end of support for calculator HubNet. We have found it used in very few

models and have decided to remove it from the language. On opening an existing model in 6.0, the autoconverter should remove all uses of hubnet-set-client-interface from your code.

Improved & Updated Extensions API

One of our goals in NetLogo 6.0 has been to make it easier to develop extensions and easy to develop more powerful extensions. To that end, we’ve bumped the extension API from 5.0 to 6.0.

Existing extensions will need to recompile changing the “NetLogo-Extension-API-Version” in their jar’s MANIFEST.MF from 5.0 to 6.0.

Some of the changes we’ve made to the extensions API include:

org.nlogo.api.Context now allows access to the current world and workspace objects without requiring a cast to an org.nlogo.nvm.ExtensionContext .

org.nlogo.api.Workspace has been introduced as a stable API for extensions to depend on.

A NetLogo jar is now available from BinTray.

file:///tmp/sbt_6c39b28e/vid.html

For a full list of changes between 5.0 and 6.0, please visit our Extension Transition Guide on GitHub.

In service of making it easier to build extensions, we’ve expanded and improved the NetLogo Extension Plugin for sbt , the Scala Build Tool. Sbt is a powerful tool for building JVM projects and

can be used in projects that use Scala, Java, or a combination of the two. We’re now using the Extension Plugin to build all of the bundled extensions and we strongly recommend extension

authors take advantage of the plugin as it makes configuring a NetLogo extension build extremely straightforward. The plugin handles fetching the NetLogo jar which extensions compile against

as well as generation of a jar for the extension containing the appropriate metadata.

Add range primitive

A new range primitive was added in NetLogo 6. As “range” may appear in existing models as a procedure or variable name, we have added an autoconversion step which will ensure that these

models continue to operate immediately upon opening in NetLogo 6. Existing uses of range in models authored before NetLogo 6 will be converted to _range upon first opening in NetLogo 6.

Once the model opens, you can rename _range to suit your model.

Changes for NetLogo 5.2

hsb primitives

In 5.2, the hsb primitives have been changed to work with the standard scale values of 360 for hue, and 100 for saturation and brightness. This affects the primitives hsb , extract-hsb and

approximate-hsb .

The old primitives, scaled to 255, are automatically transitioned to and have been renamed __hsb-old , __extract-hsb-old and __approximate-hsb-old .

GoGo extension

The GoGo extension has been upgraded to use newer GoGo boards with the HID interface. Many of the older primitives no longer work, and will alert you to upgrading your GoGo board’s

firmware.

If you need to continue to use a serial interface, you can use the bundled gogo-serial extension. Change your model to use gogo-serial as opposed to gogo. More details here.

If you cannot upgrade to use the new HID extension nor the new serial extension, the original extension can be found at https://github.com/NetLogo/GoGo-RXTX-Extension

Changes for NetLogo 5.0

Plotting

In 5.0, you don’t have to put your plotting code in the Code tab anymore. Instead, you can put it inside the plots themselves, in the Interface tab.

Nonetheless, the old style and all of the existing plotting primitives are still supported. We recommend changing your model to use the new style, but if you don’t, it should still work.

The following example shows how to change a model to use the new style. Suppose you have a typical NetLogo 4.1 model with one plot called “populations” and two pens called “robots” and

“humans”. The old code might look like:

to setup

 clear-all

 ...

 do-plotting

end

to go

 ...

 tick

 do-plotting

end

to do-plotting

 set-current-plot "populations"

 set-current-plot-pen "robots"

 plot count robots

 set-current-plot-pen "humans"

 plot count humans

end

Here are the steps to make the transition:

Copy the plot count robots command and paste it into the Update Commands field for the robots pen in the plot edit dialog. Remove it from the do-plotting procedure.

The plot count humans command can be moved in the same way for the humans pen.

After those lines are removed from the do-plotting procedure, it doesn’t actually do anything anymore! Remove it.

The final step is to replace the do-plotting procedure calls in setup and go . In setup , the do-plotting call should be changed to reset-ticks . In go , the do-plotting call should be

changed to tick . reset-ticks and tick will both cause plotting to happen automatically.

The resulting (much simpler) code looks like this:

to setup

 clear-all

 ...

https://github.com/NetLogo/NetLogo/wiki/6.0-Extension-and-Controlling-API-Transition-Guide
https://github.com/NetLogo/NetLogo-Extension-Plugin
http://www.scala-sbt.org/
https://github.com/NetLogo/NetLogo/wiki/GoGo-Upgrade
https://github.com/NetLogo/GoGo-RXTX-Extension

 reset-ticks

end

to go

 ...

 tick

end

For more details on how plotting works in NetLogo 5.0, see the Plotting Sections of the Programming Guide and the Interface Guide. For details on how plotting interacts with the tick counter,

read on.

Tick counter

The way the tick counter works has changed in 5.0. Instead of being initially set to 0, the tick counter is initially blank.

reset-ticks

You must use reset-ticks to start the tick counter at 0 before using ticks , tick or tick-advance for the first time.

reset-ticks should go at the end of your setup procedure. Putting it there will allow your model to work with 5.0’s new plotting features.

reset-ticks and plotting

In 5.0, you don’t have to put your plotting code in the Code tab anymore. Instead, you can put it inside the plots themselves, in the Interface tab. Code inside plots is triggered by reset-ticks

and tick . Resetting the tick counter runs plot setup code, and then it also runs plot update code to plot the initial state of the model. The initial state of the model won’t be in place until the end

of setup , so that’s why reset-ticks should go at the end.

__clear-all-and-reset-ticks

In order for models from previous NetLogo versions to work in 5.0 without changes, when an old model is opened in 5.0, any occurrences of clear-all (or ca) are automatically changed to

__clear-all-and-reset-ticks , which combines the effects of clear-all and reset-ticks . The two underscores on the name indicate that this is not a normal primitive, but exists only for

backwards compatibility.

You should remove __clear-all-and-reset-ticks from your code, replace it with clear-all , and put reset-ticks at the end of your setup procedure. (This doesn’t happen automatically

because the structure of NetLogo models is too free-form for an automatic converter to reliably make the change for you.)

Unicode characters

NetLogo 5.0 fully supports international characters cross-platform, using the Unicode character set. NetLogo 5.0 model files always represent Unicode characters using the UTF-8 encoding.

Previous versions of NetLogo allowed Unicode characters to be used in some contexts. However, model files were saved in the platform’s default encoding, which on most systems was some‑

thing other than UTF-8. Characters were handled correctly on the same platform (e.g. two Windows machines), but could be altered if the model was moved between platforms (e.g. from

Windows to Mac or vice versa).

When opening an existing model in NetLogo 5.0, if the model contains international or other non-ASCII characters, the characters may be interpreted incorrectly, because they were originally

written in a platform-specific encoding, but then read back in in UTF-8.

If only a few characters are affected, you might find it easiest just to fix them manually.

But if you expect a large number of characters to be affected, and you want them translated automatically, you can use a third party utility to re-encode your .nlogo file from its original encoding

into UTF-8. After conversion, open the model in NetLogo 5.0 and all characters should be correct.

Info tabs

NetLogo 5.0 uses the Markdown markup language to allow you to format your Info tab, including headers, bold and italics, images, and so forth.

Earlier versions of NetLogo used a custom markup language with much more limited capabilities.

When opening a model from an older version, NetLogo 5.0 translates your old markup into Markdown. Most of the time this produces good results, but you may want to check the results your‑

self and make sure that your Info tab still looks good.

Model speed

In NetLogo 5.0 every model has a “target frame rate” which affects the default speed at which the model runs, when the speed slider is in the middle, on the “normal speed” setting.

The default target frame rate for new models, and for models that were created in earlier versions of NetLogo, is 30 frames per second. If you are using tick-based updates, as we recommend

for most models, then that translates to 30 ticks per second.

If your model runs slower in 5.0 than it ran in 4.1, it’s probably just because its speed is being limited by this rate. If you want, you can press the Settings button in the Interface tab and change

the frame rate to a higher number.

Some old models used the every command to set a default speed. In most case this can be now removed from the code, and the target frame rate setting used instead.

List performance

The underlying data structure for NetLogo lists has changed.

In NetLogo 4.1, a NetLogo list was represented internally as a singly linked list. Some operations on singly linked lists are fast (such as first and butfirst) but others are slow because they

could require traversing the whole list (such as item and last).

In NetLogo 5.0, lists are now actually trees internally. As a result, some operations are a little slower, but other operations are drastically faster on long lists. See the Lists section of the

Programming Guide for details.

Some models may run a little slower with the new data structure, especially if you make heavy use of short lists. But other models will run faster – perhaps dramatically faster.

Some special ways of writing list-processing code that were useful in NetLogo 4.1 are no longer needed in 5.0. For example, since in 4.1 fput was fast and lput was slow, modelers sometimes

built up lists in reverse order using fput , perhaps calling reverse later to restore the intended order. In NetLogo 5.0, you don’t need to code that way anymore. fput and lput are the same

speed.

Extensions API

If you are the author of an extension, you will need to recompile it against the 5.0 NetLogo.jar and lib directory for it to work with 5.0.

You may also need to be aware of the following changes:

Syntax constants

The code for specifying the syntax of a primitive has changed slightly, for example Syntax.TYPE_STRING is now Syntax.StringType() . (From Java, the pair of parentheses at the end is

required. In Scala, you can omit them.)

LogoList construction

One significant change is that org.nlogo.api.LogoList no longer has a public constructor. Instead, there are two new ways to construct a LogoList .

If you have a java.lang.Iterable , you can copy the contents into a fresh LogoList by passing it to the static method LogoList.fromJava() . See the array extension source code for a sam‑

ple usage.

Or, to build up a new list one item a time, use org.nlogo.api.LogoListBuilder . The Extensions Guide has sample code showing the use of LogoListBuilder .

Primitive classes

In prior NetLogo versions, the extensions API required that each extension primitive have its own separate top-level class with a no-argument constructor. These limitations have now been

lifted. Also, api.Primitive objects are now made only once, when the extension is loaded, instead of every time the Code tab was recompiled.

Changes for NetLogo 4.1

Combining set and of

The following syntax is no longer supported:

set [<variable>] of <agent> <value>

Commands of this form must be rewritten using ask :

ask <agent> [set <variable> <value>]

Or, if the new value must be computed by the asking agent and not by the agent whose variable is being set:

;; OPTION #1 (using let):

let new-value <value>

ask <agent> [set <variable> new-value]

;; OPTION #2 (using myself):

ask <agent> [set <variable> [value] of myself]

So for example, this:

set [color] of turtle 0 red

Can be rewritten as:

ask turtle 0 [set color red]

It is not necessary to use let or myself since red is red from the point of view of both agents.

However, this:

set [color] of turtle 0 color

Must be rewritten as:

let new-color color

ask turtle 0 [set color new-color]

or

ask turtle 0 [set color [color] of myself]

file:///tmp/sbt_6c39b28e/extensions.html

in order not to change the meaning, since the two agents may have different starting values for color . The form using myself is briefer, but the former using let may be considered clearer,

depending on context and individual preference.

Changes for NetLogo 4.0

Who numbering

Prior to NetLogo 4.0, a dead turtle’s who number (stored in the who turtle variable) could be reassigned to a later newborn turtle. In NetLogo 4.0, who numbers are never reused until who num‑
bering is reset to 0 by the clear-all or clear-turtles command. This change in behavior may break a few old models.

Turtle creation: randomized vs. “ordered”

NetLogo 4.0 provides two different observer commands for creating turtles, create-turtles (crt) and create-ordered-turtles (cro).

crt gives the new turtles random colors and random integer headings. cro assigns colors sequentially and gives the turtles sequential equally spaced headings, with the first turtle facing

north (heading of 0).

Prior to NetLogo 4.0, the crt command behaved the way cro does now. If your old model depends on the “ordered” behavior, you will need to change your code to use cro instead of crt .

It is common for old models that used crt to contain extra commands to randomize the new turtles’ headings, for example rt random 360 or set heading random 360 . These commands are

no longer necessary when used inside crt .

Adding strings and lists

Prior to NetLogo 4.0, the + (addition) operator could be used to concatenate strings and join lists. In current NetLogo, + only works on numbers. To concatenate strings, use the word primi‑
tive; to join lists together, use the sentence primitive. This language change was made to increase the speed of code that uses + .

Old code:

print "There are " + count turtles + " turtles."

New code:

print (word "There are " count turtles " turtles.")

Likewise, if you need to concatenate lists, use SENTENCE.

This change is not handled automatically when converting old models; users will need to change their code by hand.

We know this change will be awkward for users who are used to the old syntax. We have made this change for efficiency and consistency. We can implement an addition operator that only adds

numbers much more efficiently than one that handles several different data types. Because addition is such a common operation, NetLogo’s overall speed is affected.

The -at primitives

The observer may no longer use patch-at , turtles-at , and BREEDS-at . Use patch , turtles-on patch , and BREEDS-on patch instead. Note that patch now rounds its inputs (before it

only accepted integer inputs).

Links

NetLogo 3.1 had supports for using links to connect turtles to make networks, graphs, and geometric figures. The links were themselves turtles.

In NetLogo 4.0, instead of links being turtles, links are now an independent fourth agent type, right alongside observer, turtles, patches. The primitives involving links are no longer considered

experimental; they are now fully part of the language.

Models that use the old, experimental turtle-based link primitives will need to be updated to use link agents. The differences are not huge, but hand updating is required.

Links are documented in the Links section of the Programming Guide, and in the NetLogo Dictionary entries for the link primitives. See the Networks section of the Models Library for example

models that use links. There are also some link-based Code Examples.

First you will need to remove any breeds called “links” if you are only using one type of links then you will not have to use breeds at all. If you are using multiple types of links see undirected-

link-breed and directed-link-breed . Commands and reporters that contain the word “links” (like __create-links-with , etc.) will automatically be converted to the new form without under‑
scores (create-links-with). However, primitives that use a different breed name (such as “edges”) will not be converted. You will need to remove the underscores by hand and unless you are

declaring a link breed with that name you will need to change the breed designation to “links”.

The commands remove-link(s)-with/from/to no longer exist. Instead you should ask the links in question to die .

For example:

ask turtle 0 [__remove-links-with link-neighbors]

becomes

ask turtle 0 [ask my-links [die]]

Several of the layout commands have slightly different inputs, the first two inputs are generally a turtle agentset and a link agentset to perform the layout on. See the dictionary entries for

details. layout-spring , layout-radial and layout-tutte

You may also need to rearrange the declaration of turtles-own variables, since links were once actually turtles. Any variables that apply to links should be moved into a links-own block.

Since links are no longer turtles they no longer have the built-in turtle variables (though some of the link variables are the same such as color and label . If you formerly used the location of

link turtles you will now need to calculate the midpoint of the link. This is fairly simple in a non-wrapping world.

to-report link-xcor

 report mean [xcor] of both-ends

end

to-report link-ycor

 report mean [ycor] of both-ends

end

it is a little bit trickier in a wrapping world but still fairly straightforward.

to-report link-xcor

 let other-guy end2

 let x 0

 ask end1

 [

 hatch 1

 [

 face other-guy

 fd [distance other-guy] of myself / 2

 set x xcor

 die

]

]

 report x

end

and similarly for ycor .

If you used either the size or heading of the link turtles you can use the reporters link-length and link-heading instead.

New “of” syntax

We have replaced three different language constructs, -of (with hyphen), value-from , and values-from with a single of construct (no hyphen).

old new

`color-of turtle 0` `[color] of turtle 0`

`value-from turtle 0 [size * size]` `[size * size] of turtle 0`

`mean values-from turtles [size]` `mean [size] of turtles`

When of is used with a single agent, it reports a single value. When used with an agentset, it reports a list of values (in random order, since agentsets are always in random order).

Note that when opening old models in the new version, -of , value-from , and values-from will automatically be converted to use “of” instead, but some nested uses of these constructs are

too complex for the converter and must be converted by hand.

Serial ask

The ask command is now serial rather than concurrent. In other words, the asked agents will run one at a time. Not until one agent completely finishes the entire body of the ask does the next

agent start.

Note that even the old ask was never truly concurrent; we simulated concurrent execution by interleaving execution among the agents using a turn-taking mechanism described in the NetLogo

FAQ.

We have made this change because in our experience, users often wrote models that behaved in unexpected ways due to the simulated concurrency, but rarely wrote models that benefited

from the simulated concurrency. Models exhibiting unexpected behavior could usually be fixed by adding the without-interruption command in the right places, but it was difficult for users

to know whether that command was needed and if so, where.

In NetLogo 4.0, without-interruption is no longer necessary unless your model uses ask-concurrent (or a turtle or patch forever button containing code that depends on simulated concur‑

rency). In most models, all uses of without-interruption can be removed.

The simulated concurrency formerly employed by “ask” is still accessible in three ways:

You may use the ask-concurrent primitive instead of ask to get the old simulated concurrency. (We don’t recommend this, though.)

Commands issued in the Command Center directly to turtles, patches, or links have an implied ask-concurrent .

Turtle, patch, and link forever buttons have an implied ask-concurrent as well.

Note that ask itself is always serial regardless of the context in which it is used, however.

In our own Models Library, models that make use of this concurrency are rare. A prominent example, though, is Termites, which uses a concurrent turtle forever button.

Tick counter

NetLogo now has a built-in tick counter for representing the passage of simulated time.

You advance the counter by one using the tick command. If you need to read its value, there’s a reporter called ticks . The clear-all command resets the tick counter; so does reset-

ticks .

In most models the tick counter will be integer-valued, but if you want to use smaller increments of time, you can use the tick-advance command to advance the tick counter by any positive

amount, including fractional amounts. Some Models Library models that use tick-advance are Vector Fields and the GasLab models.

The value of the tick counter is displayed in the toolbar at the top of the Interface tab. (You can use the Settings… button in the toolbar to hide the tick counter, or change the word “ticks” to

something else.)

View update modes

In the past, NetLogo always tried to update the view about 20 times a second. We’re now calling that “continuous” view updates. The biggest problem with it was that you usually want updates

to happen between model ticks, not in the middle of a tick, so we had a checkbox on buttons that (by default) forced a display update after every button iteration. That made sure updates hap‑
pened between ticks, but it didn’t get rid of the intermediate updates. You had to use no-display and display to lock them out.

We still support continuous updates. They are the default when you start up NetLogo. But most Models Library models now use tick-based updates. With tick-based updates, updates happen

only when the tick counter advances. (The display command can be used to force additional updates; see below.)

The advantages of tick-based updates as we see them are as follows:

1. Consistent, predictable view update behavior which does not vary from computer to computer or from run to run.

2. Intermediate updates can confuse the user of your model by letting them see things they aren’t supposed to see, which may be misleading.

3. Increased speed. Updating the view takes time, so if one update per tick is enough, then enforcing than there is only one update per tick will make your model faster.

4. Instead of having a “force view update” checkbox in every button like in NetLogo 3.1, we only need one choice which applies to the entire model.

5. Using the speed slider to slow down a model now just inserts pauses between ticks. So with tick-based updates, setup buttons are no longer affected by the speed slider. This was a real

annoyance with the old speed slider. (The annoyance persists for models that use continuous updates, though.)

As mentioned above, most models in our Models Library now use tick-based updates.

Even for models that would normally be set to tick-based updates, it may be useful to switch to continuous updates temporarily for debugging purposes. Seeing what’s going on within a tick,

instead of only seeing the end result of a tick, could help with troubleshooting.

If you switch your model to use tick-based updates, you’ll also need to add the tick command to your code, otherwise the view won’t update. (Note that the view still always updates when a

button pops up or a command entered in the command center finishes, though. So it’s not like the view will just stay frozen indefinitely.)

How to make a model use ticks and tick-based updates

Here are the steps to follow to convert your model to use ticks and tick-based updates in NetLogo 4.0:

1. In the Interface tab toolbar, on the right hand side where it says “update view:”, change the setting from “continuously” to “on ticks”.

2. Add the tick command to your go procedure, at or near the end. In Models Library models we always put tick after the agents move but before any plotting commands. That’s because the

plotting commands might contain something like plotxy ticks ... and we want the new value of the tick counter used, not the old one. Most models don’t refer to the tick counter in their

plotting commands, but nonetheless, for consistency and to avoid mistakes we suggest always putting tick before the plotting commands.

Some models will require some additional changes:

1. If your model already has a global “ticks” or “clock” or “time” variable, get rid of it. Use the tick command and ticks reporter instead. (If your model uses fractional increments of time, use

tick-advance instead of tick .) If you had a monitor for that variable, you can get rid of it; there’s now a tick counter in the toolbar.

2. clear-all resets the tick counter to zero. If you don’t use clear-all in your setup procedure, then you may need to add reset-ticks to reset the counter to zero.

3. If you used no-display and display to prevent view updates from happening in the middle of go, you can get rid of them.

4. If your model needs to update the view without advancing the tick counter (examples: Party, Dice Stalagmite, network models with animated layout, models with mouse interaction buttons),

use the display command to force additional view updates so the user can see what is going on.

Speed slider

Previous versions of NetLogo had a speed slider that could be used to make models run slower, so you can see what’s going on.

In NetLogo 4.0, the slider can be used to speed up models as well. It does this by updating the view less frequently. Updating the view takes time, so the fewer updates, the faster the model

runs.

The default position of the slider is in the center. When you’re at the center, the slider says “normal speed”.

As you move the slider away from the center position, the model will gradually run faster or slower.

At very high speeds, view updates become very infrequent and may be separated by several seconds. It may feel like the model is actually running slower, since the updates are so infrequent.

But watch the tick counter, or other indicators such as plots, and you’ll see that yes, the model really is running faster. If the infrequent updates are disconcerting, don’t push the slider so far

over.

When using tick-based updates, slowing the model down does not cause additional view updates. Rather, NetLogo simply pauses after each tick.

When using continuous updates, slowing the model down means view updates become more closely spaced. If you push the speed slider more than halfway to the left, the model will be run‑

ning so slowly that you can watch turtles moving one at a time! This is new in NetLogo 4.0; in previous NetLogo versions, no matter how slowly you ran a model, you would never see the agents

in an ask moving one at a time; all the agents in an ask always appeared to move together.

Numbers

NetLogo no longer maintains an internal distinction between integers and floating point numbers. So for example:

Old:

observer> print 3

3

observer> print 3.0

3.0

observer> print 1 + 2

3

observer> print 1.5 + 1.5

3.0

observer> print 3 = 3.0

true

(The last line shows that although the distinction between integer 3 and floating point 3.0 was maintained, the two numbers were still considered equal.)

New:

observer> print 3

3

observer> print 3.0

3

observer> print 1 + 2

3

observer> print 1.5 + 1.5

3

observer> print 3 = 3.0

true

We expect that only rare models will be negatively impacted by this change.

A benefit of this change is that NetLogo now supports a much larger range of integers. The old range was -2,147,483,648 to 2,147,483,647 (around +/- 2 billion); the new range is

+/-9,007,199,254,740,992 (around +/- 9 quadrillion).

Agentset building

NetLogo 3.1 (and some earlier versions) included primitives called turtles-from and patches-from that were occasionally useful for building agentsets. In NetLogo 4.0, these primitives have

been replaced with new primitives called turtle-set and patch-set that are much more flexible and powerful. (link-set exists as well.) See the entries for these primitives in the NetLogo

Dictionary. Models that use the old turtles-from and patches-from will need to be altered by hand to use the new primitives.

RGB Colors

In NetLogo 3.1 RGB and HSB colors could be approximated as NetLogo colors using the rgb and hsb primitives. These have been renamed to approximate-rgb and approximate-hsb and

now expect inputs in the range 0-255, not 0-1.

The full RGB spectrum is now available in NetLogo so it may no longer be necessary to use these primitives at all. You can set any color variable to a three-item RGB list, with values in the 0-255

range, and get that exact color. See the Color section of the Programming Guide for details.

Tie

In previous versions __tie was provided as an experimental feature. As of NetLogo 4.0 links have a tie-mode variable which can be set to "none" , "free" , or "fixed" . In 4.0 tie is now a

link-only primitive. This means that to tie turtle 1 to turtle 0 you write:

ask turtle 0 [create-link-to turtle 1 [tie]]

See the Tie section of the programming guide for details.

Changes for NetLogo 3.1

Agentsets

If your model is behaving strangely or incorrectly, it may be because since NetLogo 3.1, agentsets are now always in random order. In prior versions of NetLogo, agentsets were always in a fixed

order. If your code depended on that fixed order, then it won’t work anymore. How to fix your model to work with randomized agentsets depends on the details of what your code is doing. In

some situations, it is helpful to use the sort or sort-by primitives to convert an agentset (random order) into a list of agents (fixed order). See “Lists of agents” in the Lists section of the

Programming Guide.

Wrapping

If you are seeing pieces of turtle shapes wrapping around the view edges, it’s because NetLogo 3.0 allowed you to turn off such wrapping in the view without affecting the behavior of the

model. Since NetLogo 3.1, if you don’t want the view to wrap you must make it so the world doesn’t wrap, using the new topology feature. Making this change may require other changes to your

model, though. See the Topology section of the Programming Guide for a thorough discussion of how to convert your model to take advantage of this new feature.

Random turtle coordinates

Many models made in NetLogo 3.0 or earlier use setxy random world-width random world-height to scatter turtles randomly, using either random or random-float . It only works if world

wrapping is on.

(Why? Because when wrapping is on, you can set coordinates of turtles to numbers beyond the edge of the world and NetLogo will wrap the turtle to the other side. But in worlds that don’t wrap

setting the x or y coordinates of a turtle to a point outside the bounds of the world causes a runtime error. The world wrap settings were added in NetLogo 3.1. See the Topology section of the

Programming Guide for more information.)

To fix your model so that it works regardless of the wrapping settings, use one of these two commands instead:

setxy random-xcor random-ycor

setxy random-pxcor random-pycor

The two commands are a bit different. The first command puts the turtle on a random point in the world. The second command puts the turtle on the center of a random patch. An even more

concise way to put a turtle on the center of a random patch is:

move-to one-of patches

Extension Manager Guide

The Extension Manager is a tool for discovering and managing extensions. Extensions provide additional NetLogo language primitives that can be used in NetLogo models, for doing any of a

wide variety of things, from programming with more sophisticated data structures (like networks and tables) to capturing video from a webcam. With the Extension Manager, you can easily

browse through dozens of extensions and install them instantly. You can also update extensions whenever a new version is available, to ensure that you have the latest features and bug fixes.

Authoring and Sharing

Interested in adding some new functionality to NetLogo by creating your own extension? Have an extension you made and want to add it to the Extension Manager? See the extension authoring

page to get started.

Interface

The Extension Manager can be shown by choosing “Extensions…” from the Tools menu.

On the left side of the Extension Manager window, you can see a list of all available extensions. Extensions that are already installed and up-to-date have a green checkmark next to them.

Extensions that are installed but have a newer version available are marked with an orange arrow. Extensions that are not installed have no indicator. Extensions have an orange exclamation

point next to them if any installation of that extension through the Extension Manager (past or future) would be overridden by a version of the extension that is present in the NetLogo

installation’s extensions directory or in the current model’s directory.

When an extension is selected, the text on the right side provides a detailed description of the extension. Above the description are buttons for various context-sensitive operations, such as

installing, updating, and uninstalling. The “Add to Code Tab” button will add the extension to the list of your model’s extensions (for example, changing the line of code extensions [array

table] to extensions [array table web] when used for the Web extension). The “Homepage” button will open documentation in your web browser, which will provide you with information

about the extension, a list of its primitives, and how to use them.

At the top of the window, there is a text box that can be used to filter down the list of extensions based on what you type. Along the bottom of the Extension Manager window is a button that will

allow you to instantly update all of your extensions to their latest versions (if any updates are available). If NetLogo detects any extensions that have been installed outside of the Extension

Manager, a “View Conflicting Libraries” button will appear at the bottom of the window, allowing you to display all of the other extensions and their locations on your computer.

Note that you can also select multiple extensions in the list with your operating system’s standard keys for performing multi-item selections (e.g. Ctrl, Shift, Command). This feature can be used

to, for example, install multiple extensions all at once.

file:///tmp/sbt_6c39b28e/extensions.html
file:///tmp/sbt_6c39b28e/extension-authoring.html
file:///tmp/sbt_6c39b28e/extension-authoring.html

Shapes Editor Guide

The Turtle and Link Shape Editors allows you to create and save turtle and link designs.

NetLogo uses fully scalable and rotatable vector shapes, which means you can create designs by combining basic geometric elements, which can appear on-screen in any size or orientation.

Getting started

To begin making shapes, choose Turtle Shapes Editor or Link Shapes Editor in the Tools menu. A new window will open listing all the shapes currently in the model, beginning with default, the

default shape. The Shapes Editor allows you to edit shapes, create new shapes, and borrow from another model. You can also import turtle shapes from a library of pre-existing shapes.

Importing shapes

Every new model in NetLogo starts off containing a small core set of frequently used shapes. Many more turtle shapes are available by using the Import from library… button. This brings up a

dialog where you can select one or more shapes and bring them into your model. Select the shapes, then press the Import button.

Similarly, you can use the Import from model… button to borrow shapes from another model.

Default shapes

Here are the turtle shapes that are included by default in every new NetLogo model:

First row: default, airplane, arrow, box, bug, butterfly, car Second row: circle, circle 2, cow, cylinder, dot, face happy, face neutral Third row: face sad, fish, flag, flower, house, leaf, line Fourth

row: line half, pentagon, person, plant, sheep, square, square 2 Fifth row: star, target, tree, triangle, triangle 2, truck, turtle Sixth row: wheel, x

Shapes library

And here are the shapes in the shapes library (including all of the default shapes, too):

By default there is only one Link shape in a model, that is “default”. This shape is simply a single straight line with a simple arrowhead (if the link happens to be directed).

Creating and editing turtle shapes

Pressing the New button will make a new shape. Or, you may select an existing shape and press Edit.

Tools

In the upper left corner of the editing window is a group of drawing tools. The arrow is the selection tool, which selects an already drawn element.

To draw a new element, use one of the other seven tools:

The line tool draws line segments.

The circle, square, and polygon tools come in two versions, solid and outline.

When using the polygon tool, click the mouse to add a new segment to the polygon. When you’re done adding segments, double click.

After you draw a new element, it is selected, so you can move, delete, or reshape it if you want:

To move it, drag it with the mouse

To delete it, press the Delete button.

To reshape it, drag the small “handles” that appear on the element only when it is selected.

To change its color, click on the new color.

Previews

As you draw your shape, you will also see it in five smaller sizes in the five preview areas found near the bottom of the editing window. The previews show your shape as it might appear in your

model, including how it looks as it rotates. The number below each preview is the size of the preview in pixels. When you edit the view, patch size is also measured in pixels. So for example, the

preview with “20” below it shows you how your shape would look on a turtle (of size 1) on patches of size 20 pixels.

The rotatable feature can be turned off if you want a shape that always faces the same way, regardless of the turtle’s heading.

Overlapping shapes

New elements go on top of previous elements. You can change the layering order by selecting an element and then using the Bring to front and Send to back buttons.

Undo

At any point you can use the Undo button to undo the edit you just performed.

Colors

Elements whose color matches the Color that changes (selected from a drop-down menu – the default is gray) will change color according to the value of each turtle’s color variable in your

model. Elements of other colors don’t change. For example, you could create cars that always have yellow headlights and black wheels, but different body colors.

Other buttons

The “Rotate Left” and “Rotate Right” buttons rotate elements by 90 degrees. The “Flip Horizontal” and “Flip Vertical” buttons reflect elements across the axes.

These four buttons will rotate or flip the entire shape, unless an element is selected, in which case only that element is affected.

These buttons are especially handy in conjunction with the “Duplicate” button if you want to make shapes that are symmetrical. For example, if you were making a butterfly, you could draw the

butterfly’s left wing with the polygon tool, then duplicate the wing with the “Duplicate” button, then turn the copy into a right wing with the “Flip Horizontal” button.

Shape design

It’s tempting to draw complicated, interesting shapes, but remember that in most models, the patch size is so small that you won’t be able to see very much detail. Simple, bold, iconic shapes

are usually best.

Keeping a shape

When the shape is done, give it a name and press the Done button at the bottom of the editing window. The shape and its name will now be included in the list of shapes along with the “default”

shape.

Creating and editing link shapes

Managing link shapes is very similar to managing turtle shapes. So, you can create a new shape by pressing the New button or you can edit existing shapes. When you are done editing a shape

press Done if you want to keep it.

Changing link shape properties

There are several different properties for each link shape that you are allowed to change:

Name - link shapes can have the same name as turtle shapes but must be unique among link shapes.

Direction Indicator - the direction indicator (the little arrow on directed links) is just like the turtle vector shapes, you can edit it using the same editor by pressing the Edit button.

Curviness - this is the amount of bend in a link expressed in patches (this is particularly useful if you have directed links going in both directions so you can discern both links)

Number of lines: You can have 1, 2, or 3 lines in each link shape, you control this by selecting line patterns in the “left line”, “middle line”, and “right line” selection boxes.

Dash pattern of lines: There are several dashed line patterns available in the selection boxes so not all lines need be solid.

Here are some link shapes with various properties:

Using shapes in a model

In the model’s code or in the command center, you can use any of the shapes that are in the model (though only turtles can have turtle shapes and only links can have link shapes). For example,

suppose you want to create 50 turtles with the shape “rabbit”. Provided there is some turtle shape called rabbit in this model, give this command to the observer in the command center:

observer> crt 50

And then give these commands to the turtles to spread them out, then change their shape:

turtles> fd random 15

turtles> set shape "rabbit"

Voila! Rabbits! Note the use of double quotes around the shape name. Shape names are strings.

Similarly, you can set the shape variable of links. Assuming there is a link shape called “road” in this model:

observer> crt 5 [create-links-with other turtles]

turtles> fd 5

links> set shape "road"

The set-default-shape command is also useful for assigning shapes to turtles and links.

BehaviorSpace Guide

This guide has three parts:

What is BehaviorSpace?: A general description of the tool, including the ideas and principles behind it.

How It Works: Walks you through how to use the tool and highlights its most commonly used features.

Advanced Usage: How to use BehaviorSpace from the command line, or from your own Java code.

A number of new features were introduced in NetLogo 6.4:

Subexperiment syntax: A syntax for allowing parameter combinations to be run separately, rather than being expanded combinatorically.

Run metrics when: A reporter can be used to conditionally record measurements.

Pre experiment commands: Commands can be run before the experiment begins.

Post experiment commands: Commands can be run after the experiment ends.

Statistics output: The mean and standard deviation of data from repetitions can be saved in an output file.

Lists output: List data can be output in a file with one list element per cell.

Importing and exporting: Experiments can now be exported to an XML file that can be used when running headlessly. Experiments can also be imported into a model.

Paused experiments: Experiments can now be paused and resumed.

Run options: update plots and monitors: Reduction in memory usage when box is unchecked.

More about changes to BehaviorSpace in NetLogo 6.4:

Experiments created in versions prior to 6.4 can still be opened, but experiments created using new features are not backwards compatible.

For information on format changes to output files see Output File Changes.

Hovering over the Experiment dialog entry titles will show a helpful ‘tooltip’. See Creating an experiment setup.

Experiments using the new features can be found in the model Sample Models=>Biology=>Wolf Sheep Predation, with with additional notes in the Info tab.

Additional minor changes can be found by searching this page for (Since 6.4).

The bspace extension was added with NetLogo 7.0.0.

What is BehaviorSpace?

BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments with models.

BehaviorSpace runs a model many times, systematically varying the model’s settings and recording the results of each model run. This process is sometimes called “parameter sweeping”. It lets

you explore the model’s “space” of possible behaviors and determine which combinations of settings cause the behaviors of interest.

If your computer has multiple processor cores, you can specify how many model runs will happen in parallel. Using multiple runs in parallel will increase the memory used by BehaviorSpace.

Why BehaviorSpace?

The need for this type of experiment is revealed by the following observations. Models often have many settings, each of which can take a range of values. Together they form what in mathe‑
matics is called a parameter space for the model, whose dimensions are the number of settings, and in which every point is a particular combination of values. Running a model with different

settings (and sometimes even the same ones) can lead to drastically different behavior in the system being modeled. So, how are you to know which particular configuration of values, or types

of configurations, will yield the kind of behavior you are interested in? This amounts to the question of where in its huge, multi-dimension parameter space does your model perform best?

For example, suppose you want speedy synchronization from the agents in the Fireflies model. The model has four sliders – number, cycle-length, flash-length and flashes-to-reset – that have

approximately 2000, 100, 10 and 3 possible values, respectively. That means there are 2000 * 100 * 10 * 3 = 6,000,000 possible combinations of slider values! Trying combinations one at a

time is hardly an efficient way to learn which one will evoke the speediest synchronization.

BehaviorSpace offers you a much better way to solve this problem by sampling the model’s parameter space – not exhaustively, but enough so that you will be able to see relationships form

between different slider values and the behavior of the system. One way to do this is to specify a subset of values from the ranges of each slider. See Combinatorial syntaxes. BehaviorSpace

will run the model with each possible combination of those values and, during each model run, record the results. Since NetLogo 6.4 it has been possible to specify non-combinatorial sets of

slider values. See Subexperiment syntax. After all the runs are over, a dataset is generated which you can open in a different tool, such as a spreadsheet, database, or scientific visualization

application, and explore.

By enabling you to explore the entire “space” of behaviors a model can exhibit, BehaviorSpace can be a powerful assistant to the modeler.

How It Works

To begin using BehaviorSpace, open your model, then choose the BehaviorSpace item on NetLogo’s Tools menu.

Managing experiment setups

The dialog that opens lets you create, edit, duplicate, delete, import, export, and run experiment setups. Experiments are listed by name and total number of model runs.

Experiment setups are considered part of a NetLogo model and are saved as part of the model, but can be also be exported as individual files. See Importing and exporting (Since 6.4).

To create a new experiment setup, press the “New” button. To edit an existing experiment setup, press the “Edit” button. The same dialog is used in both cases, what differs is the information

that is already filled in. The dialog is non-blocking, which is useful if you want to copy something from the Code Tab, or view sliders in the Interface Tab (Since 6.4).

Creating an experiment setup

The information that can be included in the Experiment dialog is detailed below. Note that it is not necessary to specify everything; some parts can be left blank or with their default values.

Hovering over the edit dialog entry titles will show a helpful ‘tooltip’, so you don’t have to revisit this page as often (Since 6.4).

Experiment name: Experiments in the same model must have different names. If you open a model that contains experiments with duplicate names, the conflicting names will be altered to

ensure that all experiment names remain unique (Since 6.4).

Vary variables as follows: This is where you specify which settings you want varied, and what values you want them to take. Variables can include sliders, switches, choosers, and any global

variables in your model. You may notice that the view and plots do not correspond to the values in the widgets once the experiment is completed. This is because the globals that are controlled

by widgets are reset to their initial state at the end of the experiment. To synchronize your view and plots with the widgets, run your procedure that initializes the view.

Variables can also include max-pxcor , min-pxcor , max-pycor and min-pycor , world-width , world-height and random-seed . These are not variables, strictly speaking, but BehaviorSpace

lets you vary them as if they were. Varying the world dimensions lets you explore the effect of world size upon your model. Setting world-width and world-height is valid under two circum‑
stances. 1) If the origin is centered in width or height BehaviorSpace will keep it centered in that dimension. This requires that the corresponding value(s) world-width and/or world-height

must be odd. 2) If one of the bounds is zero it will remain zero and the other bound will move. For example, if you start with a world with min-pxcor = 0 , max-pxcor = 10 and you vary world-

width like this:

["world-width" [11 1 14]]

min-pxcor will remain zero and max-pxcor will be set to 11, 12, and 13 for successive runs. If neither of these conditions is true you cannot you cannot vary world-height or world-width

directly but must vary max-pxcor , max-pycor , min-pxcor and min-pycor instead.

Varying random-seed lets you repeat runs by using a known seed for the NetLogo random number generator. Note that you’re also free to use the random-seed command in your experiment’s

setup commands. For more information on random seeds, see the Random Numbers section of the Programming Guide.

Combinatorial syntaxes

You may specify values either by listing the values you want used, or by specifying that you want to try every value within a given range. For example, to give a slider named number every value

from 100 to 1000 in increments of 50, you would enter:

["number" [100 50 1000]]

Or, to give it only the values of 100, 200, 400, and 800, you would enter:

["number" 100 200 400 800]

Be careful with the brackets here. Note that there are fewer square brackets in the second example. Including or not including this extra set of brackets is how you tell BehaviorSpace whether

you are listing individual values, or specifying a range.

Also note that the double quotes around the variable names are required.

All combinations of the specified values will be run. For example, if you have two values for a variable a and three values of a variable b six runs will result.

["a" 1 2]

["b" 2 4 10]

This would create six runs, organized as follows:

a b

1 2

1 4

1 10

2 2

2 4

2 10

Run combinations in sequential order checkbox This box is checked by default, and causes variables specified later to vary more quickly than those specified earlier. When the box is

unchecked, non-sequential order results, with variables specified earlier varying more quickly than those specified later. The non-sequential order for the variable specification above is:

a b

1 2

2 2

1 4

2 4

1 10

a b

2 10

Subexperiment syntax

(Since 6.4)

For more advanced users, there is a third available syntax for varying parameters, the subexperiment syntax. For example, in the Wolf Sheep Predation model, if you wanted to try two values for

the grass-regrowth-time variable, each with its own values for the initial-number-sheep and initial-number-wolves variables, you could write it as follows:

[["grass-regrowth-time" 30]["initial-number-sheep" 116]["initial-number-wolves" 107]]

[["grass-regrowth-time" 40]["initial-number-sheep" 100]["initial-number-wolves" 77]]

Note the use of doubly nested square brackets to separate each variable within a subexperiment. This would create two runs, organized as follows:

grass-regrowth-

time
initial-number-sheep initial-number-wolves

30 116 107

40 100 77

The subexperiment syntax also allows you to define constants using the standard syntax, which will be applied to each subexperiment where they are not overwritten. To add to the example

above, if you wanted to try those combinations of initial-number-sheep and initial-number-wolves but with the same value for grass-regrowth-time , you could write it as follows:

["grass-regrowth-time" 30]

[["initial-number-sheep" 116]["initial-number-wolves" 107]]

[["initial-number-sheep" 100]["initial-number-wolves" 77]]

This would set grass-regrowth-time to 30 for both subexperiments, resulting in the following runs:

grass-regrowth-

time
initial-number-sheep initial-number-wolves

30 116 107

30 100 77

You can also override a constant in a subexperiment, as in the following example:

["grass-regrowth-time" 30]

[["initial-number-sheep" 116]["initial-number-wolves" 107]]

[["grass-regrowth-time" 40]["initial-number-sheep" 100]["initial-number-wolves" 77]]

[["initial-number-sheep" 80]["initial-number-wolves" 153]]

This would produce three runs with the following combinations:

grass-regrowth-

time
initial-number-sheep initial-number-wolves

30 116 107

40 100 77

30 80 153

Note that all constants must be defined before any subexperiments.

You can vary as many settings as you want, including just one, or none at all. Any settings that you do not vary will retain their current values. Not varying any settings is useful if you just want

to do many runs with the current settings.

The order in which you list the variables determines the run order. All values for a later variable will be tried before moving to the next value for an earlier variable. So for example if you vary

both x and y from 1 to 3, and x is listed first, then the order of model runs will be: x=1 y=1, x=1 y=2, x=1 y=3, x=2 y=1, and so on.

Repetitions: Sometimes the behavior of a model can vary a lot from run to run even if the settings don’t change, if the model uses random numbers. If you want to run the model more than once

at each combination of settings, enter a higher number. With sequential ordering repetitions occur in sequential runs:

a b

1 2

1 2

2 2

a b

2 2

1 6

1 6

2 6

2 6

1 10

1 10

2 10

2 10

With non-sequential ordering repetitions occur as a second group of runs:

a b

1 2

2 2

1 6

2 6

1 10

2 10

1 2

2 2

1 6

2 6

1 10

2 10

Measure runs using these reporters: This is where you specify what data you want to collect from each run. For example, if you wanted to record how the population of turtles rose and fell dur‑
ing each run, you would enter:

count turtles

You can enter one reporter, or several, or none at all. If you enter several, each reporter must be on a line by itself, for example:

count frogs

count mice

count birds

If you don’t enter any reporters, the runs will still take place. This is useful if you want to record the results yourself your own way, such as with the export-world command. You can use

reporters you have defined in the Code tab. Reporters appear as column headers. If you prefer compact headers you could replace count patches with [pcolor = red] with a reporter

red-patches defined in the Code tab.

Run metrics every step: Normally NetLogo will measure model runs at every step, using the reporters you entered in the previous box. If you’re doing very long model runs, you might not want

all that data. Uncheck this box if you want to either only measure model runs at the end of the run or if you want to specify certain conditions when measurements should be taken.

Run metrics when

(Since 6.4)

This reporter will be used to determine when measurements should be recorded if they are not being recorded at every step. Measurements will be always be taken at the end of each model

run, even if this text box is empty as was previously the case when the Measure runs at every step (now Run metrics every step) was unchecked. For example ticks mod 10 = 0 would record

every tenth tick, as well as the last tick. Multiple reporters can be combined using and and or.

Pre experiment commands

These commands will be run once, before the experiment begins.

Setup commands: These commands will be used to begin each model run. Typically, you will enter the name of a procedure that sets up the model, typically setup . But it is also possible to

include other commands as well. If you want the same results each time you run an experiment, you could use something like random-seed 473 setup or to have different results for repetitions

random-seed (474 + behaviorspace-run-number) setup

Go commands: These commands will be run over and over again to advance to the model to the next “step”. Typically, this will be the name of a procedure, such as go , but you may include

any commands you like.

Stop condition: This lets you do model runs of varying length, ending each run when a certain condition becomes true. For example, suppose you wanted each run to last until there were no

more turtles. Then you would enter:

not any? turtles

If you want the length of runs to all be of a fixed length, just leave this blank.

The run may also stop because the go commands use the stop command, in the same way that stop can be used to stop a forever button. The stop command may be used directly in the go

commands, or in a procedure called directly by the go commands. (The intent is that the same go procedure should work both in a button and in a BehaviorSpace experiment.) Note that the

step in which stop is used is considered to have been aborted, so no results will be recorded for that step. Therefore, the stopping test should be at the beginning of the go commands or pro‑
cedure, not at the end.

Post run commands: These are any extra commands that you want run when each run ends. Usually this is left blank, but you might use it to call the export-world command or record the

results of the run in some other way.

Post experiment commands

These are any commands that you want to run at the end of the experiment, after all runs have completed.

Time limit: This lets you set a fixed maximum length for each run. If you don’t want to set any maximum, but want the length of the runs to be controlled by the stop condition instead, enter 0.

Note on pre and post experiment commands: These commands execute outside of the actual runs, so they cannot affect the global variables or agents in the model (use the Setup commands

and Post run commands for that). If you use primitives like file-open or the CSV extension in the pre or post experiment commands, their internal state will not carry over into the runs and errors

will likely occur if used there.

Importing and exporting

(Since 6.4)

Although experiments are tied to a model and are usually saved along with a model, they can also be imported and exported individually to xml files. This allows you to easily transfer experi‑

ments between models, and also prepares experiments to be run headlessly. After an experiment is exported to an xml file, it can be edited by hand or by another script, not just within NetLogo.

The Import button allows you to import experiments from an xml file. The selected files may contain any number of experiments, but any experiments that are formatted incorrectly will not be

loaded. If you load an experiment that has the same name as an existing experiment, the name of the loaded experiment will be slightly altered to ensure that experiment names remain unique.

The Export button allows you to export experiments to an xml file. Any number of experiments may be selected for export at once, but they will all be combined into a single output file.

Special primitives for BehaviorSpace experiments

Currently there are only two, behaviorspace-run-number and behaviorspace-experiment-name . The run number reported by the former primitive matches the run number used in the results

files generated by BehaviorSpace. The experiment name reported by the latter matches the name with which the experiment was set up.

Running an experiment

When you’re done setting up your experiment, press the “OK” button, followed by the “Run” button. A dialog titled “Run Options” will appear.

Run options: formats

The “Run Options” dialog lets you choose to create data output files in two primary formats, Table output and Spreadsheet output. If one or both of these formats is selected, you can also

select the supplementary Lists output and Statistics output. Each file path can be entered in its corresponding text box, or using the *Browse… button to select a file path using the system file

dialog. If you don’t wish to use a particular format, you can clear the file text or click the Disable button and it’ll be cleared for you. The frequency of data collection is determined by the settings

of the Run metrics every step and Run metrics when options. For Table output and Spreadsheet output formats, the initial state of the system is recorded, after the setup commands run but

before the go commands run for the first time.

After selecting your output formats, BehaviorSpace will prompt you for the name of a file to save the results to. The default name ends in “.csv”. You can change it to any name you want, but

don’t leave off the “.csv” part; that indicates the file is a Comma Separated Values (CSV) file. This is a plain-text data format that is readable by any text editor as well as by most popular spread‑

sheet and database programs.

All four output formats will include a header section that has rows for 1) the NetLogo app version used, 2) the name of the NetLogo model file used, 3) the name of the BehaviorSpace experi‑

ment used, 4) the date and time at the start, and 5) the dimensions of the world used at the start.

Table output

This format lists each measurement step from each run in its own row, with each metric in a separate column. The measurement rows will appear in the order they happen in real time. With the

parallel runs option the measurements may appear in a mixed order as multiple runs can happen simultaneously. To help identify which run a row belongs to, there is a column titled [run num‑

ber] along with a column titled [step] that indicates the measurement number for that run. Each row also includes the values used for the variables during initial setup of the run; these values

are the same for each of that run’s measurement rows. Table output data is written to the file as each run completes.

The Table output format is good to use when you want to further process the data using another tool, such as importing into a database, a statistics package, or a spreadsheet application for

analysis.

In the Table output sample image below, the header section is in red, the run number and step columns are in blue, the initial values of the variables for the run are in green, and the measure‑

ment metric data is in purple.

Spreadsheet output

This format lists the step numbers as well as each metric for each run in a separate column, with each row corresponding to a measurement step that applies to all runs. If one run finishes

before another due to a stop condition, then its step numbers after that point will be blank. At the top of the file there is a [run number] row that will have the run number repeated for each

metric at the top of the file. After that are rows for the initial values given to each variable for the run. The spreadsheet output also calculates the min, mean, max, and final values for the step

numbers as well as each metric and lists those after the initial values before the individual run measurements. Then it lists the actual number of steps a run went through in a [total steps]

row.

The Spreadsheet output data makes it easier to quickly compare runs against each other, as they will be aligned vertically when imported into a spreadsheet application. It can also make gen‑

erating comparative graphs of results with initial variable changes across runs easy for the same reason.

It is important to note that Spreadsheet output data is not written to the results file until the experiment finishes. Since the data is stored in memory until the experiment is done, very large

experiments could run out of memory. You should disable Spreadsheet output unless you really want it. Also, if anything interrupts the experiment no spreadsheet results will be written.

Possible sources of interruptions would be runtime errors in the model, running out of memory, system crashes, or power outages. For long experiments you may want to also enable Table out‑
put format as a precaution so that if something happens and you get no Spreadsheet output you’ll at least get partial data output.

In the Spreadsheet output sample image below, the header section is in red, the run number row is in blue, the initial values of the variables for the run are in green, the extra calculated metrics

are in orange, and the measurement metric data is in purple.

Statistics output

(Since 6.4)

You can create a file with the mean and standard deviation of each numeric metric by enabling the Statistics output. Metrics are the reporters specified in the “Measure runs using these

reporters as metrics:” box. You must also use the Table output and/or the Spreadsheet output because one of them will used to calculate the mean and standard deviation of each numeric

metric across repetitions for each step. These calculations are done at the end of the experiment. The statistics are then saved in the specified file. It is important to note that metrics that pro‑
duce non-numeric values such as strings are not included in the statistics. If the metrics produce lists, the statistics are calculated across elements with the same index for each list. Statistics

are not calculated for metrics that produce lists that contain non-numeric elements. Also, the type of the measurement must remain constant. For example, statistics are not calculated if a met‑
ric produces measurements that can be both lists and numbers. Furthermore, the standard deviation may be “N/A”, which means that there were two or fewer collected measurements for that

step and parameter combination, producing a result that is not well-defined. The experiment must use at least 3 repetitions to produce standard deviation values.

In the Statistics output sample image below (creating using the “Red Queen” library model), the header section is in red, the parameter combinations are in green, the steps are in blue, and the

statistics are in purple. Starting with column F, the statistics are the mean of “count frogs”, the standard deviation of “count frogs”, followed by the same statistics for “count snakes”, average-

poison, and average-resistance. Column E shows the step, and columns A-D show the parameter combination that was used. The statistics are calculated across all the repetitions.

Lists output

(Since 6.4)

This format is a supplement to the other two primary formats, as opposed to a complete data collection format. If you have any reporters that return a list, you can use the Lists output format to

get properly formatted output for those reporters. Data is produced for all list reporters in the “metrics” box. In both Spreadsheet output and Table output formats, lists returned by reporters

will be condensed into a single cell, rather than their elements being spread out with one value per cell. If you need the list values in individual cells, select the List output format in addition to

one or both of the other formats.

Note that the Lists output format, like the Spreadsheet output format, will not contain any data until the experiment is complete. Also note that the Lists output must be used in tandem with

another format, it cannot be used on its own.

In the Lists output sample image below, the header section is in red, the reporter name is in orange, the run number and step columns are in blue, the initial values of the variables for the run

are in green, and the expanded list data is in purple. The list data starts in row 7, with the headers (the index into the list, starting from 0) starting in column E.

Output File Changes

(Since 6.4)

Output files have version numbers.

Spreadsheet output always includes step information.

Spreadsheet output column header [initial & final values] was changed to the more accurate [final value] .

Statistics output was added.

Lists output was added.

Run options: update plots and monitors

The “Run Options” dialog lets you choose whether to update plots and monitors or not. Performance is better when the box is unchecked. Note that (Since 6.4) if you begin the experiment with

the box unchecked, you will not be able to toggle between enabling and disabling the update plots checkbox in the “Running Experiments” dialog. This gives you an even greater performance

improvement than was obtained before NetLogo 6.4, when such toggling was possible. Check the box if you you need to export plot data using primitives such as export-interface , export-

plot , export-all-plots , and export-world .

Run options: parallel runs

The “Run Options” dialog also lets you select whether you want multiple model runs to happen in parallel, and if so, how many are allowed to be simultaneously active. The default and recom‑
mended maximum number of parallel runs are shown below the text box (Since 6.4). Your choice of number of parallel runs is remembered from experiment to experiment (Since 6.4). Because

each additional run increases memory usage we recommend starting with the default number of runs, and then trying more parallel runs if you want. The recommended maximum number of

parallel runs is just an estimate, and some users have found that performance is significantly decreased when using the maximum.

There are a few cautions associated with parallel runs.

First, if multiple runs are active, only one of them will be in the “foreground” and cause the view and plots to update. The other runs will happen invisibly in the background.

Second, invisible background runs can’t use primitives that only work in the GUI. For example, a background run can’t make a movie.

Third, since parallel runs progress independently of each other, table format output may contain interleaved, out-of-order results. When you analyze your table data, you may wish to sort it by

run number first. (Spreadsheet format output is not affected by this issue, since it is not written until the experiment completes or is aborted.)

Fourth, using all available processor cores may make your computer slow to use for other tasks while the experiment is running or slow to complete runs as contention will build for memory

between the runs themselves. If your model uses a large amount of memory, you may find that reducing the number of runs will enable the runs to complete in less time overall since work will

be done by the system keeping the memory for each run available. A good rule of thumb might be to start with the default value shown in the “Run Options”, and bump up or down from there to

see where your “sweet spot” is for least time to complete all runs.

Fifth, doing runs in parallel will multiply the experiment’s memory requirements accordingly. You may need to increase NetLogo’s memory ceiling (see this FAQ entry). By default NetLogo will

not exceed 50% of your system’s memory.

Sixth, each parallel run will get its own world for the model to run in. This world is not cleared automatically by BehaviorSpace if a parallel run gets re-used for another repetition, which happens

quite frequently. This means, for example, if you do ask patches [set pcolor red] in one run and do not use clear-all or clear-patches in the setup commands of the next run, then

the patches will all still be red. In general using clear-all before each run would be a best practice, but there are times when you might not want to, such as loading data from a file that

doesn’t change run-to-run. Just be careful with whatever data is not cleared out.

Seventh, there is a very, very small chance that at startup multiple parallel runs could wind up with the same random number generator state if they startup at the exact same moment in time.

This means the runs would produce identical output for all random operations and likely the same results. This would have a chance to happen when running on very fast processors and with

lots of parallel runs at once. If you need to make sure this doesn’t impact your results, you can add random-seed new-seed to your setup commands to re-generate a new unique random seed

for each run. In fact, storing the new-seed as a global variable so you can output it with the rest of your results would let you re-run a run later on by manually using that value to set the ran‑

dom-seed .

Observing runs

After you complete the “Run Options” dialog, another dialog will appear, titled “Running Experiment”. In this dialog, you’ll see a progress report of how many runs have been completed so far

and how much time has passed. If you entered any reporters for measuring the runs, and if you left the “Run metrics every step” box checked, then you’ll see a plot of how they vary over the

course of each run.

You can also watch the runs in the main NetLogo window. (If the “Running Experiment” dialog is in the way, just move it to a different place on the screen.) If you don’t need to see the plots

update, then use the checkboxes in the “Running Experiment” dialog to turn the updating off. This will make the experiment go faster. However, if you already disabled updating plots and moni‑

tors in the “Run Options” dialog, this checkbox will be disabled (Since 6.4).

If you want to stop your experiment before it’s finished, you have two options. To stop the experiment after the current runs have completed and save your progress for later, press the “Pause”

button (Since 6.4). To stop the experiment immediately without waiting for the current runs to complete, press the “Abort” button. Any output generated so far will still be saved, but pressing

“Abort” can lead to fragmented data, so aborted experiments cannot be resumed.

When all the runs have finished, the experiment is complete. Spreadsheet, Lists and Stats output are created at this point.

Paused experiments

(Since 6.4)

Paused experiments will appear in the BehaviorSpace window marked with “In Progress”. To resume an experiment where you paused it, select it and press the “Run” button. To reset a paused

experiment to its initial state, select it and press the “Abort” button.

If you are using Spreadsheet output a file containing the data up until the experiment is paused will be written. This data will be used as part of the creation of a complete Spreadsheet file. Note

that if your experiment is writing to its own external file you may need to make some changes in order for pausing to work correctly. For example you should use file-flush or file-close at

the end of each run to ensure all the data is written to the file, and should do file-open before doing any writing during a run. When opening a file in writing mode, all new data will be

appended to the end of the original file, which is probably the behavior you want.

Note that moving or deleting output files before resuming a paused experiment will cause an error. Outputting new experiment data to a file associated with an existing paused experiment may

also ause an error when that experiment is resumed.

Advanced Usage

Running from the command line

It is possible to run BehaviorSpace experiments “headless”, that is, from the command line, without any graphical user interface (GUI). This is useful for automating runs on a single machine or a

cluster of machines.

No Java programming is required. Experiment setups can be created in the GUI and then run later from the command line, or, if you prefer, you can create or edit experiment setups directly

using XML.

How to use it

Run NetLogo using the NetLogo_Console app with the --headless command line argument. This is found in the root directory of your NetLogo installation. The NetLogo_Console script sup‑
ports the following arguments:

--headless : Enable headless mode to run a BehaviorSpace experiment (required, will open the graphical interface otherwise).

--model <path> : pathname of model to open (required)

--setup-file <path> : read experiment setups from this file instead of the model file

--experiment <name> : name of experiment to run

--table <path> : pathname to send table output to (or - for standard output)

--spreadsheet <path> : pathname to send table output to (or - for standard output)

--lists <path> : pathname to send lists output to (or - for standard output), cannot be used without --table or --spreadsheet

–stats : pathname to send statistics output to (or - for standard output) cannot be used without --table or --spreadsheet

--threads <number> : use this many threads to do model runs in parallel, or 1 to disable parallel runs. defaults to floor(0.75 * <number of processors>) .

--update-plots : enable plot updates. Include this if you want to export plot data, or exclude it for better performance.

--min-pxcor <number> : override world size setting in model file

--max-pxcor <number> : override world size setting in model file

--min-pycor <number> : override world size setting in model file

--max-pycor <number> : override world size setting in model file

--model is required. If you don’t specify --experiment , you must specify --setup-file . By default no results are generated, so you’ll usually want to specify either --table or --spread‑

sheet , or both. If you specify any of the world dimensions, you must specify all four.

Note that prior to NetLogo 6.3.0 the directions were to use netlogo-headless.sh (or netlogo-headless.bat on Windows) along with a separate installation of Java of the system to run

BehaviorSpace experiments. The netlogo-headless.sh script is still included with NetLogo and can still be used as before, which might be preferrable in server environments where the

installed Java version is strictly controlled. But the recommended method for on a personal computer is to use the NetLogo_Console --headless app. Because NetLogo_Console uses the

Java that comes bundled with NetLogo it requires no extra software installation or configuration.

Examples

It is easiest if you create your experiment setup ahead of time in the GUI, so it is saved as part of the model. To run an experiment setup saved in a model, here is an example command line, run

from the NetLogo 7.0.2 installation folder so the paths to the NetLogo_Console app and Wolf Sheep Simple 5.nlogo model are correct.

The below commands should work as-is in a terminal on macOS and Linux. On Windows in the Command Prompt you can use ^ instead of \ to break the command across multiple lines, or

just put the command on a single line.

./NetLogo_Console --headless \

 --model "models/IABM Textbook/chapter 4/Wolf Sheep Simple 5.nlogo" \

 --experiment "Wolf Sheep Simple model analysis" \

 --table -

After the named experiment has run, the results are sent to standard output in table format, as CSV. - is how you specify standard output instead of output to a file.

When running NetLogo headless, it forces the system property java.awt.headless to be true. This tells Java to run in headless mode, allowing NetLogo to run on machines when a graphical

display is not available.

The required --model argument is used to specify the model file you want to open.

The --experiment argument is used to specify the name of the experiment you want to run. (At the time you create an experiment setup in the GUI, you assign it a name.)

Here’s another example that shows some additional, optional arguments:

./NetLogo_Console --headless \

 --model "models/IABM Textbook/chapter 4/Wolf Sheep Simple 5.nlogo" \

 --experiment "Wolf Sheep Simple model analysis" \

 --max-pxcor 5 \

 --min-pxcor -5 \

 --max-pycor 5 \

 --min-pycor -5

Note the use of the optional --max-pxcor , --max-pycor , etc. arguments to specify a different world size than that saved in the model. (It’s also possible for the experiment setup to specify val‑

ues for the world dimensions; if they are specified by the experiment setup, then there is no need to specify them on the command line.)

Since neither --table nor --spreadsheet is specified, no results will be generated. This is useful if the experiment setup generates all the output you need by some other means, such as

exporting world files or writing to a text file.

Yet another example:

./NetLogo_Console --headless \

 --model "models/IABM Textbook/chapter 4/Wolf Sheep Simple 5.nlogo" \

 --experiment "Wolf Sheep Simple model analysis" \

 --table wsp5-table-output.csv \

 --spreadsheet wsp5-spreadsheet-output.csv \

 --lists wsp5-lists-output.csv \

 --stats wsp5-stats-output.csv

The optional --table <filename> argument specifies that output should be generated in a table format and written to the given file as CSV data. If - is specified as the filename, than the out‑
put is sent to the standard system output stream. Table data is written as it is generated, with each complete run.

The optional --spreadsheet <filename> argument specifies that spreadsheet output should be generated and written to the given file as CSV data. If - is specified as the filename, than the

output is sent to the standard system output stream. Spreadsheet data is not written out until all runs in the experiment are finished.

The optional --lists <filename> argument specifies that lists output should be generated and written to the given file as CSV data. If - is specified as the filename, than the output is sent to

the standard system output stream. Lists data is not written out until all runs in the experiment are finished.

The optional --stats <filename> argument specifies that stats output should be generated and written to the given file as CSV data. If - is specified as the filename, than the output is sent to

the standard system output stream. Stats data is not written out until all runs in the experiment are finished.

Note that it is legal to specify both --table and --spreadsheet , and if you do, both kinds of output file will be generated. If you use --lists or --stats at least one of the --table or --

spreadsheet options must be used.

Here is an example that shows how to run an experiment setup which is stored in a separate XML file, instead of in the model file (see below for more information on the XML file format). This

assumes you’ve created a my-wsp-setups.xml file with a `My WSP Exploration" experiment and placed it in your home directory. The most straight-forward way to create a setup file is to cre‑

ate an experiment using BehaviorSpace in the NetLogo GUI and use the **Export ** option.

./NetLogo_Console --headless \

 --model "models/IABM Textbook/chapter 4/Wolf Sheep Simple 5.nlogo" \

 --setup-file ~/my-wsp-setups.xml \

 --experiment "My WSP Exploration"

If the XML file contains more than one experiment setup, it is necessary to use the --experiment argument to specify the name of the setup to use.

In order to run a NetLogo 3D experiment, run headless with the --3D argument, for example:

./NetLogo_Console --headless \

 --3D \

 --model "models/3D/Sample Models/GasLab/GasLab Free Gas 3D.nlogo3d" \

 --experiment "100 runs" \

 --table -

Note that you should supply a 3D model and there are also 3D arguments --max-pzcor <number> and --min-pzcor <number> .

The next section has information on how to create standalone experiment setup files using XML.

Setting up experiments in XML

We don’t yet have detailed documentation on authoring experiment setups in XML, but if you already have some familiarity with XML, then the following pointers may be enough to get you

started.

The structure of BehaviorSpace experiment setups in the new model file format as of NetLogo 7 is detailed in the XML File Format Wiki page. Prior to NetLogo 7, BehaviorSpace experiments

were also defined with XML, however the format was slightly different.

The easiest way to learn what setups look like in XML, though, is to author a few of them in BehaviorSpace’s GUI, save the model, export them (Since 6.4) and then examine the resulting .xml

file(s) in a text editor. The experiment setups can also be found towards the end of the .nlogox file, in a section that begins and ends with an experiments tag. Example:

<experiments>

 <experiment name="My WSP Exploration" repetitions="5" runMetricsEveryStep="false" timeLimit="2000">

 <setup>setup</setup>

 <go>go</go>

 <metrics>

 <metric>count wolves</metric>

 <metric>count sheep</metric>

 <metric>sum [grass-amount] of patches</metric>

 </metrics>

 <constants>

 <enumeratedValueSet variable="energy-gain-from-grass">

 <value value="2"/>

 </enumeratedValueSet>

 <steppedValueSet variable="number-of-wolves" first="5" step="1" last="15"/>

https://github.com/NetLogo/NetLogo/wiki/XML-File-Format

 <enumeratedValueSet variable="movement-cost">

 <value value="0.5"/>

 </enumeratedValueSet>

 <enumeratedValueSet variable="energy-gain-from-sheep">

 <value value="5"/>

 </enumeratedValueSet>

 <enumeratedValueSet variable="number-of-sheep">

 <value value="500"/>

 </enumeratedValueSet>

 <enumeratedValueSet variable="grass-regrowth-rate">

 <value value="0.3"/>

 </enumeratedValueSet>

 </constants>

 </experiment>

</experiments>

In this example, only one experiment setup is given, but you can put as many as you want between the beginning and ending experiments tags.

After looking at examples you create in the GUI, it will hopefully be apparent how to use the tags to specify different kinds of experiments.

If you want to create a setup file for NetLogo 6.3.0 and earlier versions for which Export is not available you need to know that in a model file the XML for experiment setups does not begin with

any XML headers, because the not whole file is XML, only part of it. Therefore if you manually create a separate file for experiment setups, the extension on the file should be .xml not .nlogo,

and you’ll need to begin the file with proper XML headers, as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE experiments SYSTEM "behaviorspace.dtd">

The second line must be included exactly as shown. In the first line, you may specify a different encoding than UTF-8 , such as ISO-8859-1 .

Adjusting JVM Parameters

Opening the NetLogo Headless launcher script will show the options used to launch java when running NetLogo Headless. You can adjust various JVM parameters in this script. You may also

pass in Java properties starting with -D to the launcher.

NetLogo allocates a maximum of half your total system memory for running your model as it is needed. If you want to set a maximum amount of memory for BehaviorSpace to use you can use

the -Xmx setting to specify a particular heap size.

Note the use of -Dfile.encoding=UTF-8 . This forces all file I/O to use UTF-8 encoding. Doing so ensures that NetLogo can load all models consistently, and that file-* primitives work consis‑
tently on all platforms, including models containing Unicode characters.

Bspace Extension

The bspace extension, which can be downloaded using the Extensions Manager (Tools -> Extensions), provides a programmatic way to create and run BehaviorSpace experiments. The bspace

extension has primitives that allow you to create new experiments from scratch, and to copy and modify experiments that have been created using the BehaviorSpace GUI. Any of the parame‑

ters in the Experiment dialog or the Run options dialog can be set or modified. This is a beta version of the bspace extension and feedback is appreciated.

Controlling API

If BehaviorSpace is not sufficient for your needs, a possible alternative is to use our Controlling API, which lets you write Java code that controls NetLogo. The API lets you run BehaviorSpace

experiments from Java code, or, you can write custom code that controls NetLogo more directly to do BehaviorSpace-like things. See the Controlling section of the User Manual for further

details on both possibilities.

https://github.com/NetLogo/BehaviorSpace-Extension
file:///tmp/sbt_6c39b28e/controlling.html

System Dynamics Guide

This guide has three parts:

What is the System Dynamics Modeler?: A general description of the tool, including the ideas and principles behind it.

How It Works: Describes the interface and how you use it.

Tutorial: Wolf-Sheep Predation (aggregate): Walks you through creating a model with the System Dynamics Modeler.

What is the NetLogo System Dynamics Modeler?

System Dynamics is a type of modeling where you try to understand how things relate to one another. It is a little different from the agent-based approach we normally use in NetLogo models.

With the agent-based approach we usually use in NetLogo, you program the behavior of individual agents and watch what emerges from their interaction. In a model of Wolf-Sheep Predation,

for example, you provide rules for how wolves, sheep and grass interact with each other. When you run the simulation, you watch the emergent aggregate-level behavior: for example, how the

populations of wolves and sheep change over time.

With the System Dynamics Modeler, you don’t program the behavior of individual agents. Instead, you program how populations of agents behave as a whole. For example, using System

Dynamics to model Wolf-Sheep Predation, you specify how the total number of sheep would change as the total number of wolves goes up or down, and vice versa. You then run the simulation

to see how both populations change over time.

The System Dynamics Modeler allows you to draw a diagram that defines these populations, or “stocks”, and how they affect each other. The Modeler reads your diagram and generates the

appropriate NetLogo code – global variables, procedures and reporters – to run your System Dynamics model inside of NetLogo.

Basic Concepts

A System Dynamics diagram is made of four kinds of elements: Stocks, Variables, Flows and Links.

A Stock is a collection of stuff, an aggregate. For example, a Stock can represent a population of sheep, the water in a lake, or the number of widgets in a factory.

A Flow brings things into, or out of a Stock. Flows look like pipes with a faucet because the faucet controls how much stuff passes through the pipe.

A Variable is a value used in the diagram. It can be an equation that depends on other Variables, or it can be a constant.

A Link makes a value from one part of the diagram available to another. A link transmits a number from a Variable or a Stock into a Stock or a Flow.

The System Dynamics Modeler figures out how the value of your Stocks change over time by estimating them over and over. The estimation isn’t always perfect, but you can affect its accuracy

by changing the value of dt. As dt decreases, you estimate the model more frequently, so it gets more accurate. However, decreasing dt also makes the model slower.

Sample Models

There are four basic models in the Sample Models section of the NetLogo Models Library that demonstrate the use of the System Dynamics Modeler. All four basic models explore population

growth (and, in models with predation, population decline).

Exponential Growth and Logistic Growth are simple examples of growth in one stock.

Wolf Sheep Predation (System Dynamics) is an example of a system with multiple stocks influencing one another. It models a predator-prey ecosystem using the System Dynamics Modeler.

Wolf Sheep Predation (Docked Hybrid) is an example of a model that runs both the a System Dynamics model and an agent-based model side-by-side. It runs the System Dynamics implemen‑
tation of Wolf-Sheep Predation next to the agent-based Wolf Sheep Predation model from the Biology section of Sample Models.

How it Works

To open the System Dynamics Modeler, choose the System Dynamics Modeler item in the Tools menu. The System Dynamics Modeler window will appear.

Diagram Tab

The Diagram tab is where you draw your System Dynamics diagram.

The toolbar contains buttons to edit, delete and create items in your diagram.

Creating Diagram Elements

A System Dynamics diagram is made up of four kinds of components: Stocks, Variables, Flows and Links.

Stock

To create a Stock, press the Stock button in the toolbar and click in the diagram area below. A new Stock appears. Each Stock requires a unique name, which becomes a global variable.

Stocks also require an Initial value. It can be a number, a variable, a complex NetLogo expression, or a call to a NetLogo reporter.

Variable

To create a Variable, press the Variable button and click on the diagram. Each Variable in the System Dynamics Model requires a unique name, which becomes the name of a procedure, or a

global variable. Variables also require an Expression. This expression can be a number, a variable, a complex NetLogo expression, or a call to a NetLogo reporter.

Flow

To create a Flow, press the Flow button or use the right mouse button to Click and hold where you want the Flow to begin – either on a Stock or in an empty area – and drag the mouse to

where you want the Flow to end – on a Stock or in an empty area. Each Flow requires a unique name, which becomes a NetLogo reporter. Flows require an Expression, which is the rate of

flow from the input to the output. This expression can be a number, a variable, a complex NetLogo expression, or a call to a NetLogo reporter. If the value is negative, the flow is in the oppo‑

site direction.

When more than one Flow is connected to a Stock, it is important to consider how they should interact with one another. NetLogo will not enforce that the Flows out of a stock occur in any

particular order. Also, NetLogo will not ensure that the sum of Flows out of a Stock are less than or equal to the value of the Stock. These behaviors can be implemented explicitly when creat‑
ing the Expression for a Flow.

For example, if the Flow is defined as a constant value, 10, you can ensure it never draws more than the value of the Stock by using the min primitive: min (list stock 10) . If I want Flow A

to deplete a Stock before Flow B is calculated, I can link Flow A to Flow B and modify Flow B to subtract Flow A’s value from the stock: min (list (max (list 0 (stock - flow-a))) 10) .

Link

To create a Link, press the Link button, or using the right mouse button, click and hold on the starting point for the link – a Variable, Stock or Flow – and drag the mouse to the destination

Variable or Flow.

Working with Diagram Elements

When you create a Stock, Variable, or Flow, you see a red question-mark on the element. The question-mark indicates that the element doesn’t have a name yet. The red color indicates that the

Stock is incomplete: it’s missing one or more values required to generate a System Dynamics model. When a diagram element is complete, the name turns black.

Selecting: To select a diagram element, click on it. To select multiple elements, hold the shift key. You can also select one or more elements by dragging a selection box.

Editing: To edit a diagram element, select the element and press the “Edit” button on the toolbar. Or just double-click the element. (You can edit Stocks, Flows and Variables, but you can’t edit

Links).

Moving: To move a diagram element, select it and drag the mouse to a new location.

Editing dt

On the right side of the toolbar is the default dt, the interval used to approximate the results of your System Dynamics model. To change the value of the default dt for your aggregate model,

press the Edit button next to the dt display and enter a new value.

Errors

When you click the “check” button or when you edit a stock, flow, or variable the modeler will automatically generate the NetLogo code the corresponds to your diagram and try to compile that

code. If there is an error the Code tab will turn red and a message will appear, and the portion of the generated code that is causing the trouble will be highlighted.

This should give you a better idea which element in the diagram is causing the problem.

Code Tab

The System Dynamics Modeler generates NetLogo variables and procedures based on the contents of your diagram. These procedures are what make the diagram actually perform calcula‑

tions. The Code tab in the System Dynamics Modeler window displays the NetLogo procedures generated from your diagram.

You can’t edit the contents of the Code tab. To modify your System Dynamics mode, edit the diagram.

Let’s take a closer look at how the generated code relates to the diagram:

Stocks correspond to a global variable that is initialized to the value or expression you provided in the Initial value field. Each Stock will be updated every step based on the Flows in and out.

Flows correspond to a procedure that contains the expression you provided in the Expression field.

Variables can either be global variables or procedures. If the Expression you provided is a constant it will be a global variable and initialized to that value. If you used a more complicated

Expression to define the Variable it will create a procedure like a Flow.

The variables and procedures defined in this tab are accessible in the main NetLogo window, just like the variables and procedures you define yourself in the main NetLogo Code tab. You can

call the procedures from the main Code tab, from the Command Center, or from buttons in the Interface tab. You can refer to the global variables anywhere, including in the main Code tab and

in monitors.

There are three important procedures to notice: system-dynamics-setup , system-dynamics-go , and system-dynamics-do-plot .

system-dynamics-setup initializes the aggregate model. It sets the value of dt , calls reset-ticks , and initializes your stocks and your converters. Converters with a constant value are initial‑
ized first, followed by the stocks with constant values. The remaining stocks are initialized in alphabetical order.

system-dynamics-go runs the aggregate model for dt time units. It computes the values of Flows and Variables and updates the value of Stocks. It also calls tick-advance with the value of

dt . Converters and Flows with non-constant Expressions will be calculated only once when this procedure is called, however, their order of evaluation is undefined

system-dynamics-do-plot plots the values of Stocks in the aggregate model. To use this, first create a plot in the main NetLogo window. You then need to define a plot pen for each Stock you

want to be plotted. This procedure will use the current plot, which you can change using the set-current-plot command.

The System Dynamics Modeler and NetLogo

The diagram you create with the System Dynamics Modeler, and the procedures generated from your diagram, are part of your NetLogo model. When you a save the NetLogo model, your dia‑

gram is saved with it, in the same file.

Tutorial: Wolf-Sheep Predation

Let’s create a model of Wolf-Sheep Predation with the System Dynamics Modeler.

Step 1: Sheep Reproduction

Open a new model in NetLogo.

Launch the System Dynamics Modeler in the Tools menu.

Our model will have a population of wolves and a population of sheep. Let’s start with the sheep. First, create a Stock that holds a population of Sheep.

Press the Stock button in the toolbar.

Click in the diagram area.

You see a Stock with a red question-mark in the middle.

Double-click the Stock to edit.

Name the stock sheep

Set the initial value to 100 .

Deselect the Allow Negative Values checkbox. It doesn’t make sense to have negative sheep!

Our sheep population can increase if new sheep are born. To add this to our diagram, we create a Flow into the stock of sheep.

Click on the Flow button in the toolbar and press the mouse button in an empty area to the left of the sheep Stock. Drag the Flow to the right until it connects to

the sheep Stock and let go.

Edit the Flow and name it sheep-births .

For now, enter a constant, such as 1 , into the Expression field.

The number of sheep born during a period of time depends on the number of sheep that are alive: more sheep means more reproduction.

Draw a Link from the sheep Stock to the sheep-births Flow.

The rate of sheep births also depends on some constant factors that are beyond the scope of this model: the rate of reproduction, etc.

Create a Variable and name it sheep-birth-rate . Set its value to 0.04 .

Draw a Link from the sheep-birth-rate Variable to the sheep-births .

Your diagram should look something like this:

Our diagram has the correct structure but we aren’t yet finished because it the amount of sheep flowing into the stock doesn’t depend upon the number of sheep and sheep birth rate.

Edit the sheep-births Flow and set the expression to sheep-birth-rate * sheep .

We now have a complete diagram. To see the NetLogo code generated by our diagram, you can click on the Code tab of the System Dynamics Modeler window. It looks like this:

Step 2: NetLogo Integration

Once you create an aggregate model with the System Dynamics Modeler, you can interact with the model through the main NetLogo interface window. Let’s build our NetLogo model to run the

code generated by our diagram. We’ll need a setup and go buttons which call the system-dynamics-setup and system-dynamics-go procedures created by the System Dynamics Modeler.

And we’ll want a monitor and a plot to watch the changes in sheep population.

Select the main NetLogo window

In the Code tab, write:

to setup

 ca

 system-dynamics-setup

end

to go

 system-dynamics-go

 set-current-plot "populations"

 system-dynamics-do-plot

end

Move to the Interface tab

Create a setup button

Create a go button (don’t forget to make it forever)

Create a sheep monitor.

Create a plot called “populations” with a pen named “sheep”.

Now we’re ready to run our model.

Press the setup button.

Don’t press the “go” button yet. Instead, type go four or five times into the Command Center.

Notice what happens. The sheep population increases exponentially. After four or five iterations, we have an enormous number of sheep. That’s because we have sheep reproduction, but our

sheep never die.

To fix that, let’s finish our diagram by introducing a population of wolves which eat sheep.

Step 3: Wolf Predation

Move back to the System Dynamics window

Add a stock of wolves

Add Flows, Variables and Links to make your diagram look like this:

Add one more Flow from the wolves Stock to the Flow that goes out of the Sheep stock.

Fill in the names of the diagram elements so it looks like this:

where initial-value of wolves is 30 , wolf-deaths is wolves * wolf-death-rate , wolf-death-rate is 0.15 , predator-efficiency is .8 , wolf-births is wolves *

predator-efficiency * predation-rate * sheep , predation-rate is 3.0E-4 , and sheep-deaths is sheep * predation-rate * wolves .

Adjust the dt of the system dynamics model by selecting “Edit” next to dt in the toolbar of the system dynamics modeler. In the dialog that appears, enter

0.01 .

Now we’re really done.

Go back to the main NetLogo window

Add a plot pen named “wolves” to the population plot

Press setup and go to see your System Dynamics Modeler diagram in action.

You see a plot of the populations that looks like this:

HubNet Guide

This section of the User Manual introduces the HubNet system and includes instructions to set up and run a HubNet activity.

HubNet is a technology that lets you use NetLogo to run participatory simulations in the classroom. In a participatory simulation, a whole class takes part in enacting the behavior of a system as

each student controls a part of the system by using an individual device, such as a networked computer.

For example, in the Gridlock simulation, each student controls a traffic light in a simulated city. The class as a whole tries to make traffic flow efficiently through the city. As the simulation runs,

data is collected which can afterwards be analyzed on a computer.

For more information on participatory simulations and their learning potential, please visit the Participatory Simulations Project web site.

Understanding HubNet

NetLogo

NetLogo is a programmable modeling environment. It comes with a large library of existing simulations, both participatory and traditional, that you can use and modify. Content areas include

social science and economics, biology and medicine, physics and chemistry, and mathematics and computer science. You and your students can also use it to build your own simulations.

In traditional NetLogo simulations, the simulation runs according to rules that the simulation author specifies. HubNet adds a new dimension to NetLogo by letting simulations run not just accord‑
ing to rules, but by direct human participation.

Since HubNet builds upon NetLogo, we recommend that before trying HubNet for the first time, you become familiar with the basics of NetLogo. To get started using NetLogo models, see

Tutorial #1: Running Models in the NetLogo Users Manual.

HubNet Architecture

HubNet simulations are based on a client/server architecture. The activity leader uses the NetLogo application to run a HubNet activity. When NetLogo is running a HubNet activity, we refer to it

as a HubNet server. Participants use a client application to log in and interact with the HubNet server.

While HubNet is only supported via the Java Desktop clients at the moment, we hope to add support for other types of clients such as tablets and phones in the future.

Computer HubNet

Activities

The following activities are available in the Models Library, in the HubNet Activities folder. Information on how to run the models and activities can be found in the Info tab of each model.

Additional discussion of educational goals and ways to incorporate many of the activities into your classroom in the Participatory Simulations Guide on the Participatory Simulations Project web

site.

Bug Hunters Camouflage - students hunt bugs and camouflaging emerges.

Dice Stalagmite HubNet - students roll dice and explore the space of dependent and independent events.

Disease - A disease spreads through the simulated population of students.

Disease Doctors - A slight modification to the Disease activity where some students can recover from the disease.

Gridlock - Students use traffic lights to control the flow of traffic through a city.

Polling - Ask students questions and plot their answers.

Root Beer Game - An adaptation of a popular game created at MIT in the early 1960s that shows how small delays in a distribution system can create big problems.

Sampler - Students engage in statistical analysis as individuals and as a classroom. Through these activities, students discover the meaning and use of basic concepts in statistics.

Tragedy of the Commons - Students work as farmers sharing a common resource.

Clients

To use the client application you simply need to launch the HubNet client application that is bundled with NetLogo.

Requirements

To use Computer HubNet, you need a networked computer with NetLogo installed for the server. When using the client application you will also need a networked computer with NetLogo

installed for each participant. When using in classroom settings we also suggest an attached projector for the leader to project the entire simulation to the participants.

Starting an activity

You’ll find the HubNet activities in NetLogo’s Models Library, in the HubNet Activities folder. We suggest doing a few practice runs of an activity before trying it in front of a class.

http://ccl.northwestern.edu/rp/ps/index.shtml
file:///tmp/sbt_6c39b28e/tutorial1.html
http://ccl.northwestern.edu/rp/ps/index.shtml
http://ccl.northwestern.edu/rp/ps/index.shtml

Open a Computer HubNet model. NetLogo will prompt you to enter the name of your new HubNet session. This is the name that participants will use to identify this activity. You may also see a

broadcast network selection dropdown for which more extensive documentation is available in the FAQ. For now, just enter a name and press Start.

NetLogo will open the HubNet Control Center, which lets you interact with the HubNet server.

You, as the leader, should then notify everyone that they may join. To join the activity, participants launch the HubNet Client application and enter their name. They should see your activity listed

and can join your activity by selecting it and pressing Enter. If the activity you started is not listed the student can enter the server address manually which can be found in the HubNet Control

Center.

HubNet Control Center

The HubNet Control Center lets you interact with the HubNet server. It displays the name, activity, address and port number of your server. The “Mirror 2D View on clients” checkbox controls

whether the HubNet participants can see the view on their clients, assuming there is a view in the client setup. The “Mirror plots on clients” checkbox controls whether participants will receive

plot information.

The client list on the right displays the names of clients that are currently connected to you activity. To remove a participant from the activity, select their name in the list and press the Kick but‑

ton. To launch your own HubNet client press the Local button, this is particularly useful when you are debugging an activity. The “Reset” button kicks out all currently logged in clients and

reloads the client interface.

The lower part of the Control Center displays messages when a participant joins or leaves the activity. To broadcast a message to all the participants, click on the field at the bottom, type your

message and press Broadcast Message.

Troubleshooting

I started a HubNet activity, but when participants open a HubNet Client, my activity isn’t listed.

On some networks, the HubNet Client cannot automatically detect a HubNet server. Tell your participants to manually enter the server address and port of your HubNet server, which appear in

the HubNet Control Center.

Note: The technical details on this are as follows. In order for the client to detect the server, multicast routing must be available between them. Not all networks support multicast routing. In par‑

ticular, networks that use the IPsec protocol typically do not support multicast. The IPsec protocol is used on many Virtual Private Networks (VPNs).

When a participant tries to connect to an activity, nothing happens (the client appears to hang or gives an error saying that no server
was found).

If your computer or network has a firewall, it may be impeding the HubNet server from communicating. Make sure that your computer and network are not blocking ports used by the HubNet

server (ports 9173-9180).

The view on the HubNet client is gray.

Verify that the “Mirror 2D view on clients” checkbox in the HubNet Control Center is selected.

Make sure that the display switch in the model is on.

If you have made changes to the size of the view on the server you may need to press the “Reset” button in the Control Center to ensure the clients get the new size.

There is no view on the HubNet client.

Some activities don’t have a view on the client. If you want to add a view simply select “HubNet Client Editor” from the Tools Menu and add a view like any other widget. Make sure to press the

“Reset” button before having clients log in.

I can’t quit a HubNet client.

You will have to force the client to quit. On OS X, force quit the application by selecting Force Quit… in the Apple menu. On Windows, press Ctrl-Alt-Delete to open the Task Manager, select

HubNet Client and press End Task.

My computer went to sleep while running a HubNet activity. When I woke the computer up, I got an error and HubNet wouldn’t work
anymore.

The HubNet server may stop working if the computer goes to sleep. If this happens, quit the NetLogo application and start over. Change the settings on your computer so it won’t sleep again.

My problem is not addressed on this page.

See Contacting Us.

file:///tmp/sbt_6c39b28e/contact.html

Known Limitations

If HubNet malfunctions, see the bug reporting information at Contacting Us.

Please note that:

HubNet has not yet been extensively tested with large numbers of clients (i.e. more than about 25). Unexpected results may occur with more clients.

Out-of-memory conditions are not handled gracefully

Sending large amounts of plotting messages to the clients can take a long time.

NetLogo does not handle malicious clients in a robust manner (in other words, it is likely vulnerable to denial-of-service type attacks).

Performance does not degrade gracefully over slow or unreliable network connections.

If you are on a wireless network or sub-LAN, the IP address in the HubNet Control Center is not always the entire IP address of the server.

Computer HubNet has only been tested on LANs, and not on dial-up connections or WANs.

Teacher workshops

For information on upcoming workshops and NetLogo and HubNet use in the classroom, please contact us.

HubNet Authoring Guide

To learn about authoring or modifying HubNet activities, see the HubNet Authoring Guide.

Running HubNet in headless mode

To learn about running HubNet activities from the command line, with no GUI on the server, see the HubNet section in the Controlling Guide.

Getting help

If you have any questions about HubNet or need help getting started, contact us.

file:///tmp/sbt_6c39b28e/contact.html
file:///tmp/sbt_6c39b28e/contact.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/controlling.html
file:///tmp/sbt_6c39b28e/contact.html

HubNet Authoring Guide

This guide shows how to understand and modify the code of existing HubNet activities and write your own new ones. It assumes you are familiar with running HubNet activities, basic NetLogo

code and NetLogo interface elements. For more general information about HubNet see the HubNet Guide.

Coding HubNet activities

Many HubNet activities will share bits of the same code. That is the code that it used to setup the network and the code that is used to receive information from and send information to the

clients. If you understand this code you should be able to easily make modifications to existing activities and you should have a good start on writing your own activities. To get you started we

have provided a Template model (in HubNet Activities -> Code Examples) that contains the most basic components that will be in the majority of HubNet activities. You should be able to use this

activity as a starting point for most projects.

Code Example: Template

Setup

To make a NetLogo model into a HubNet activity you must first initialize the network. In most HubNet activities you will use the startup procedure to initialize the network. startup is a special

procedure that NetLogo runs automatically when you open any model. That makes it a good place to put code that you want to run once and only once (no matter how many times the user runs

the model). For HubNet we put the command that initializes the network in startup because once the network is setup we don’t need to do so again. We initialize the system using hubnet-

reset , which will ask the user for a session name and open up the HubNet Control Center. Here is the startup procedure in the template model:

to startup

 hubnet-reset

end

Now that the network is all setup you don’t need to worry about calling hubnet-reset again. Take a look at the setup procedure in the template model:

to setup

 cp

 cd

 clear-output

 ask turtles

 [

 set step-size 1

 hubnet-send user-id "step-size" step-size

]

end

For the most part it looks like most other setup procedures, however, you should notice that it does not call clear-all . In this model, and in the great majority of HubNet activities in the Models

Library, we have a breed of turtles that represent the currently logged in clients. In this case we’ve called this breed students . Whenever a client logs in we create a student and record any

information we might need later about that client in a turtle variable. Since we don’t want to require users to log out and log back in every time we setup the activity we don’t want to kill all the

turtles, instead, we want to set all the variables back to initial values and notify the clients of any changes we make (more on that later).

Receiving messages from clients

During the activity you will be transferring data between the HubNet clients and the server. Most HubNet activities will call a procedure in the go loop that checks for new messages from

clients in this case it’s called listen clients:

to listen-clients

 while [hubnet-message-waiting?]

 [

 hubnet-fetch-message

 ifelse hubnet-enter-message?

 [create-new-student]

 [

 ifelse hubnet-exit-message?

 [remove-student]

 [execute-command hubnet-message-tag]

]

]

end

As long as there are messages in the queue this loop fetches each message one at a time. hubnet-fetch-message makes the next message in the queue the current message and sets the

reporters hubnet-message-source , hubnet-message-tag and hubnet-message to the appropriate values. The clients send messages when the users login and logout any time the user manip‑

ulates one of the interface elements, that is, pushes a button, moves a slider, clicks in the view, etc. We step through each message and decide what action to take depending on the type of

message (enter, exit, or other), the hubnet-message-tag (the name of the interface element), and the hubnet-message-source of the message (the name of the client the message came from).

On an enter message we create a turtle with a user-id that matches the hubnet-message-source which is the name that each user enters upon entering the activity, it is guaranteed to be

unique.

to create-new-student

 create-students 1

file:///tmp/sbt_6c39b28e/hubnet.html

 [

 set user-id hubnet-message-source

 set label user-id

 set step-size 1

 send-info-to-clients

]

end

At this point we set any other client variables to default values and send them to the clients if appropriate. We declared a students-own variable for every interface element on the client that

holds state, that is, anything that would be a global variable on the server, sliders, choosers, switches and input boxes. It is important to make sure that these variables stay synchronized with

the values visible on the client.

When the clients logout they send an exit message to the server which gives you a chance to clean up any information you have been storing about the client, in this case we merely have to ask

the appropriate turtle to die.

to remove-student

 ask students with [user-id = hubnet-message-source]

 [die]

end

All other messages are interface elements identified by the hubnet-message-tag which is the name that appears in the client interface. Every time an interface element changes a message is

sent to the server. Unless you store the state of the values currently displayed in the client interface will not be accessible in other parts of the model. That’s why we’ve declared a students-

own variable for every interface element that has a state (sliders, switches, etc). When we receive the message from the client we set the turtle variable to the content of the message:

if hubnet-message-tag = "step-size"

[

 ask students with [user-id = hubnet-message-source]

 [set step-size hubnet-message]

]

Since buttons don’t have any associated data there is generally no associated turtle variable, instead they indicate an action taken by the client, just as with a regular button there is often proce‑
dure associated with each button that you call whenever you receive a message indicating the button has been pressed. Though it is certainly not required, the procedure is often a turtle proce‑

dure, that is, something that the student turtle associated with the message source can execute:

if command = "move left"

[set heading 270

 fd 1]

Sending messages to clients

As mentioned earlier you can also send values to any interface elements that display information: monitors, sliders, switches, choosers, and input boxes (note that plots and the view are special

cases that have their own sections).

There are two primitives that allow you to send information hubnet-send and hubnet-broadcast . Broadcast sends the information to all the clients; send sends to one client, or a selected

group.

As suggested earlier, nothing on the client updates automatically. If a value changes on the server, it is your responsibility as the activity author to update monitors on the client.

For example, say you have a slider on the client called step-size and a monitor called Step Size (note that the names must be different) you might write updating code like this:

if hubnet-message-tag = "step-size"

[

 ask student with [user-id = hubnet-message-source]

 [

 set step-size hubnet-message

 hubnet-send user-id "Step Size" step-size

]

]

You can send any type of data you want, numbers, strings, lists, lists of lists, lists of strings, however, if the data is not appropriate for the receiving interface element (say, if you were to send a

string to a slider) the message will be ignored. Here are a few code examples for different types of data:

data type hubnet-broadcast example hubnet-send example

number hubnet-broadcast "A" 3.14 hubnet-send "jimmy" "A" 3.14

string hubnet-broadcast "STR1" "HI THERE" hubnet-send ["12" "15"] "STR1" "HI THERE"

list of numbers hubnet-broadcast "L2" [1 2 3] hubnet-send hubnet-message-source "L2" [1 2 3]

matrix of numbers hubnet-broadcast "[A]" [[1 2] [3 4]] hubnet-send "susie" "[A]" [[1 2] [3 4]]

list of strings hubnet-broadcast "user-names" [["jimmy" "susie"] ["bob" "george"]] hubnet-send "teacher" "user-names" [["jimmy" "susie"] ["bob" "george"]]

Examples

Study the models in the “HubNet Activities” section of the Models Library to see how these primitives are used in practice in the Code tab. Disease is a good one to start with.

How to make a client interface

Open the HubNet Client Editor, found in the Tools Menu. Add any buttons, sliders, switches, monitors, plots, choosers, or notes that you want just as you would in the interface tab. You’ll notice

that the information you enter for each of the widgets is slightly different than in the Interface panel. Widgets on the client don’t interact with the model in the same way. Instead of a direct link to

commands and reporters the widgets send messages back to the server and the model then determines how those messages affect the model. All widgets on the client have a tag which is a

name that uniquely identifies the widget. When the server receives a message from that widget the tag is found in hubnet-message-tag .

For example, if you have a button called “move left”, a slider called “step-size”, a switch called “all-in-one-step?”, and a monitor called “Location:”, the tags for these interface elements will be as

follows:

interface element tag

move left move left

step-size step-size

all-in-one-step? all-in-one-step?

Location: Location:

Note that you can only have one interface element with a specific name. Having more than one interface element with the same tag in the client interface will result in unpredictable behavior

since it is not clear which element you intended to send the information to.

View updates on the clients

View mirroring lets views of the world be displayed in clients as well on the server. View mirroring is enabled using a checkbox in the HubNet Control Center.

When mirroring is enabled, client views update whenever the view on the server does. To avoid excessive network traffic, the view should not update more often than necessary. Therefore we

strongly recommend using tick-based updates, rather than continuous updates. See the View Updates section of the Programming Guide for an explanation of the two types of updates.

With tick-based updates, updates happen when a tick or display command runs. We recommend using these commands only inside an every block, to limit the frequency of view updates

and thus also limit network traffic. For example:

every 0.1

[

 display

]

If there is no View in the clients or if the Mirror 2D View on Clients checkbox in the HubNet Control Center is not checked, then no view updates are sent to the clients.

Clicking in the view on clients

If the View is included in the client, two messages are sent to the server every time the user clicks in the view. The first message, when the user presses the mouse button, has the tag “View”.

The second message, sent when the user releases the mouse button, has the tag “Mouse Up”. Both messages consist of a two item list of the x and y coordinates. For example, to turn any

patch that was clicked on by the client red, you would use the following NetLogo code:

if hubnet-message-tag = "View"

[

 ask patches with [pxcor = (round item 0 hubnet-message) and

 pycor = (round item 1 hubnet-message)]

 [set pcolor red]

]

Customizing the client’s view

When view mirroring is enabled, by default clients see the same view the activity leader sees on the server. But you can change this so that each client sees something different, not just a literal

“mirror”.

You can change what a client sees in two distinct ways. We call them “client perspectives” and “client overrides”.

Changing a client’s perspective means making it “watch” or “follow” a particular agent, much like the watch and follow commands that work with ordinary NetLogo models. See the dictionary

entries for hubnet-send-watch , hubnet-send-follow , and hubnet-reset-perspective .

Code Example: Client Perspective Example

Client overrides let you change the appearance of patches, turtles, and links in the client views. You can override any of the variables affecting an agent’s appearance, including the hidden?

variable causing a turtle or link to be visible or invisible. See the dictionary entries for hubnet-send-override , hubnet-clear-override , and hubnet-clear-overrides .

Code Example: Client Overrides Example

Plot updates on the clients

If plot mirroring is enabled (in the HubNet Control Center) and a plot in the NetLogo model changes and a plot with the exact same name exists on the clients, a message with that change is sent

to the clients causing the client’s plot to make the same change. For example, let’s pretend there is a HubNet model that has a plot called Milk Supply in NetLogo and the clients. Milk Supply is

the current plot in NetLogo and in the Command Center you type:

plot 5

This will cause a message to be sent to all the clients telling them that they need to plot a point with a y value of 5 in the next position of the plot. Notice, if you are doing a lot of plotting all at

once, this can generate a lot of plotting messages to be sent to the clients.

Modeling Commons Guide

Introduction

The Modeling Commons is a Web-based collaboration system for NetLogo modelers. Users of the Modeling Commons can share, download, modify, create variations of, comment on, and run

NetLogo models – both those that are a part of the NetLogo models library, and also those that have been uploaded by other NetLogo users.

By uploading your NetLogo models to the Modeling Commons, you make it easy for others to see, review, and comment on your work. You can optionally keep the model private, either to your‑

self or to a group of your choice, if you aren’t comfortable with letting everyone see the model. You can always change the permissions associated with a model, if you change your mind later

on.

NetLogo now makes it possible to save models to the Modeling Commons, just as you can save them to .nlogox files on your own computer. You can access this functionality by selecting

“Upload to Modeling Commons” from the “File” menu.

Use of the Modeling Commons is free of charge. You may use it for your own personal work, for your research group or company, or for a class in which you are a student or teacher. The

Modeling Commons is sponsored by the CCL, the same group that develops and distributes NetLogo.

Modeling Commons Accounts

In order to upload models to the Modeling Commons, you must first register an account and log in. Unregistered users can view and download models, but cannot upload, edit, or comment on

them.

The first time that you use “Upload to Modeling Commons” in a NetLogo session, you will be prompted to enter your e-mail address and password. If you already have an account, then you can

enter this information and click on the “Login” button.

If you don’t yet have an account with the Modeling Commons, then you will need to create one. Click on the “Create Account” button, and you will be redirected to the registration form in your

browser.

Uploading Models

There are three ways to upload a model to the Modeling Commons: Uploading, updating, and creating a child (“forking”). The following sections describe these in detail.

Upload a New Model

A new model will be created in the Modeling Commons, with its own page, description, and forum. You should use this function the first time that you save a model to the Modeling Commons.

You must give your model a name. Model names are not required to be unique; you could have 2 or more models with the same name, though we recommend that you not do this.

https://modelingcommons.org/
https://modelingcommons.org/account/new

By default, anyone can view, fork, and update your model. You can restrict the ability to view and fork your model by changing the visibility permission. You can restrict the ability to update your

model by changing the changeability permission. In order to set permissions for multiple people, assign your model to a group, and then restrict visibility or changeability to members of that

group. Groups can be created from the Modeling Commons. Once you have uploaded your model, you can edit the permissions from the model’s Modeling Commons page.

You can optionally upload a preview image to your model. The preview image will be displayed alongside your model whenever it is shown on the Modeling Commons. While uploading a pre‑
view image is optional, we highly recommend that you do so, in one of the following three ways:

The “Use current image” option tells NetLogo to use the current view as your preview. We recommend that you first run the model, such that it shows off the key visual features.

The “Auto-generate image” feature auto-generates a preview image by running random-seed 0 setup repeat 75 [go] . Note that this option will not work unless you have defined setup

and go procedures for NetLogo to run.

The “Image from file” feature allows you to upload any PNG image. Preview images work best when they are square.

Upload a Child of an Existing Model (“Forking”)

Saving a model in this way, sometimes known as “forking,” does not change or overwrite the original model. Rather, it creates a new model on the Modeling Commons, much as a plain “save”

would do, simultaneously creating a parent-child relationship between the old model and the new one. This relationship can be seen on the “family” tab for a given model. You may fork any

model for which you have “view” permissions, including one that you cannot change. You may wish, for example, to create a variation on a model in the NetLogo models library.

To fork a model, you must give your new child a name, as well as select an existing model to fork. To indicate the existing model, start typing the name of the model that you would like to fork.

Select its name from among the search results.

Finally, you must enter a description about what you are changing in your child model, and how it relates to its parent.

Updating an Existing Model

Use this option if you have improved a model that already exists in the Modeling Commons. Existing attachments, discussions, and social tags will be preserved, but the model that users can

display, run, and download will be updated. You may only update a model for which you have “write” permissions.

All versions of a model are saved in the Modeling Commons, so you should feel free to experiment with new ideas. If something goes wrong, you can always refer to an old version from the “his‑

tory” tab on a model’s page.

To indicate which model should be updated, start typing the name of the model. Select the name that pops up with the search results. Finally, enter a description about what you are changing in

your new version.

https://modelingcommons.org/account/groups#group_tabs_new_group

ers to record student actions for later analysis.

ent once initiated. The researcher can choose the type of events logged through the NetLogo preferences or by using a custom command line switch

 was the library used and the logging output was in XML format. See the documentation for that prior version if you’re not on the latest NetLogo

ogging:

from the Tools menu.

n click OK.

abled.

unchecked and NetLogo is restarted again.

re logs: in the NetLogo Preferences. If you leave this value blank with logging enabled the default location of the user’s home directory will be used.

fault location.

the NetLogo Preferences. This is a comma-separate list of the event names or “shortcut” names. If you leave this value blank with logging enabled a

below for more information on the event names and what the defaults are.

s

og directory and log events with command line switches. If you specify either the --log-directory or --log-events switch, then logging will be

e any preferences set in the NetLogo UI.

d you have NetLogo installed in a NetLogo 6.2.3 directory in your home folder. To enable logging, invoke the NetLogo executable like so:

ectory ~/NetLogoLogs/ --log-events "default, ticks, globals"

ser name. This name will appear in all the logs generated during this session.

ged with the logging app. By default all of these events are logged except “global”, “link”, “tick”, and “turtle” since they can cause a large number of log

tly only generated for compiler errors

mpiled

rough the command center

hanges

hanges

es

hanges

ntains system info

r dies

o or removed from the model

d

can use in the preferences to refer to collections of events:

e, command-center, global, input-box, link, model-open, slider, speed-slider, start, switch, stop, turtle, widget-edit, tick

k, and turtle

tch - the “global variable” widgets

https://ccl.northwestern.edu/netlogo/6.2.2/docs/

the Events to log: setting in preferences dialog or use via the --log-events command line switch.

 only button widget presses, model open events, and widget add/remove

change events to the defaults list

get use and model open events.

is an example log file with some small modifications to content to fit better in this document.

pe along with a “timeStamp” of when it occurred. Then there is an “eventInfo” entry that contains further information specific to the event. For example,

name”, and the “button” events contain the “buttonName” and whether the click stopped a forever button, “wasStopped”.

22-06-17 11:29:56.737","eventInfo":{"studentName":"Larry","modelName":"Slime.nlogo","version":"NetLogo 6.#.#","ipAd

":"2022-06-17 11:29:56.738","eventInfo":{"name":"Slime.nlogo"}}

2022-06-17 11:29:57.201","eventInfo":{"code":"patches-own [chemical]\n...","success":true}}

022-06-17 11:29:58.617","eventInfo":{"buttonName":"setup","wasStopped":false}}

2-06-17 11:29:58.675","eventInfo":{"ticks":0.0}}

022-06-17 11:29:58.676","eventInfo":{"buttonName":"setup","wasStopped":true}}

022-06-17 11:29:58.961","eventInfo":{"buttonName":"go","wasStopped":false}}

2-06-17 11:29:58.993","eventInfo":{"ticks":1.0}}

2-06-17 11:29:59.030","eventInfo":{"ticks":2.0}}

2-06-17 11:29:59.076","eventInfo":{"ticks":3.0}}

2-06-17 11:29:59.123","eventInfo":{"ticks":4.0}}

022-06-17 11:29:59.921","eventInfo":{"buttonName":"go","wasStopped":true}}

022-06-17 11:30:01.681","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0

022-06-17 11:30:01.698","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0

022-06-17 11:30:02.317","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0

022-06-17 11:30:02.910","eventInfo":{"buttonName":"setup","wasStopped":false}}

2-06-17 11:30:02.919","eventInfo":{"ticks":-1.0}}

2-06-17 11:30:02.922","eventInfo":{"ticks":0.0}}

022-06-17 11:30:02.922","eventInfo":{"buttonName":"setup","wasStopped":true}}

022-06-17 11:30:03.254","eventInfo":{"buttonName":"go","wasStopped":false}}

2-06-17 11:30:03.258","eventInfo":{"ticks":1.0}}

2-06-17 11:30:03.293","eventInfo":{"ticks":2.0}}

022-06-17 11:30:03.763","eventInfo":{"buttonName":"go","wasStopped":true}}

tamp":"2022-06-17 11:30:08.489","eventInfo":{"owner":"Command Center","code":"ask turtles [set color black]","age

2-06-17 11:30:09.703"}

ere are numerous ways to use it. Most scripting and programming languages have easy ways to read JSON data in so that it can be processed, fed to

e-formatted somehow (perhaps to a plot using a plotting library).

mport JSON directly. Google Sheets does not yet support JSON import natively, but there are add-on scripts that can be used. There are also numerous

“flattened” CSV or just convert it to XML as well.

g system specific user’s home directory. On most Unix-like systems that is /home/<username>/ . On Windows the logs can be found in C:\Users\

ogged in user. On macOS the usual location is /Users/<username>/ .

at will help you manage the logs. __zip-log-files *filename* will gather all the logs in the temp directory and put them in one zip file, at the location

the existing logs are not deleted, you can do so explicitly by using __delete-log-files . Both commands stop the current log file (so it can be zipped

wards.

Controlling Guide

NetLogo can be invoked and controlled by another program running on the Java Virtual Machine. For example, you might want to call NetLogo from a small program that does something simple

like automate a series of model runs. Or, you might want to embed NetLogo models in a larger application.

For more information, go here.

https://github.com/NetLogo/NetLogo/wiki/Controlling-API

Mathematica Link

The NetLogo-Mathematica link provides modelers with an easy to use, real-time link between NetLogo and Mathematica. Together, these tools can provide users with a highly interactive, self-

documenting work flow that neither can provide alone.

Mathematica includes many of the tools that agent-based modelers rely on throughout the research process: advanced import capabilities, statistical functions, data visualization, and document

creation. With the NetLogo-Mathematica link, you can run all of these tools side-by-side with NetLogo.

Because all Mathematica documents, or notebooks, contain comments, code, images, annotations, and interactive objects, the integration of NetLogo and Mathematica provides a more com‑
plete solution for complex model exploration for students and researchers alike.

The basic functionality of the link is much like the NetLogo Controlling API: you can load models, execute commands, and report back data from NetLogo. Unlike the Controlling API, which is

based on Java, all interactions with the link are interpreted, making it ideal not only for rapidly designing custom BehaviorSpace-like experiments, but also as a companion to NetLogo in debug‑
ging your model.

For more information about Mathematica, please visit the Wolfram Research web site.

What can I do with it?

Here are a few examples of what you can do with the Mathematica-NetLogo link.

Analyze your model in real-time with seamless two-way data conversion

Develop high quality, custom visualizations of model data

Collect detailed simulation data across large multi-dimensional parameter spaces

Rapidly develop interactive interfaces for exploring model behavior

Have direct access to patches and network data with built-in functions

Installation

The NetLogo-Mathematica link supports Mathematica 10 or greater. To install the NetLogo-Mathematica link:

1. Go to the menu bar in Mathematica

2. Click on File and select Install…

3. In the Install Mathematica Item dialog

4. Select Package for Type of item to install

5. Click Source, and select From file…

6. In the file browser, go to the location of your NetLogo installation,

7. click on the Mathematica Link subfolder, and select NetLogo.m.

8. For Install Name, enter NetLogo.

You can either install the NetLogo link in your user base directory or in the system-wide directory. If the NetLogo link is installed in the user base directory, other users on the system must also

go through the NetLogo-Mathematica link installation process to use it. This option might be preferable if you do not have permission to modify files outside of your home directory. Otherwise,

you can install NetLogo-Mathematica link in the system-wide Mathematica base directory.

Usage

This section will very briefly introduce how to use the NetLogo-Mathematica Link. It will show you how to load the NetLogo-Mathematica Link package, start NetLogo, execute commands, and

retrieve data from NetLogo.

Loading the package: Once the NetLogo-Mathematica link is installed, you can load the package by entering the following into your Mathematica notebook:

<<NetLogo`

Launching NetLogo from Mathematica: To begin your NetLogo session in Mathematica, type the following into your notebook:

NLStart[“your netlogo path”];

where your netlogo path is the directory that netlogo is located in. Typically on a Mac this will be “/Applications/NetLogo 7.0.2/”

Loading a model: To load a model, you must specify the full path of the model. In this example we will load the Forest Fire model, and the path will be given using the typical Mac install location.

NLLoadModel["/Applications/NetLogo 7.0.2/models/Sample Models/Earth Science/Fire.nlogo"];

Executing a NetLogo command: Commands can be executed by passing a string of commands to NLCommand[] . The NLCommand[] function automatically splices common Mathematica data

types into strings suitable for NetLogo. The following commands set the density using a single string, or set the density using a Mathematica defined variable, myDensity .

NLCommand["set density 50"]; myDensity = 60; NLCommand["set density", myDensity];

Reporting information from NetLogo: NetLogo data can be reported back to Mathematica using NLReport[] . This includes numbers, strings, boolean values, and lists.

http://www.wolfram.com/

NLReport["count turtles"]; NLReport["[(list pxcor pycor)] of n-of 10 patches"]

For more information, see the NetLogo-Mathematica Tutorial notebook included with NetLogo. The notebook walks you through the process of using the link, with many examples along the

way. If you do not have Mathematica, but are considering using the link, you can find a PDF of the notebook included with NetLogo in the “Mathematica Link” directory.

Known Issues

A NetLogo session cannot be quit without exiting J/Link (the Java-Mathematica link) entirely. This may disrupt other packages that make use of J/Link.

If a model loaded with the NetLogo-Mathematica link uses a NetLogo extension, the extension must be located in the same directory as the model itself. If the extension is located in

NetLogo’s application-wide extensions directory, it will not be found.

Calls to NetLogo, such as NLCommand[] and NLReport[] , cannot be aborted.

Source code

The source code for the NetLogo-Mathematica link is in the public domain. It is hosted on line at https://github.com/NetLogo/Mathematica-Link.

Credits

The primary developer of the NetLogo-Mathematica link was Eytan Bakshy.

To refer to this package in academic publications, please use: Bakshy, E., Wilensky, U. (2007). NetLogo-Mathematica Link. http://ccl.northwestern.edu/netlogo/mathematica.html. Center for

Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

https://github.com/NetLogo/Mathematica-Link
http://ccl.northwestern.edu/netlogo/mathematica.html

NetLogo 3D

NetLogo includes the NetLogo 3D application that allows you to create 3D worlds.

Notice: NetLogo's support for 3D is less developed than NetLogo 2D. Models created with this release may not be compatible with future versions. While we've made efforts to ensure a quality

product, NetLogo 3D has not been subject to the same level of quality control as the main application.

Introduction

To get started using NetLogo 3D, launch the NetLogo 3D application and check out the Sample Models in the 3D section of the Models Library.

When you're ready to write your own 3D model, look at the Code Examples in the 3D section of the Models Library.

Code Example: Turtle Perspective Example 3D helps you learn about the different perspectives.

Code Example: Turtle and Observer Motion Example 3D helps you understand how turtles and the observer move in 3D. You can also step through this model with the

tutorial below.

3D Worlds

An unspeakable horror seized me. There was a darkness; then a dizzy, sickening sensation of sight that was not like seeing; I saw a Line that was no Line; Space that was not Space: I was

myself, and not myself. When I could find voice, I shrieked loud in agony, "Either this is madness or it is Hell."

"It is neither," calmly replied the voice of the Sphere, "it is Knowledge; it is Three Dimensions: open your eye once again and try to look steadily."

-- Edwin A. Abbott, Flatland: A romance in many dimensions

NetLogo 3D's world has width, height and depth. Patches are cubes. In addition to pxcor and pycor , patches have pzcor .

Turtles have three Cartesian coordinates, instead of two, to describe position. In addition to xcor and ycor , turtles have zcor .

A turtle's orientation is defined by three turtle variables, heading , pitch and roll . You can imagine the turtle as having two vectors to define its orientation in 3D space. One vector comes

straight out of the nose of the turtle, this is the direction the turtle will travel when it moves forward. The second vector is perpendicular to the forward vector and comes out of the right side of

the turtle (as if the turtle were to stick its right arm straight out from its body). Heading is the angle between the forward vector of the turtle projected onto the xy-plane and the vector [0 1 0].

Pitch is the angle between the forward vector of the turtle and the xy-plane and finally roll is the angle between the right vector of the turtle and the xy-plane. When turtle turns right or left in 3D

space it rotates around the down vector, that is the vector that is perpendicular to both the forward and right vectors. Depending on the orientation of the turtle more than one of the internal tur‑

tle variables may change as the result of a turn.

The observer and the 3D view

The point of view that you see the world from is considered the location and orientation of the observer. This is similar to the 3D view in NetLogo 2D. However, there are a few more ways to con‑

trol the observer. You can set the point that the observer is facing by using face and facexyz which work the same way as the turtle commands, the observer turns so the center of the view is

on the given point or the location of the given agent at the time it is called. You can change the location of the observer using setxyz . The observer will move to view the world as if standing on

the given location, the point the observer faces will stay the same. For example create a new model and observer will be located at (0, 0, 49.5), that is, on the z-axis 49.5 patch units away from

the origin and the observer is facing the origin, (0, 0, 0). If you setxyz 0 49.5 0 the observer will move so it is on the positive y-axis but it will keep the origin at the center of the view. You can

also move the observer using the rotation primitives that will allow you to move the observer around the world as if on the surface of a sphere where the center is the location the observer is

facing. You may notice from the above examples that the observer is not constrained to be within the bounds of the world.

Custom Shapes

NetLogo automatically interprets 2D shapes so they are extruded, like a cookie cutter shape in the 3D view. You can also use the primitive load-shapes-3d to load shapes described in an exter‑

nal file in a custom format described here. Currently we do not import shapes in any standard formats.

For each shape in a custom 3D shape file, a 2D shape of the same name must exist as well. You can create the 2D shape in the Turtle Shapes Editor.

The input file may contain any number of shapes with any number of rectangular or triangular surfaces. The format of the input file should be as follows:

number of shapes in file

name of first shape

type of surface (quads or tris)

surface1

surface2

.

.

.

stop

type of surface

surfaceA

.

.

.

stop

end-shape

Each surface is defined by a unit normal vector and the vertices listed in clockwise order, tris should have three vertices and quads should have four.

normal: xn yn zn

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

A file declaring just a two dimensional, patch-sized, square in the xy-plane centered at the origin would look like this:

1

square

quads

normal: 0 0 1

0.15 0.15 0

-0.15 0.15 0

-0.15 -0.15 0

0.15 -0.15 0

normal: 0 0 -1

0.15 0.15 0

0.15 -0.15 0

-0.15 -0.15 0

-0.15 0.15 0

stop

end-shape

Tutorial

Step 1: Depth

One of the first things you will notice when you open NetLogo 3D is that the world is a cube instead of a square.

You can open up the Model Settings, by clicking on the "Settings..." button at the top of the 3D View. You'll notice in addition to max-pxcor , min-pxcor , max-pycor , and min-pycor , there is

also max-pzcor and min-pzcor .

The z-axis is perpendicular to both the x-axis and the y-axis, when you reset-perspective it is the axis that comes straight out of the screen. In the default position max-pzcor is the face of

the cube nearest to you and min-pzcor is the face farthest from you. As always min-pxcor is on the left, max-pxcor on the right, min-pycor on the bottom, and max-pycor on the top.

You'll also notice on the left side of the Model Settings that there are options for wrapping in all three directions, however, they are all checked and grayed out. Topologies are not yet supported

in NetLogo 3D, so the world always wraps in all dimensions.

Move to the Command Center and type print count patches .

Is the number smaller or larger than you expected?

In a 3D world the number of patches grows very quickly since count patches = world-width * world-height * world-depth . It's important to keep this in mind when you are building your

model. Lots of patches can slow your model down or even cause NetLogo to run out of memory.

Type ask patch 1 2 3 [set pcolor red] into the Command Center.

Use the mouse in the 3D view to rotate the world.

Notice the shape of the patch and its position in relation to the edges of the world. You'll also notice that you now need three coordinates to address patches in a 3D world.

Step 2: Turtle Movement

Open the Models Library in the File menu. (If you are on a Mac and you don't have a File menu, click on the main NetLogo window first and it should reappear.)

Open Turtle and Observer Motion Example 3D in 3D/Code Examples

Take a moment to look for the controls and monitors. In the bottom left you'll notice a group of monitors that describe the location and orientation of the turtle, though until you press the setup

button they'll all say "N/A".

Press the "setup" button

Heading, pitch, and roll are turtle variables that represent the orientation of the turtle. Heading is absolute in relation to the x/y plane; it is the rotation of the turtle around the z-axis.

Pitch is the angle between the nose of the turtle and the xy-plane. It is relative to heading.

Roll is the rotation around the turtle's forward vector. It is relative to heading and pitch.

When turtles are created with create-turtles or create-ordered-turtles , their initial headings vary but their initial pitch and roll are always zero.

Take a look at the "Turtle Movement" buttons.

Press the "left 1" button.

How does the turtle move? Is is the same or different from 2D NetLogo? Which of the turtle variables change?

Press the "pitch-down 1" button.

How does the turtle move? Which of the turtle variables change?

Press the "left 1" button again.

How does the turtle move? Is it different than the last time you pressed the "left 1" button?

Take a little time to play with the Turtle Movement buttons, watching both how the turtle moves and which of the turtle variables change.

You probably noticed that often more than one of the turtle variables may change for a single turn. For this reason we suggest that you use the turtle commands rather than setting the orienta‑

tion variables directly.

Step 3: Observer Movement

At the bottom of the interface you will see Orbit, Zoom, and Move buttons. If you have ever used the 3D view in NetLogo 2D or if you have been using the mouse controls in the 3D view through

this tutorial you have been moving the observer. Changing the point of view in the 3D view is actually moving and changing the orientation of the observer. The observer has x, y and z coordi‑
nates, just like a turtle or patch, while turtles and patches are constrained to be inside the world the observer can be anywhere. Like a turtle the observer has a heading, pitch and roll, these vari‑

ables control where the observer is looking, that is, what you see in the view.

Move to the 3D view, and make sure "Orbit" is selected in the bottom left corner of the view.

Click and hold the mouse button in the middle of the view, move the mouse left, right, up, and down.

How does the position and orientation of the observer change?

Press the reset-perspective button in the lower right corner of the view and select "Zoom" in the lower left corner.

Click and hold the mouse button in the middle of the view and move the mouse up and down.

Which of the observer variables change? Which stay the same?

Try rotating the world a bit and then zoom again.

Press the "Move" button in the lower left corner of the view.

Click and hold the mouse button in the middle of the view and move the mouse up, down, left and right.

How does the view change? How do the observer variables change?

After you are done exploring the world using the mouse controls you can take a look at the observer control buttons in the lower left portion of the interface.

You may already be familiar with the first three buttons in the observer group from your experience with NetLogo 2D. Watch, follow, and ride, are special modes that automatically update the

position and orientation of the observer. When in follow or ride mode, the observer position and orientation are the same as the turtle's. Note that follow and ride are functionally exactly the

same, the difference is only visual in the 3D view. When in watch mode the observer does not move but updates to face the target agent.

Press the "setup" button again so you are back to the default orientation.

Press the "orbit-right" button.

How did the view change? Was it what you expected? How is it similar or different from using the mouse controls?

Take a little time to experiment with orbit, roll and zoom buttons; notice similarities and differences to the mouse controls.

The direction of the orbit commands refer to the direction that the observer moves. That is, imagine that the observer is on the surface of a sphere, the center of the sphere is the point that the

observer is facing represented by the blue cross, by default (0,0,0). The observer will always face the center of the sphere and the radius of the sphere will remain constant. The directions, up,

down, left, and right, refer to moving along the lines of latitude and the lines of longitude of the sphere. When you zoom the radius of the sphere changes but the center and the observer's ori‑

entation in relation to the center of the sphere will remain the same.

Press one of the "setxyz" buttons.

How does the view change? How do the observer variables change?

Press the "facexyz" button.

How does the view change? How do the observer variables change?

When you setxyz the center of the sphere remains the same (so the observer automatically keeps that point in the center of the view.) However, the radius of the sphere may change as well as

the observer's orientation in relation to the center. When you facexyz or face , the center of the sphere changes but the observer does not move. The radius of the sphere may change, as well

as the orientation of the observer.

Dictionary

Commands and Reporters

Turtle-related primitives

distancexyz distancexyz-nowrap dz left patch-at patch-at-heading-pitch-and-distance tilt-down tilt-up right roll-left roll-right setxyz towards-pitch towards-

pitch-nowrap towards-pitch-xyz towards-pitch-xyz-nowrap turtles-at

Patch-related primitives

distancexyz distancexyz-nowrap neighbors neighbors6 patch patch-at patch-at-heading-pitch-and-distance

Agentset primitives

at-points breeds-at turtles-at

World primitives

max-pzcor min-pzcor random-pzcor random-zcor world-depth load-shapes-3d

Observer movement primitives

face facexyz orbit-down orbit-left orbit-right orbit-up __oxcor __oycor __ozcor setxyz zoom

Link primitives

link-pitch

Built-In Variables

Turtles

zcor pitch roll

Patches

pzcor

Primitives

at-points Since 4.1

agentset at-points [[x1 y1 z1] [x2 y2 z2] ...]

Reports a subset of the given agentset that includes only the agents on the patches the given distances away from this agent. The distances are specified as a list of three-item lists,

where the three items are the x, y, and z offsets.

If the caller is the observer, then the points are measured relative to the origin, in other words, the points are taken as absolute patch coordinates.

If the caller is a turtle, the points are measured relative to the turtle's exact location, and not from the center of the patch under the turtle.

ask turtles at-points [[2 4 0] [1 2 1] [10 15 10]]

[fd 1] ;; only the turtles on the patches at the

 ;; distances (2,4,0), (1,2,1) and (10,15,10),

 ;; relative to the caller, move

distancexyz Since 4.1

distancexyz-nowrap Since 4.1

distancexyz xcor ycor zcor

distancexyz-nowrap xcor ycor zcor

3D versions of distancexy.

Reports the distance from this agent to the point (xcor, ycor, zcor).

The distance from a patch is measured from the center of the patch.

distancexyz-nowrap always reports the in world distance, never a distance that would require wrapping around the edges of the world. With distancexyz the wrapped distance (around

the edges of the world) is used if that distance is shorter than the in world distance.

if (distancexyz 0 0 0) < 10

 [set color green]

;; all turtles less than 10 units from

;; the center of the screen turn green.

dz Since 4.1

dz

Reports the z-increment (the amount by which the turtle's zcor would change) if the turtle were to take one step forward at its current heading and pitch.

NOTE: dz is simply the sine of the turtle's pitch. Both dx and dy have changed in this case. So, dx = cos(pitch) * sin(heading) and dy = cos(pitch) * cos(heading).

See also dx, dy.

face

facexyz Since 4.1

face agent

facexyz x y z

Set the caller's heading and pitch towards agent or towards the point (x,y,z).

If the caller and the target are at the same x and y coordinates the caller's heading will not change. If the caller and the target are also at the same z coordinate the pitch will not change

either.

left Since 4.1

left number

The turtle turns left by number degrees, relative to its current orientation. While left in a 2D world only modifies the turtle's heading, left in a 3D world may also modify the turtle's pitch

and roll.

See also left, tilt-up , tilt-down

link-pitch Since 4.1.2

link-pitch

Reports the pitch from end1 to end2 of this link.

ask link 0 1 [print link-pitch]

;; prints [[towards-pitch other-end] of end1] of link 0 1

See also link-heading, pitch

load-shapes-3d Since 4.1

load-shapes-3d filename

Loads custom 3D shapes from the given file. See the 3D guide for more details. You must also add a 2D shape of the same name to the model using the Turtle Shapes Editor. Custom

shapes override built-in 3D shapes and converted 2D shapes.

max-pzcor Since 4.1

min-pzcor Since 4.1

max-pzcor

min-pzcor

These reporters give the maximum and minimum z-coordinates (respectively) for patches, which determines the size of the world.

Unlike in older versions of NetLogo the origin does not have to be at the center of the world. However, the minimum z-coordinate has to be less than or equal to 0 and the maximum z-

coordinate has to be greater than or equal to 0.

Note: You can set the size of the world only by editing the view -- these are reporters which cannot be set.

See also max-pxcor, max-pycor, min-pxcor, min-pycor, and world-depth .

neighbors Since 4.1

neighbors6 Since 4.1

neighbors

neighbors6

3D versions of neighbors and neighbors4.

Reports an agentset containing the 26 surrounding patches (neighbors) or 6 surrounding patches (neighbors6).

show sum values-from neighbors [count turtles-here]

 ;; prints the total number of turtles on the twenty-six

 ;; patches around this turtle or patch

ask neighbors6 [set pcolor red]

 ;; turns the six neighboring patches red

orbit-down Since 4.1

orbit-left Since 4.1

orbit-right Since 4.1

orbit-up Since 4.1

orbit-down number

orbit-left number

orbit-right number

orbit-up number

Rotate the observer around the last point faced. Imagine the observer is on the surface of a sphere, the last point face is the center of that sphere. Up and down orbit along the lines of

longitude and right and left orbit along the lines of latitude. The observer will remain facing the last point faced so the heading and pitch may change as result of orbiting. However,

because we assume an absolute north pole (parallel to the positive z-axis) the roll will never change.

See also setxyz , face and zoom

__oxcor

__oycor

__ozcor

__oxcor

__oycor

__ozcor

Reports the x-, y-, or z-coordinate of the observer.

See also setxyz

file:///tmp/sbt_6c39b28e/3d.html

patch Since 4.1

patch pxcor pycor pzcor

3D version of patch.

Given three integers, reports the single patch with the given pxcor, pycor and pzcor. pxcor, pycor and pzcor must be integers.

ask (patch 3 -4 2) [set pcolor green]

;; patch with pxcor of 3 and pycor of -4 and pzcor of 2 turns green

See also patch

patch-at Since 4.1

patch-at dx dy dz

3D version of patch-at.

Reports the single patch at (dx, dy, dz) from the caller, that is, dx patches east, dy patches north and dz patches up from the caller.

ask patch-at 1 -1 1 [set pcolor green]

;; turns the patch just southeast and up from the caller green

patch-at-heading-pitch-and-distance Since 4.1

patch-at-heading-pitch-and-distance heading pitch distance

3D version of patch-at-heading-and-distance.

patch-at-heading-pitch-and-distance reports the single patch that is the given distance from this turtle or patch, along the given absolute heading and pitch. (In contrast to patch-left-

and-ahead and patch-right-and-ahead, this turtle's current heading is not taken into account.)

ask patch-at-heading-pitch-and-distance 0 90 1 [set pcolor green]

;; turns the patch directly above the caller green.

pitch

pitch

This is a built-in turtle variable. Pitch is the angle between the "nose" of the turtle and the xy-plane. Heading and pitch together define the forward vector of the turtle or the direction that

the turtle is facing.

This is a number greater than or equal to 0 and less than 360. 0 is parallel to the xy-plane, 90 is parallel to the z-axis. While you can set pitch we recommend that you use the primitives to

turn the turtle. Depending on the position more than one relative angle (heading, pitch and roll) may change at once.

Example:

;; assume roll and heading are 0

set pitch 45 ;; turtle is now north and up

set heading heading + 10 ;; same effect as "tilt-up 10"

See also heading, roll , tilt-up , tilt-down , right , left

pzcor

pzcor

This is a built-in patch variable. It holds the z coordinate of the patch. It is always an integer. You cannot set this variable, because patches don't move.

pzcor is greater than or equal to min-pzcor and less than or equal to max-pzcor.

All patch variables can be directly accessed by any turtle standing on the patch.

See also pxcor, pycor, zcor .

random-pzcor Since 4.1

random-pzcor

Reports a random integer ranging from min-pzcor to max-pzcor inclusive.

ask turtles [

 ;; move each turtle to the center of a random patch

 setxyz random-pxcor random-pycor random-pzcor

]

See also random-pxcor, random-pycor.

random-zcor Since 4.1

random-zcor

Reports a random floating point number from the allowable range of turtle coordinates along the z axis.

Turtle coordinates range from min-pzcor - 0.5 (inclusive) to max-pzcor + 0.5 (exclusive).

ask turtles [

 ;; move each turtle to a random point

 setxyz random-xcor random-ycor random-zcor

]

See also random-xcor, random-ycor.

right Since 4.1

right number

The turtle turns right by number degrees, relative to its current orientation. While right in a 2D world only modifies the turtle's heading, right in a 3D world may also modify the turtle's pitch

and roll.

See also right and left

roll

roll

This is a built-in turtle variable. Roll is the angle between the "wing-tip" of the turtle and the xy-plane.

This is a number greater than or equal to 0 and less than 360. You can set this variable to make a turtle roll. Since roll is always from the turtle's point of view, rolling right and left only only

change roll regardless of turtle orientation.

Example:

set roll 45 ;; turtle rotated right

set roll roll + 10 ;; same effect as "roll-right 10"

See also heading, pitch , roll-left , roll-right .

roll-left Since 4.1

roll-left number

The wingtip of the turtle rotates to the left number degrees with respect to the current heading and pitch.

roll-right Since 4.1

roll-right number

The wingtip of the turtle rotates to the right number degrees with respect to the current heading and pitch.

setxyz Since 4.1

setxyz x y z

3D version of setxy.

The agent, a turtle or the observer, sets its x-coordinate to x, its y-coordinate to y and its z-coordinate to z. When the observer uses setxyz it remains facing the same point so the head‑
ing, pitch, and roll, may also change.

For turtles equivalent to set xcor x set ycor y set zcor z , except it happens in one time step instead of three.

setxyz 0 0 0

;; agent moves to the middle of the center patch

See also face

tilt-down Since 4.1

file:///tmp/sbt_6c39b28e/dictionary.html#right

tilt-up Since 4.1

tilt-down number

tilt-up number

The nose of the turtle rotates by number degrees, relative to its current orientation. Depending on the orientation of the turtle more than one of the relative angles (heading, pitch, and roll)

may change when a turtle turns.

towards-pitch Since 4.1

towards-pitch-nowrap Since 4.1

towards-pitch agent

towards-pitch-nowrap agent

Reports the pitch from this agent to the given agent.

If the wrapped distance (around the edges of the screen) is shorter than the on-screen distance, towards-pitch will report the pitch of the wrapped path. towards-pitch-nowrap never

uses the wrapped path.

Note: In order to get one turtle to face another you need to use both towards-pitch and towards.

Note: asking for the pitch from an agent to itself, or an agent on the same location, will cause a runtime error.

See also towards

towards-pitch-xyz Since 4.1

towards-pitch-xyz-nowrap Since 4.1

towards-pitch-xyz x y z

towards-pitch-xyz-no-wrap x y z

Reports the pitch from this agent to the coordinates x, y, z

If the wrapped distance (around the edges of the screen) is shorter than the on-screen distance, towards-pitch will report the pitch of the wrapped path. towards-pitch-nowrap never

uses the wrapped path.

Note: In order to get a turtle to face a given location you need to use both towards-pitch-xyz and towardsxy.

Note: asking for the pitch from an agent to the location it is standing on will cause a runtime error.

See also towardsxy

turtles-at Since 4.1

<breeds>-at

turtles-at dx dy dz

<breeds>-at dx dy dz

3D versions of turtles-at and breeds-at.

Reports an agentset containing the turtles on the patch (dx, dy, dz) from the caller (including the caller itself if it's a turtle).

;; suppose I have 40 turtles at the origin

show [count turtles-at 0 0 0] of turtle 0

=> 40

world-depth Since 4.1

world-depth

Reports the total depth of the NetLogo world.

The depth of the world is the same as max-pzcor - min-pzcor + 1.

See also max-pzcor , min-pzcor , world-width, and world-height

zcor

zcor

This is a built-in turtle variable. It holds the current z coordinate of the turtle. This is a floating point number, not an integer. You can set this variable to change the turtle's location.

This variable is always greater than or equal to (- screen-edge-z) and strictly less than screen-edge-z.

See also setxy , xcor, ycor, pxcor, pycor, pzcor

zoom Since 4.1

zoom number

Move the observer toward the point it is facing, number steps. The observer will never move beyond the point it is facing so if number is greater than the distance to that point it will only

move as far as the point it is facing.

Extensions Guide

NetLogo extensions allow users to write new commands and reporters in Java and other languages for use in NetLogo models. This section of the User Manual introduces extensions and

shows how to use an extension in your model once you have obtained or made one.

Note that, in addition to the numerous extensions bundled with NetLogo, there are many other extensions that can be installed through the Extension Manager.

Authoring and Sharing

Interested in adding some new functionality to NetLogo by creating your own extension? Have an extension you made and want to add it to the Extension Manager? See the extension authoring

page to get started.

Using Extensions

To use an extension in a model, add the extensions keyword at the beginning of the Code tab, before declaring any breeds or variables.

extensions is followed by a pair of square brackets containing a list of extension names. For example:

extensions [sound speech]

Using extensions instructs NetLogo to make the specified extensions’ commands and reporters available in the current model, just as if they were built-in NetLogo primitives. An extension

must be installed for the extensions keyword to take effect.

Where extensions are located

NetLogo will look for extensions in several places:

1. In the folder of the current model

For example, for an extension called ext , NetLogo will look for ext.jar in the subfolder ext , relative to the folder containing the current model.

2. The extensions folder within your installation of NetLogo. For typical NetLogo installations:

On Mac OS X: /Applications/NetLogo 7.0.2/extensions

On 64-bit Windows with 64-bit NetLogo or 32-bit Windows with 32-bit NetLogo: C:\Program Files\NetLogo 7.0.2\extensions

On 64-bit Windows with 32-bit NetLogo: C:\Program Files (x86)\NetLogo 7.0.2\extensions

On Linux: the bin/extensions subdirectory of the NetLogo directory extracted from the installation .tgz

3. This subfolder (relative to your home directory):

On Mac OS X: Library/Application Support/NetLogo

On Windows: AppData\Roaming\NetLogo

On Linux: .netlogo

4. The .bundled subfolder of the extensions folder mentioned in Item 2 (for example, /Applications/NetLogo 7.0.2/extensions/.bundled on Mac OS X).

The easiest way to install new extensions is to use the Extension Manager. If an extension you want to use is not available through the Extension Manager, you will have to manually download it

and place it into a location described by Item 1 or Item 2 above. Manually modifying the contents of Item 3 and Item 4 above is not supported.

The order listed above is the priority the Extension Manager will use. This means that if the Extension Manager finds a requested extension for a model manually installed in the extensions

folder, it will not check the extensions library to see if there are any updated versions to install. As such, you’re locked in to the manually installed version until you decide to remove it. Also, any

extensions you install through the Extension Manager will override the bundled extensions that come with NetLogo. This means you can update the bundled extensions if fixes for them come

out after the NetLogo release with which they were bundled, you don’t have to wait for a full NetLogo release to get updates.

Each NetLogo extension consists of a folder with the same name as the extension, entirely in lower case. This folder must contain a JAR file with the same name as the folder. For example, the

sound extension is stored in a folder called sound with a file inside called sound.jar .

Some extensions depend on additional files. These files will be in the extension’s folder along with the JAR file. The folder may also contain other files such as documentation and example

models.

file:///tmp/sbt_6c39b28e/extension-manager.html
file:///tmp/sbt_6c39b28e/extension-authoring.html
file:///tmp/sbt_6c39b28e/extension-authoring.html

Extension Authoring Introduction

NetLogo supports extensions as a way of adding functionality that it does not already provide. Here are a few common reasons you might want to make an extension:

There can be hardware you want NetLogo to talk to that it doesn’t already support. Examples of this include the Sound extension and the Arduino extension.

There can other programming languages that provide functionality you want to use from inside NetLogo code, such as R’s statistical calculations or Python’s machine learning libraries.

Examples here are the R extension and the Python extension.

There can be data structures or algorithms that are hard to support with NetLogo, like matrix manipulation or key/value stores for program data. The Matrix extension and the Table extension

are examples that solve these problems.

You may want to expose NetLogo internal data that’s not otherwise available, or in a different way than the built-in primitives do. Examples here are the Profiler extension, the Reflection

extension, and the ExportThe extension.

You may want to make functionality that works identically between NetLogo desktop and NetLogo Web. For example, the file-* prims built in to NetLogo work great for desktop, but they

cannot be reproduced in NetLogo Web due to the differences in how web browsers interact with files. So the Fetch extension and the SendTo extension were created to operate identically in

both environments.

NetLogo desktop extensions can be easily written in any programming language that targets the Java Virtual Machine (JVM). This includes Java, Scala, and Kotlin, among others.

Here is a very brief outline of the process to get your project setup and producing an extension you can run with NetLogo (see below for technical details):

Get a dependency on the NetLogo jar file and make sure its on available to your build tool and your IDE (such as IntelliJ) if you’re using one.

Create an extension manifest file to include in your extension’s jar file.

Make sure your extension’s packaged jar file name matches the in-code name you’ll be using (so table will have a table.jar).

Make sure any dependencies for your extension (libraries besides NetLogo) are included alongside your jar also.

Create a ClassManager for your extension, and create Primitive classes for each extension primitive you’re making.

NetLogo and many of its bundled extensions are written in Scala and so use the Scala build tool (SBT). We’ve created a NetLogo extension plugin for SBT that handles many of the above steps

automatically, once it’s configured through the build.sbt file.

Technical Details

For more technical information on creating your own extensions, including tutorials and samples, please see this page on the NetLogo repository wiki. It also includes ways to get help or to dis‑
cuss NetLogo extension development.

Sharing Extensions with the Extension Manager

To share an extension you’ve made with the built-in Extension Manager, you’ll need to have it added to our NetLogo-Libraries repository. See the instructions on the repository website for

more information.

file:///tmp/sbt_6c39b28e/extensions.html
https://github.com/NetLogo/Sound-Extension
https://github.com/NetLogo/Arduino-Extension
https://github.com/NetLogo/R-Extension
https://github.com/NetLogo/Python-Extension
https://github.com/NetLogo/Matrix-Extension
https://github.com/NetLogo/Table-Extension
https://github.com/NetLogo/Profiler-Extension
https://github.com/NetLogo/Reflection-Extension
https://github.com/NetLogo/Reflection-Extension
https://github.com/NetLogo/ExportThe-Extension
https://github.com/NetLogo/Fetch-Extension
https://github.com/NetLogo/SendTo-Extension
https://github.com/NetLogo/NetLogo-Extension-Plugin
https://github.com/NetLogo/NetLogo/wiki/Extensions-API
file:///tmp/sbt_6c39b28e/extension-manager.html
https://github.com/NetLogo/NetLogo-Libraries#netlogo-libraries

Color Picker Guide

Introduction

NetLogo 7 introduces a new, more powerful way of selecting colors, which replaces Color Swatches. As was the case previously there are four different contexts in which colors can be

selected: from the Tools menu, from a Color Input widget, when selecting a plot pen color and when editing a Note. The ways in which the versions differ involve whether a selected color can

be copied or “picked,” whether transparency is allowed, and what forms of input and output specifications are allowed, as will be described later.

Colors in NetLogo

For information on the different ways colors are represented in NetLogo see the Colors section of the NetLogo Programming Guide. The NetLogo primitives for working with colors are approxi‑
mate-hsb approximate-rgb base-colors color extract-hsb extract-rgb hsb import-pcolors import-pcolors-rgb pcolor rgb scale-color shade-of? wrap-color. The Palette Extension offers

additional ways to work with colors.

All versions of the Color Picker have two tabs, Simple, and Advanced. The Simple tab allows users to pick a color from a rectangular grid. This is analogous to the Color Swatches dialog,

although it is more visually streamlined.

Simple Tab

The Simple tab of the Color Picker in the Tools menu has buttons to allow the user to copy the color (icon to the right of the grey rectangle), or exit the dialog (cancel).

As shown below Simple tab for the Color Input adds a blue ‘OK’ button to the right of ‘Cancel.’ Choosing ‘OK’ changes the Input to the selected color, exiting the dialog. ‘Copy’ puts the NetLogo

Color number corresponding to the selected color in the clipboard. It can then be copied to the Code Tab, or any other text area. The dialog remains open. Cancel closes the dialog without

changing the color input widget.

When editing a Note, there are four buttons that can be clicked to open a Color Picker.

The ‘Simple’ tab of the color picker is the same, regardless of context. The ‘Advanced’ tab allows different output formats, depending on the context.

file:///tmp/sbt_6c39b28e/palette.html

The Advanced Tab

Introduction

The Advanced Tab allows a much more nuanced way to choose a color.

The rainbow slider on the left allows users to select a hue. The slider to its right allows the user to select the transparency of the color. By default, the color is fully opaque, and the knob is at the

top of the slider, moving it down makes the color more transparent. You can also drag the small circle in the rectangle to the right of the sliders to quickly explore variants of the selected hue.

Moving from it from left to right (horizontally) increases the saturation. Moving it bottom to top (vertically) increases the lightness.

Input Format

A powerful feature of the Advanced tab is that you can import colors using the following common formats RGB, RGBA, HSB, HSBA, HSL, HSLA and hexadecimal as well as NetLogo Number or

NetLogo word. Use the Input Format pulldown menu to select the format and you will be able to set the appropriate value(s). The pulldown menu below shows the output options, which have the

acronyms above spelled out. There follow two examples of specifying an input. For a NetLogo word there is a text field. For HSB (Hue, Saturation, Brightness) there are three numeric fields. The

color selected using the Input format can then be modified by using the hue slider, transparency slider or the palette rectangle.

In this example the input is a NetLogo word.

In this example the input is HSB.

Output Format

The color that results after any adjustments can be output in the selected Output Format. The full list of output formats is NetLogo Number, NetLogo word and RGBA (Red, Green, Blue, Alpha).

However in some contexts only a NetLogo Number can be output. As the user changes a color the value of the Input value is updated. In the image below it was initially lime - 0.3, but changed

to lime - 0.6

Output Formats for Different Contexts

For the Color Input and plot pen colors the output format is a NetLogo number. Transparency is not supported for the Color Input in this release, but may be available in the future.

For Notes the output format is RGBA.

For the Tools menu Color Picker the output formats are NetLogo number, NetLogo word and RGBA.

Details about RGB Output

There is no explicit RGB output format. However when you select “RGBA”, and your color is opaque (maximum alpha), the result is RGB format - a 3-item list (no alpha). Otherwise “RGBA” output

produces a 4-item list (with alpha). In the example below you can see that the output is a 3-item list, because there is no transparency and RGBA output is selected.

Details about the Alpha Bar

Some users may want to skip this section on first reading. The “alpha” bar of the Advanced tab is used to adjust the transparency of a color. If neither the input format nor the output format

allows transparency the alpha bar will be hidden. The formats that do not allow transparency are: NetLogo number, NetLogo word RGB, HSB, and HSL. If the input supports alpha, but the output

does not, the output dropdown will be highlighted and will have a tooltip that explains that the output color will be opaque. The first example shows the case where there is no alpha bar. The

second example show the highlighted output because there is transparency, but an opaque output format.

NetLogo 7.0.0 Changes Overview

The bolded items in the table of contents are the most important changes in NetLogo 7.0.0

For a video showing changes in NetLogo 7, see here.

Note: in this document the term “clicking” is synonymous with “left-clicking.” Right-clicking will be referred to explicitly.

Motivation

We interviewed many NetLogo users and one of the most desired updates was a more modern User Interface (UI). In response to user feedback we have made major changes to the UI for

NetLogo 7.0.0. We plan to continue modernizing NetLogo in future releases. Your feedback via the NetLogo Forum will help guide UI improvements.

Interface Tab

Overview of Visual Changes to the Interface Tab

The most obvious change is that interface elements (widgets) have changed in appearance to a modern flat look. They are larger and more legible. A new feature is color themes which affect

the appearance of the entire visual interface. They have been designed with visual coherence in mind. Navigate to the Color Themes tab in the Preferences window to select Light, Dark or

Classic themes. For the Classic Color Theme the pre-7.0.0 widget colors are used. In other regards it is the same as the Light Theme. The Color Theme also affects the appearance of the Info

Tab and the Code Tab, as well as any other windows that open in the app.

Light Theme Dark Theme Classic Theme

Interface Elements (Widgets)

Buttons perform actions when clicked. The input widgets are: sliders, switches, choosers and inputs. The output widgets are: monitors, plots and the output area. Notes are used to add labels,

instructions and other information to the interface. Buttons and input widgets are colored shades of blue. Output widgets are shades of grey. Widgets by and large perform as they did in previ‑
ous releases of NetLogo. A new feature of the slider is a text box in which values can be added directly. A new feature of the Notes is that the user can set both the text color and the back‑

ground color for both light and dark mode.

A new feature is copying widgets.

Widget Sizes

In NetLogo 7 some widget sizes have been adjusted for greater readability. The default height of sliders, switches, choosers, inputs, monitors and plots has been increased. The image below

shows some widgets in their new sizes on the left, and the original/pre-NetLogo 7 sizes on the right.

https://www.youtube.com/watch?v=Xeagb1Y-xKU
https://forum.netlogo.org/

When you create a new model, widgets will appear by default in their new (generally larger) sizes. Existing models will open with new style widgets that retain their original size. Some widgets in

the Models Library have been converted to the new sizes.

Note that opening an old model in NetLogo 7 will automatically prompt you to perform an automatic widget conversion, as shown in the dialog below.

Click “Resize and adjust positions” to resize the widgets and change their placements. Click “Resize only” to resize the widgets without changing their location. Since redesigning interfaces is

an art, more work may be required to make the design meet your personal standards. The Edit -> Undo menu will let you undo all the widget conversions at once if you are not satisfied with the

result of the automatic conversion. If you choose not to make the full conversion, you can later use the tools menu item Tools -> Convert Widgets to New Sizes.

You can also switch the size of an individual widget by clicking the Use old sizing checkbox. This only holds for widgets that have undergone a size change for NetLogo 7. The size of the output

area and notes have remained the same.

New File Format

Models in NetLogo 7 have a new format which is extensible and makes it easier to add new features to NetLogo. The new file format follows the XML 1.0 standard, and is compatible with any

external tools for working with XML. Models saved with this format will have the extension .nlogox or .nlogox3d, rather than .nlogo or .nlogo3d. All models going forward will use the new file for‑

mat. Existing model files, with the extension .nlogo or .nlogo3d, can be opened in NetLogo 7 and will be automatically converted without loss of information. However .nlogox and .nlogox3d files

cannot be opened with previous versions of NetLogo. Any tools users have created that rely on the format of .nlogo and .nlogo3d files will need to be re-written.

Tools in the NetLogo 7 Interface

Overview: NetLogo Interface Tool Buttons and Dropdown menus

New Interface Tools

The key motivations for introducing these tools are

1. to make user actions more discoverable

2. to separate actions needed to use an existing model from those used when creating or modifying a model.

The Interface toolbar includes four new tool buttons which control the meaning of user actions. They are the Interaction Tool, the Selection Tool, the Edit Tool, and the Delete Tool. For a brief

explanation of the use of these tools see this section of the Interface Tab Documentation. For details on the use of these features click the links above.

New Interface Menu

There is a new Align Widgets Menu. This menu is only active if more than one element is selected. Only one of a set of related options will be explained. Use the link above for more details.

With Align Left the left-most widget remains in place. The other widgets move to align to left-most widget edge.

Distribute Vertically keeps the top and bottom widgets fixed, and moves the other widgets so the vertical spacing between the widgets is the same. Distribute horizontally works similarly.

With Stretch Left the left-most widget remains in place. All the other widgets stretch so they have the same left-most edge.

https://github.com/NetLogo/NetLogo/wiki/XML-File-Format

The Color Picker

Color Swatches has been replaced by the Color Picker, a new, more powerful way of selecting colors.

Notifications

When the NetLogo team sends out a new notification message a banner will appear below the Interface Toolbar with a brief message. If you click on the message you will be taken to a web

page that gives the full information of all messages to date in reverse chronological order. You can also click the X button on the right to dismiss the message.

The Info Tab

The changes to the Info Tab are purely visual. The Find and Edit icons and the section headers have been updated, as has the Help Icon that is visible when editing the Info Tab.

These are the new Info Tab color themes.

Light Theme Dark Theme

Code Tab

Color Themes and Code Syntax Highlighting

The code syntax highlighting colors have changed slightly for the Light Color Theme, and there is a separate set of code colors for the Dark Color Theme.

Light Theme Dark Theme

Code Tab Toolbar

The Code Tab toolbar features new icons. See Code Tab Toolbar for more details.

Code Tab Preferences

file:///tmp/sbt_6c39b28e/colorpicker.html

Code related preferences are now set in the Code tab of the Preferences dialog. See Code Preferences for details.

Included Files

An included (.nls) file tab now has separate code window checkbox, and a Preferences button. Note that these buttons and preferences apply to all code tabs, not just the one from which they

were clicked/set. Included file tabs can be closed by clicking on the “x” on the right side of the tab. More details are in the Included Files documentation.

Menu Items

Preferences Dialog

This dialog is now organized into four tabs. You use it customize various NetLogo settings. On Windows and Linux, it is opened with the Tools menu “Preferences” item. For Macs, it’s under the

“NetLogo” menu and reads “Settings”.

Here is a brief description of the new preferences. See the Preferences Documentation for more details.

Reload model on external changes: If you use an editor outside of NetLogo to change the model or any included .nls files the model will be reloaded.

Bold widget names: By default, widget names are not in bold, use this option to make them bold.

UI scale: This option is for Linux only. It must be set to the same value as your system UI scale or NetLogo will fail to resize its visual components correctly.

Automatically jump to source of compilation error: If checked, NetLogo will bring you to the location of an error if one occurs during compilation.

Open code tab in separate window on startup: When checked the Code tab will appear in a separate window when NetLogo is opened.

Jump sliders to click location (instead of incrementing): When checked, clicking anywhere in the slider bar of a slider widget will move the thumb to that location. When unchecked, the pre-

NetLogo 7 behavior will be applied, and clicking in the slider bar will increase or decrease the value of the slider by one increment, depending on which side of the bar is clicked.

File -> Resource Manager dialog

The Resource Manager dialog allows you to view, add, or remove files that are bundled with the current NetLogo model. These files can be read during a model run using the Resource

Extension.

Tools Menu Changes

The new menu items “Color Themes”, “Color Picker” and “Convert Widgets to New Sizes” have been described in earlier sections. The menu item “Color Swatches” has been removed.

The Turtle Shapes Editor and the Link Shapes Editor have been updated, as described below.

Turtle Shapes Editor and Link Shapes Editor

These Shapes Editors now have buttons at the top, for easier use. A search field has been added so users can quickly search through the model’s collection of shapes.

file:///tmp/sbt_6c39b28e/resource-manager.html
file:///tmp/sbt_6c39b28e/resource.html
file:///tmp/sbt_6c39b28e/resource.html

Help Menu

The Help Menu now has a link to the NetLogo Forum, a website to ask/answer questions and have discussions about NetLogo.

Collection of anonymous usage statistics

When you first open NetLogo after installing it, a dialog titled “Data Consent” will appear. If you select “Yes”, data will be sent to the NetLogo team. We analyze the data in order to understand

how often certain NetLogo features are being used. This informs development priorities. No personal or identifying information will be collected. You can always change your preference by

using the Send anonymous usage statistics option of the NetLogo Preferences Dialog to enable or disable data collection. If you have any questions or concerns about the collection and stor‑

age of this data, feel free to contact the NetLogo team at feedback@ccl.northwestern.edu.

https://forum.netlogo.org/

NetLogo Preferences

Overview

This dialog lets you customize various NetLogo settings. On Windows and Linux, it is opened with the Tools menu “Preferences” item. For Macs, it’s under the “NetLogo” menu and reads

“Settings”.

Items are organized into four tabs:

General Preferences

Code Preferences

Logging Preferences

Color Themes

General Preferences Code Preferences

Logging Preferences Color Themes

Use the check boxes, pull-down menus and text fields to change the default preference values. When you are done, click the OK button to save your changes, or the Cancel button to revert the

preferences to the state they were in before you opened the dialog. Most preferences take effect immediately. You must exit and re-open NetLogo for the preferences that indicate “(restart

required)” to take effect.

General Preferences

User Interface language

Choose a language for user interface items and error messages. NetLogo must be restarted for this preference to take effect. The default option is “Detect Language”, which will set the inter‑
face language to your system language, or English if your system language is not supported by NetLogo. The other available choices are English, Spanish, Chinese, Portuguese, Russian, and

Japanese.

Reload the last used model on startup

NetLogo opens with an empty model by default. When this option is selected the most recently opened model will be loaded when NetLogo starts instead of an empty model.

Reload model on external changes

If you use an editor outside of NetLogo to change the model or any included .nls files, the changed file is updated in NetLogo.

Bold widget text

By default, widget text is not in bold, use this option to bold it.

Jump sliders to click location (instead of incrementing)

By default, clicking a slider location will cause the value of the slider to be set to the value at the click location and the slider widget thumb will jump to that location. Deselecting this option will

cause the value to change by one increment towards the mouse click, also moving the widget thumb. This option applies to slider widgets and the Speed Slider.

UI scale

This option is for Linux only. It must be set to the same value as your system UI scale or NetLogo will fail to resize its visual components correctly. This value must be a floating point number, or

NetLogo will produce an error message.

Send anonymous usage statistics

By default NetLogo will now collect anonymous usage statistics from users while the application is running. Uncheck this option to disable data collection. When this option is enabled, NetLogo

will collect information about your usage of tools and features of the NetLogo application and the NetLogo language. This information is analyzed by the NetLogo team in order to understand

how often certain NetLogo features are being used, so as to inform development priorities. No personal or identifying information will be collected. If you have any questions or concerns about

the collection and storage of this data, feel free to contact the NetLogo team at feedback@ccl.northwestern.edu.

Code Preferences

Sort “Procedures” menu by

Choices:

Alphabetical order (default)

Definition order (the first procedure listed will be the one defined closest to the top of the Code Tab)

Always show “Included Files” menu

By default the “Included Files” menu is only shown when the Code Tab has an “includes” statement. With this option the “Included Files” menu will always be in the Code Tab toolbar. That menu

allows user to select and open an included file or choose the New Source File or Open Source File options.

Automatically jump to source of compilation error

If checked, NetLogo will bring you to the location of an error if one occurs during compilation.

Open code tab in separate window on startup

When checked the Code tab will appear in a separate window when NetLogo is opened.

Auto Indent

When selected, indentation in the Code Tab will be determined by the compiler, instead of by manually pressing the Tab key to change the indentation of a line.

Show line numbers

When selected line numbers will be shown on the left edge of the Code Tab.

Logging Preferences

Enable logging

Create a log file containing user actions. This option can be useful for debugging and research. NetLogo must be restarted for this preference to take effect. If logging is enabled you must also

specify a log directory, or NetLogo will produce an error message.

Directory to store logs

Specifies the directory to which log files will be written. You can type in the directory name, or select a directory using the Browse… dialog. NetLogo must be restarted for this preference to take

effect.

If logging is enabled one of the following may happen.

If you type in a non-existent directory you will see a dialog that says “The specified log directory does not exist, would you like to create it?” with options “Yes” and “No.”

You must have write permission for the log directory, otherwise you will get the message “NetLogo does not have permission to write to the specified log directory.”

Events to log:

Enter a comma-separate list of the event names or “shortcut” names. If you leave this value blank with logging enabled a set of default events will be logged. For detailed options see the Events

section of the Logging documentation. The “all” option causes all the events be logged, including button, chooser, comment, compile, command-center, global, input-box, link, model-open,

slider, speed-slider, start, switch, stop, turtle, widget-edit, and tick events.

Color Themes

Use the radio buttons to change the color theme. See the images below for an example of each theme.

Light

Dark

Classic

Arduino

Using

For a first use without compiling code, do the following:

1. Acquire the NetLogo software. The Arduino extension comes pre-installed with NetLogo 5.2.1 and later.

2. Acquire an Arduino board and install the arduino IDE

3. Use the Arduino IDE to edit the Sketch (if desired) and send to the board. (See elaborate comments in the sketch for recommendations about what to comment out/leave in depending on your

setup & circuit on the board.)

4. Once the Arduino has the sketch loaded on it, it will run that sketch whenever it is powered on.

5. Open the test “Arduino Example” model in the NetLogo Models library (it’s in the “IABM Textbook” > “Chapter 8” folder)

6. Connect the Arduino to a USB port on the computer if it is not still connected from step 3.

7. Press OPEN to choose the port to communicate with and establish the connection.

8. Use the buttons to send byte commands; use the interface to inspect variable value(s) that your sketch is sending.

9. Note that by typing arduino:primitives you can get a list of the available commands in the extension.

Notes

A NetLogo model using this extension must work in conjunction with an Arduino Sketch. These two endpoints communicate by way of an application protocol that they define. For example, if

the NetLogo model sends a byte ‘1’ over the wire this may mean something to the Arduino Sketch, which will respond accordingly. The Arduino Sketch for its own part may send name-value

pairs over the serial port, which then can be looked up asynchronously by the NetLogo model.

The modeler is free to build as simple or as complex an application protocol on top of this raw communication mechanism.

The asynchronous nature of the board-to-computer communications has one notable limitation. If you choose to try to simulate a synchronous, BLOCKING READ communications pattern, (e.g.,

by sending a byte-based signal to the board, which triggers a response in a known name-value pair), then you are likely to be ‘off by one’ response. That is, if you do the following in NetLogo

code:

arduino:write-byte b

show arduino:get "varname"

You are likely to get the value of varname from the PRIOR command represented by writing the byte b . This is because the second line of NetLogo code will execute while the Arduino is off

generating a new value for varname .

There are ways of getting around this (simulating a blocking interface by polling on a value to indicate fresh “news” on varname). But this extension works best in settings where the Arduino

Sketch is “chatty” and the NetLogo model samples this stream when it needs data.

Compatibility

This code has been tested on Windows 7 and 10 with 32-bit NetLogo and on Mac OS X. You are likely to encounter issues when running this with 64-bit NetLogo in Windows 8 or Windows 10,

so if you have Windows 8 or 10, please download the 32-Bit version of NetLogo if you plan on using the Arduino extension. We strive for cross-platform compatibility across Mac, Win, and

Linux. So if you have troubles, please let us know.

Questions

If you run into problems or have questions about the extension, please email ccl-feedback or cbrady@inquirelearning.com.

Primitives

Looking for the primitive reference for the Arduino extension? You can find it here.

arduino:primitives arduino:ports arduino:open arduino:close arduino:get arduino:write-string arduino:write-int arduino:write-byte arduino:is-open? arduino:debug-

to-arduino arduino:debug-from-arduino

arduino:primitives

arduino:primitives

Reports a list of primitives available in the extension, with basic hints about their syntax.

arduino:ports

arduino:ports

Reports a list of port names

http://ccl.northwestern.edu/netlogo/download.shtml
mailto:ccl-feedback@ccl.northwestern.edu
mailto:cbrady@inquirelearning.com
file:///tmp/sbt_6c39b28e/arduino/index.html

arduino:open

arduino:open port-name

Opens the port named port-name.

arduino:close

arduino:close

Closes the currently open port.

arduino:get

arduino:get var-name

Reads and reports the value associated with var-name on the Arduino board. If there is no value associated with var-name, returns false. Note: var-name is case insensitive.

arduino:write-string

arduino:write-string string-message

Writes a string message to the currently open port.

arduino:write-int

arduino:write-int int-message

Writes a integer message to the currently open port.

arduino:write-byte

arduino:write-byte byte-message

Writes a byte message to the currently open port.

arduino:is-open?

arduino:is-open?

Reports a boolean value (true or false) indicating if a port is open.

arduino:debug-to-arduino

arduino:debug-to-arduino

Reports a list of the last messages sent from NetLogo to the Arduino, up to a maximum of 5 messages. Each entry in this list is a string beginning with “s:” if the message sent was a

string, “i:” if the message sent was an int, and “b:” if the message sent was a byte.

arduino:debug-from-arduino

arduino:debug-from-arduino

Reports a list of lists containing any errant messages sent from NetLogo to the Arduino, up to a maximum of 10 errant messages. Each sublist contains the raw message as its first ele‑

ment and a message describing the error as the second element.

Array

Using

The array extension is pre-installed in NetLogo.

To use the array extension in your model, add a line to the top of your Code tab:

extensions [array]

If your model already uses other extensions, then it already has an extensions line in it, so just add array to the list.

For more information on using NetLogo extensions, see the Extensions Guide

When to Use

In general, anything you can do with an array in NetLogo, you could also just use a list for. But you may want to consider using an array instead for speed reasons. Lists and arrays have different

performance characteristics, so you may be able to make your model run faster by selecting the appropriate data structure.

Arrays are useful when you need a collection of values whose size is fixed. You can quickly access or alter any item in an array if you know its position.

Unlike NetLogo’s lists and strings, arrays are “mutable”. That means that you can actually modify them directly, rather than constructing an altered copy as with lists. If the array is used in more

than one place in your code, any changes you make will show up everywhere. It’s tricky to write code involving mutable structures and it’s easy to make subtle errors or get surprising results, so

we suggest sticking with lists and strings unless you’re certain you want and need mutability.

Example use of Array Extension

let a array:from-list n-values 5 [0]

print a

=> {{array: 0 0 0 0 0}}

print array:length a

=> 5

foreach n-values 5 [i -> i] [i -> array:set a i i * i]

print a

=> {{array: 0 1 4 9 16}}

print array:item a 0

=> 0

print array:item a 3

=> 9

array:set a 3 50

print a

=> {{array: 0 1 4 50 16}}

Primitives

Looking for the primitive reference for the Array extension? You can find it here.

array:from-list array:item array:set array:length array:to-list

array:from-list

array:from-list list

Reports a new array containing the same items in the same order as the input list.

array:item

array:item array index

Reports the item in the given array with the given index (ranging from zero to the length of the array minus one).

array:set

array:set array index value

Sets the item in the given array with the given index (ranging from zero to the length of the array minus one) to the given value.

Note that unlike the replace-item primitive for lists, a new array is not created. The given array is actually modified.

file:///tmp/sbt_6c39b28e/extensions.html
file:///tmp/sbt_6c39b28e/array/index.html

array:length

array:length array

Reports the length of the given array, that is, the number of items in the array.

array:to-list

array:to-list array

Reports a new list containing the same items in the same order as the given array.

Bitmap

Using

The bitmap extension is pre-installed in NetLogo. For instructions on using it, or for more information about NetLogo extensions, see the NetLogo User Manual.

What does the Bitmap Extension do?

The Bitmap Extension allows you to manipulate and import images into the drawing and patches. It offers features not provided by the NetLogo core primitives, such as: scaling, manipulation of

different color channels, and width and height reporters.

Getting started

To import and manipulate images you will need to include the bitmap extension in your NetLogo model.

extensions[bitmap]

The image file formats supported are determined by your Java virtual machine’s imageio library. Typically this is PNG, JPG, GIF, and BMP. PNG is a good, standard choice that is likely to work

everywhere.

If the image format supports transparency (alpha), that information will be imported as well.

Primitives

Looking for the primitive reference for the Bitmap extension? You can find it here.

bitmap:average-color bitmap:channel bitmap:copy-to-drawing bitmap:copy-to-pcolors bitmap:difference-rgb bitmap:export bitmap:from-base64 bitmap:to-base64

bitmap:from-view bitmap:to-grayscale bitmap:height bitmap:import bitmap:scaled bitmap:width

bitmap:average-color

bitmap:average-color image

Reports a 3-element list describing the amount of R, G, and B in image, by summing across all pixels, and normalizing each component by the number of pixels in the image, so each com‑
ponent ranges from 0 to 255.

bitmap:channel

bitmap:channel image channel

Extracts either the alpha, red, green, or blue channel from an image. The input channel should be an integer 0-3 indicating the channel to remove (alpha=0, red=1, green=2, blue=3). The

resulting image is a grayscale image representing specified channel.

bitmap:copy-to-drawing

bitmap:copy-to-drawing image x y

Imports the given image into the drawing without scaling the image at the given pixel coordinates.

bitmap:copy-to-pcolors

bitmap:copy-to-pcolors image boolean

Imports the given image into the pcolors, scaled to fit the world. The second input indicates whether the colors should be interpreted as NetLogo colors or left as RGB colors. false

means RGB colors.

bitmap:difference-rgb

bitmap:difference-rgb image1 image2

Reports an image that is the absolute value of the pixel-wise RGB difference between two images. Note that image1 and image2 MUST be the same width and height as each other, or

errors will ensue.

bitmap:export

file:///tmp/sbt_6c39b28e/bitmap/index.html

bitmap:export image filename

Writes image to filename.

bitmap:from-base64

bitmap:from-base64 base64-string

Turns a base64 encoded string into a bitmap image for use by the extension. The Fetch and Export-The extensions would be common sources of these encoded strings.

bitmap:to-base64

bitmap:to-base64 base64-string

Turns a bitmap image into a base64 encoded string with a PNG format.

bitmap:from-view

bitmap:from-view

Reports an image of the current view.

bitmap:to-grayscale

bitmap:to-grayscale image

Converts the given image to grayscale.

bitmap:height

bitmap:height image

Reports the height of given image

bitmap:import

bitmap:import filename

Reports a LogoBitmap containing the image at filename.

bitmap:scaled

bitmap:scaled image width height

Reports a new image that is image scaled to the given width and height

bitmap:width

bitmap:width image

Reports the width of the given image

https://github.com/NetLogo/Fetch-Extension
https://github.com/NetLogo/ExportThe-Extension

CSV

Common use cases and examples

Read a file all at once

Just use csv:from-file "/path/to/myfile.csv" ! See from-file for more information.

Read a file one line at a time

For really big files, you may not want to store the entire file in memory, but rather just process it a line at a time. For instance, if you want to sum each of the columns of a numeric CSV file, you

can do:

to-report sum-columns [file]

 file-open file

 set result csv:from-row file-read-line

 while [not file-at-end?] [

 let row csv:from-row file-read-line

 set result (map [[[col-total new-val] -> col-total + new-val] result row)

]

 file-close

 report result

end

You can also use this technique to…

Read a file one line per tick

Here’s an example model that reads in a file one line per tick:

globals [data]

to setup

 clear-all

 file-close-all % Close any files open from last run

 file-open "data.csv"

 % other setup goes here

 reset-ticks

end

to go

 if file-at-end? [stop]

 set data csv:from-row file-read-line

 % model update goes here

 tick

end

Write a file

Just use csv:to-file "/path/to/myfile.csv" my-data ! See to-file for more information.

Primitives

Looking for the primitive reference for the CSV extension? You can find it here.

Formatting NetLogo data as CSV

csv:to-row csv:to-string csv:to-file

Parsing CSV input to NetLogo data

csv:from-row csv:from-string csv:from-file

file:///tmp/sbt_6c39b28e/csv/index.html

csv:from-row

csv:from-row string

csv:from-row string delimiter

Parses the given string as though it were a row from a CSV file and returns it as a list of values. For example:

observer> show csv:from-row "one,two,three"

observer: ["one" "two" "three"]

Quotes can be used when items contain commas:

observer> show csv:from-row "there's,a,comma,\"in,here\""

observer: ["there's" "a" "comma" "in,here"]

You can put two quotes in a row to put an actual quote in an entry. If the entry is not quoted, you can just use one quote:

observer> foreach (csv:from-row "he said \"hi there\",\"afterwards, she said \"\"hello\"\"\"") print

he said "hi there"

afterwards, she said "hello"

Number-like-entries will be parsed as numbers:

observer> show csv:from-row "1,-2.5,1e3"

observer: [1 -2.5 1000]

true and false with any capitalization will be parsed as booleans:

observer> show csv:from-row "true,TRUE,False,falsE"

observer: [true true false false]

To use a different delimiter, you can specify a second, optional argument. Only single character delimiters are supported:

observer> show (csv:from-row "1;2;3" ";")

observer: [1 2 3]

Different types of values can be mixed freely:

observer> show csv:from-row "one,2,true"

observer: ["one" 2 true]

csv:from-string

csv:from-string string

csv:from-string string delimiter

Parses a string representation of one or more CSV rows and returns it as a list of lists of values. For example:

observer> show csv:from-string "1,two,3\nfour,5,true"

observer: [[1 "two" 3] ["four" 5 true]]

csv:from-file

csv:from-file csv-file

csv:from-file csv-file delimiter

Parses an entire CSV file to a list of lists of values. For example, if we have a file example.csv that contains:

1,2,3

4,5,6

7,8,9

10,11,12

Then, we get:

observer> show csv:from-file "example.csv"

observer: [[1 2 3] [4 5 6] [7 8 9] [10 11 12]]

The parser doesn’t care if the rows have different numbers of items on them. The number of items in the rows list will always be <number of delimiters> + 1 , though blank lines are

skipped. This makes handling files with headers quite easy. For instance, if we have header.csv that contains:

My Data

2/1/2015

Parameters:

start,stop,resolution,population,birth?

0,4,1,100,true

Data:

time,x,y

0,0,0

1,1,1

2,4,8

3,9,27

This gives:

observer> foreach csv:from-file "header.csv" show

observer: ["My Data"]

observer: ["2/1/2015"]

observer: ["Parameters:"]

observer: ["start" "stop" "resolution" "population" "birth?"]

observer: [0 4 1 100 true]

observer: ["Data:"]

observer: ["time" "x" "y"]

observer: [0 0 0]

observer: [1 1 1]

observer: [2 4 8]

observer: [3 9 27]

csv:to-row

csv:to-row list

csv:to-row list delimiter

Reports the given list as a CSV row. For example:

observer> show csv:to-row ["one" 2 true]

observer: "one,2,true"

csv:to-string

csv:to-string list

csv:to-string list delimiter

Reports the given list of lists as a CSV string. For example:

observer> show csv:to-string [[1 "two" 3] [4 5]]

observer: "1,two,3\n4,5"

csv:to-file

csv:to-file csv-file list

csv:to-file csv-file list delimiter

Writes the given list of lists to a new CSV file. For example:

observer> csv:to-file "myfile.csv" [[1 "two" 3] [4 5]]

will result in a file myfile.csv containing:

1,two,3

4,5

GIS

Using

This extension adds GIS (Geographic Information Systems) support to NetLogo. It provides the ability to load vector GIS data (points, lines, and polygons), and raster GIS data (grids) into your

model.

The extension supports vector data in the form of ESRI shapefiles and GeoJSON files. The shapefile (.shp) and GeoJSON (.geojson) formats are the most common format for storing and

exchanging vector GIS data. The extension supports raster data in the form of ESRI ASCII Grid files. The ASCII grid file (.asc or .grd) is not as common as the shapefile, but is supported as an

interchange format by most GIS platforms.

How to use

In general, you first define a transformation between GIS data space and NetLogo space, then load datasets and perform various operations on them. The easiest way to define a transformation

between GIS space and NetLogo space is to take the union of the “envelopes” or bounding rectangles of all of your datasets in GIS space and map that directly to the bounds of the NetLogo

world. See GIS General Examples for an example of this technique.

You may also optionally define a projection for the GIS space, in which case datasets will be re-projected to match that projection as they are loaded, as long as each of your data files has an

associated .prj file that describes the projection or geographic coordinate system of the data. If no associated .prj file is found, the extension will assume that the dataset already uses the cur‑

rent projection, regardless of what that projection is.

Once the coordinate system is defined, you can load datasets using gis:load-dataset. This primitive reports either a VectorDataset or a RasterDataset, depending on what type of file you pass

it.

A VectorDataset consists of a collection of VectorFeatures, each one of which is a point, line, or polygon, along with a set of property values. A single VectorDataset may contain only one of the

three possible types of features.

There are several things you can do with a VectorDataset: ask it for the names of the properties of its features, ask it for its “envelope” (bounding rectangle), ask for a list of all VectorFeatures in

the dataset, search for a single VectorFeature or list of VectorFeatures whose value for a particular property is less than or greater than a particular value, or lies within a given range, or

matches a given string using wildcard matching (“*”, which matches any number of occurrences of any characters). If the VectorFeatures are polygons, you can also apply the values of a partic‑
ular property of the dataset’s features to a given patch variable.

For the common use case of converting a VectorDataset of points into a corresponding set of turtles with the same attributes, the gis:create-turtles-from-points primitive should be used.

There are also several things you can do with a VectorFeature from a VectorDataset: ask it for a list of vertex lists, ask it for a property value by name, ask it for its centroid (center of gravity),

and ask for a subset of a given agentset whose agents intersect the given VectorFeature. For point data, each vertex list will be a one-element list. For line data, each vertex list will represent the

vertices of a line that makes up that feature. For polygon data, each vertex list will represent one “ring” of the polygon, and the first and last vertex of the list will be the same. The vertex lists are

made up of values of type Vertex, and the centroid will be a value of type Vertex as well.

For the common use case of spawning a number of turtles inside the bounds of a Polygon VectorFeature, the gis:create-turtles-inside-polygon primitive should be used. Though the

gis:random-point-inside primitive can also be used if you don’t want the spawned turtles to take on the attributes of the Polygon.

There are a number of operations defined for RasterDatasets as well. Mostly these involve sampling the values in the dataset, or re-sampling a raster to a different resolution. You can also apply

a raster to a given patch variable, and convolve a raster using an arbitrary convolution matrix.

Code Example: GIS General Examples has general examples of how to use the extension

Code Example: GIS Gradient Example is a more advanced example of raster dataset analysis.

Known Issues

Values of type RasterDataset, VectorDataset, VectorFeature, and Vertex are not handled properly by export-world and import-world . To save datasets, you must use the gis:store-

dataset primitive.

There is currently no way to distinguish positive-area “shell” polygons from negative-area “hole” polygons, or to determine which holes are associated with which shells.

Credits

The primary developer of the GIS extension was Eric Russell.

Significant updates, features, and fixes were added by James Hovet in 2020 and 2021.

The GIS extension makes use of several open-source software libraries. For copyright and license information on those, see the copyright section of the manual. The extension also contains

elements borrowed from My World GIS.

This documentation and the example NetLogo models are in the public domain. The GIS extension itself is free and open source software. See the README.md file in the extension/gis directory

for details.

We would love to hear your suggestions on how to improve the GIS extension, or just about what you’re using it for. Post questions and comments at the NetLogo Users Group, or write directly

to Eric Russell and the NetLogo team at ccl-gis@ccl.northwestern.edu

Primitives

Looking for the primitive reference for the GIS extension? You can find it here.

file:///tmp/sbt_6c39b28e/copyright.html
https://myworldgis.org/
https://groups.google.com/d/forum/netlogo-users
mailto:ccl-gis@ccl.northwestern.edu
file:///tmp/sbt_6c39b28e/gis/index.html

RasterDataset Primitives

gis:width-of gis:height-of gis:raster-value gis:set-raster-value gis:minimum-of gis:maximum-of gis:sampling-method-of gis:set-sampling-method gis:raster-sample

gis:raster-world-envelope gis:create-raster gis:resample gis:convolve gis:apply-raster

Dataset Primitives

gis:load-dataset gis:store-dataset gis:type-of gis:patch-dataset gis:turtle-dataset gis:link-dataset

VectorDataset Primitives

gis:shape-type-of gis:property-names gis:feature-list-of gis:vertex-lists-of gis:centroid-of gis:random-point-inside gis:location-of gis:set-property-value

gis:property-value gis:find-features gis:find-one-feature gis:find-less-than gis:find-greater-than gis:find-range gis:property-minimum gis:property-maximum

gis:apply-coverage gis:create-turtles-from-points gis:create-turtles-from-points-manual gis:create-turtles-inside-polygon gis:create-turtles-inside-polygon-manual

gis:coverage-minimum-threshold gis:set-coverage-minimum-threshold gis:coverage-maximum-threshold gis:set-coverage-maximum-threshold gis:intersects? gis:contains?

gis:contained-by? gis:have-relationship? gis:relationship-of gis:intersecting

Coordinate System Primitives

gis:set-transformation gis:set-transformation-ds gis:set-world-envelope gis:set-world-envelope-ds gis:world-envelope gis:envelope-of gis:envelope-union-of

gis:load-coordinate-system gis:set-coordinate-system gis:project-lat-lon gis:project-lat-lon-from-ellipsoid

Drawing Primitives

gis:drawing-color gis:set-drawing-color gis:draw gis:fill gis:paint gis:import-wms-drawing

gis:set-transformation

gis:set-transformation gis-envelope netlogo-envelope

Defines a mapping between GIS coordinates and NetLogo coordinates. The gis-envelope and netlogo-envelope parameters must each be four-element lists consisting of:

[minimum-x maximum-x minimum-y maximum-y]

The scale of the transformation will be equal to the minimum of the scale necessary to make the mapping between the ranges of x values and the scale necessary to make the mapping

between the ranges of y values. The GIS space will be centered in NetLogo space.

For example, the following two lists would map all of geographic (latitude and longitude) space in degrees to NetLogo world space, regardless of the current dimensions of the NetLogo

world:

(list -180 180 -90 90)

(list min-pxcor max-pxcor min-pycor max-pycor)

However, if you’re setting the envelope of the NetLogo world, you should probably be using set-world-envelope.

gis:set-transformation-ds

gis:set-transformation-ds gis-envelope netlogo-envelope

Does the same thing as set-transformation above, except that it allows the scale for mapping the range of x values to be different than the scale for y values. The “-ds” on the end stands

for “different scales”. Using different scales will cause distortion of the shape of GIS features, and so it is generally not recommended, but it may be useful for some models.

Here is an example of the difference between set-transformation and set-transformation-ds:

Using [set-transformation](#gisset-transformation), the scale along the x and y axis is the same, preserving the round shape of the Earth in this Orthographic projection. Using [set-

transformation-

ds](#gisset-

transformation-

ds), the scale

along the x axis

is stretched so

that the earth

covers the

entire NetLogo

View, which in

this case

distorts the

shape of the

Earth.

gis:set-world-envelope

gis:set-world-envelope gis-envelope

A shorthand for setting the transformation by mapping the envelope of the NetLogo world to the given envelope in GIS space, while keeping the scales along the x and y axis the same. It

is equivalent to:

set-transformation gis-envelope (list min-pxcor max-pxcor min-pycor max-pycor)

This primitive is supplied because most of the time you’ll want to set the envelope of the entire NetLogo world, rather than just a part of it.

gis:set-world-envelope-ds

gis:set-world-envelope-ds gis-envelope

A shorthand for setting the transformation by mapping the envelope of the NetLogo world to the given envelope in GIS space, using different scales along the x and y axis if necessary. It

is equivalent to:

set-transformation-ds gis-envelope (list min-pxcor max-pxcor min-pycor max-pycor)

See the pictures above for the difference between using equal scales for x and y coordinates and using different scales.

gis:world-envelope

gis:world-envelope

Reports the envelope (bounding rectangle) of the NetLogo world, transformed into GIS space. An envelope consists of a four-element list of the form:

[minimum-x maximum-x minimum-y maximum-y]

gis:envelope-of

gis:envelope-of thing

Reports the envelope (bounding rectangle) of thing in GIS coordinates. The thing may be an Agent, an AgentSet, a RasterDataset, a VectorDataset, or a VectorFeature. An envelope con‑
sists of a four-element list of the form:

[minimum-x maximum-x minimum-y maximum-y]

gis:envelope-union-of

gis:envelope-union-of envelope1 envelope2

gis:envelope-union-of envelope1...

Reports an envelope (bounding rectangle) that entirely contains the given envelopes. An envelope consists of a four-element list of the form

[minimum-x maximum-x minimum-y maximum-y]

No assumption is made about the coordinate system of the arguments, though if they are not in the same coordinate system, results will be unpredictable.

gis:load-coordinate-system

gis:load-coordinate-system file

Loads a new global projection used for projecting or re- projecting GIS data as it is loaded from a file. The file must contain a valid Well-Known Text (WKT) projection description.

WKT projection files are frequently distributed alongside GIS data files, and usually have a “.prj” filename extension.

Relative paths are resolved relative to the location of the current model, or the user’s home directory if the current model hasn’t been saved yet.

The GIS extension does not support all WKT coordinate systems and projections. Only geographic ("GEOGCS") and projected ("PROJCS") coordinate systems are supported. For pro‑

jected coordinate systems, only the following projections are supported:

Albers_Conic_Equal_Area

Lambert_Conformal_Conic_2SP

Polyconic

Lambert_Azimuthal_Equal_Area

Mercator_1SP

Robinson

Azimuthal_Equidistant

Miller

Stereographic

https://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html

Cylindrical_Equal_Area

Oblique_Mercator

Transverse_Mercator

Equidistant_Conic

hotine_oblique_mercator

Gnomonic

Orthographic

See remotesensing.org for a complete list of WKT projections and their parameters.

gis:set-coordinate-system

gis:set-coordinate-system system

Sets the global projection used for projecting or re- projecting GIS data as it is loaded. The system must be either a string in Well-Known Text (WKT) format, or a NetLogo list that con‑
sists of WKT converted to a list by moving each keyword inside its associated brackets and putting quotes around it. The latter is preferred because it makes the code much more

readable.

The same limitations on WKT support apply as described above in the documentation for load-coordinate-system

gis:project-lat-lon

gis:project-lat-lon latitude longitude

Report the position, in NetLogo space, of the given latitude and longitude pair according to the current map projection and transformation.

Like the location-of primitive, the reported xcor and ycor values are reported in a two-item list of [xcor ycor] and an empty list if the specified point is outside of the bounds of the

netlogo world. For instance:

let location-of-abbey-road-studios gis:project-lat-lon 51.5320787 -0.1802646

let abbey-road-xcor item 0 location-of-abbey-road-studios

let abbey-road-ycor item 1 location-of-abbey-road-studios

Note that this primitive assumes that the given lat/lon pair are relative to the WGS84 datum/ellipsoid. If your data is based on GPS observations or GeoJson files, then your data is already

relative to WGS84. If you are unsure about what datum your data is, then you should probably just assume it is WGS84 and use this primitive. However, if you do know that your data is

relative to a different datum and that extra degree of precision is important to you (if you are, say, comparing values from location-of and project-lat-lon) then you should use project-

lat-lon-from-ellipsoid and specify the desired datum’s ellipsoid.

gis:project-lat-lon-from-ellipsoid

gis:project-lat-lon-from-ellipsoid latitude longitude ellipsoid-radius ellipsoid-inverse-flattening

Report the position, in NetLogo space, of the given latitude and longitude pair according to the current map projection and transformation and the given ellipsoid parameters.

Like the location-of primitive, the reported xcor and ycor values are reported in a two-item list of [xcor ycor] and an empty list if the specified point is outside of the bounds of the

netlogo world.

The two defining parameters of a ellipsoid for the purposes of this primitive are the radius and the inverse flattening metric. These parameters can be easily found by examining either the

WKT definition of a given projection/datum pair or the .prj file for the desired datum. For example, if you open the .prj file for a shapefile exported with the WGS66 datum in a text editor,

you will see, somewhere in the file, this bit of text: DATUM["D_WGS_1966",SPHEROID["NWL_9D",6378145,298.25]] . If you look at the SPHEROID section of that text, the first number is the

radius of that ellipoid and the second is the inverse flattening.

Once we have these numbers, we can project data that is relative to WGS66 like so:

let location gis:project-lat-lon my-lat my-lon 6378145 298.25

For more on earth ellipoids, see: https://en.wikipedia.org/wiki/Earth_ellipsoid

gis:load-dataset

gis:load-dataset file

Loads the given data file, re-projecting the data as necessary.

Relative paths are resolved relative to the location of the current model, or the user’s home directory if the current model hasn’t been saved yet.

For ESRI shapefiles and ESRI grid files, if there is a “.prj” file associated with the file, then load-datset will consult that file and re-project to the current global projection if needed. If no

“.prj” file is found, then the data is assumed to use the same projection as the current global coordinate system.

For GeoJSON files, as per the most-recent specification (RFC 7946), the coordinate system for GeoJSON files is always WGS84 and will be imported accordingly.

Currently, three types of data file are supported:

“.shp” (ESRI shapefile): contains vector data, consisting of points, lines, or polygons. When the target file is a shapefile, load-dataset reports a VectorDataset.

“.asc” or “.grd” (ESRI ASCII grid): contains raster data, consisting of a grid of values. When the target file is an ASCII grid file, load-dataset reports a RasterDataset.

“.geojson” or “.json” (GeoJSON): contains vector data similar to shapefiles and similarly reports a VectorDataset.

Note that not all aspects of the GeoJSON standard are supported. In particular, to be properly imported, a GeoJSON file must satisfy the following:

It only contain numeric or string data within the properties. all other json data will be stringified.

http://remotesensing.org/geotiff/proj_list/
http://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html
https://en.wikipedia.org/wiki/Earth_ellipsoid

All “Features” within a “FeatureCollection” must be of the same shape type (“Point”, “LineString”, etc.) Additionally, if not all the “Features” in the “FeatureCollection” have the same set of

property names, default values will be supplied where there are missing entries (0 for numbers and "" for strings.)

It must not use “GeometryCollection”, which is not supported

Elevation/Z data is partially supported. For both .geojson and .shp files, single points with Z data will have their Z coordinate moved to a new “_Z” property that can be accessed with

gis:property-value like any other property. Any Z information for other shape types will be discarded upon import.

gis:store-dataset

gis:store-dataset dataset file

Exports the given dataset to the given file.

For VectorDatasets, two file formats are supported, ESRI shapefiles and GeoJSON. If the given file name ends in “.geojson” or “.json”, then the file will be exported as a GeoJSON file. If

the file name ends in any other extension or no extension at all, the dataset will be exported as a shapefile and the associated file extensions will be supplied (“.shp”, “.prj”, etc.)

For RasterDatasets, only ESRI ASCII grid files are supported and the associated file extensions will be automatically supplied.

Relative paths are resolved relative to the location of the current model, or the user’s home directory if the current model hasn’t been saved yet.

gis:type-of

gis:type-of dataset

Reports the type of the given GIS dataset: either “VECTOR” or “RASTER”

gis:patch-dataset

gis:patch-dataset patch-variable

Reports a new raster whose cells correspond directly to NetLogo patches, and whose cell values consist of the values of the given patch variable. This primitive is basically the inverse of

apply-raster; apply-raster copies values from a raster dataset to a patch variable, while this primitive copies values from a patch variable to a raster dataset.

gis:turtle-dataset

gis:turtle-dataset turtle-set

Reports a new, point VectorDataset built from the turtles in the given agentset. The points are located at locations of the turtles, translated from NetLogo space into GIS space using the

current coordinate transformation. And the dataset’s properties consist of all of the turtle variables common to every turtle in the agentset.

gis:link-dataset

gis:link-dataset link-set

Reports a new, line VectorDataset built from the links in the given agentset. The endpoints of each line are at the location of the turtles connected by each link, translated from NetLogo

space into GIS space using the current coordinate transformation. And the dataset’s properties consist of all of the link variables common to every link in the agentset.

gis:shape-type-of

gis:shape-type-of VectorDataset

Reports the shape type of the given dataset. The possible output values are “POINT”, “LINE”, and “POLYGON”.

gis:property-names

gis:property-names VectorDataset

Reports a list of strings where each string is the name of a property possessed by each VectorFeature in the given VectorDataset, suitable for use in gis:property-value.

gis:feature-list-of

gis:feature-list-of VectorDataset

Reports a list of all VectorFeatures in the given dataset.

gis:vertex-lists-of

gis:vertex-lists-of VectorFeature

Reports a list of lists of Vertex values. For point datasets, each vertex list will contain exactly one vertex: the location of a point. For line datasets, each vertex list will contain at least two

points, and will represent a “polyline”, connecting each adjacent pair of vertices in the list. For polygon datasets, each vertex list will contain at least three points, representing a polygon

connecting each vertex, and the first and last vertices in the list will be the same.

gis:centroid-of

gis:centroid-of VectorFeature

Reports a single Vertex representing the centroid (center of gravity) of the given feature. For point datasets, the centroid is defined as the average location of all points in the feature. For

line datasets, the centroid is defined as the average of the locations of the midpoints of all line segments in the feature, weighted by segment length. For polygon datasets, the centroid is

defined as the weighted sum of the centroids of a decomposition of the area into (possibly overlapping) triangles. See this FAQ for more details on the polygon centroid algorithm.

gis:random-point-inside

gis:random-point-inside VectorFeature

Reports a single randomly-generated Vertex that lies within the given feature polygon. Generated points are uniformly distributed within the polygon and both polygon holes and multi-

polygon features are supported.

; create 100 turtles randomly distributed throught a VectorFeature `vf`

crt 100 [

 let loc gis:location-of gis:random-point-inside vf

 set xcor item 0 loc

 set ycor item 1 loc

]

gis:location-of

gis:location-of Vertex

Reports a two-element list containing the x and y values (in that order) of the given vertex translated into NetLogo world space using the current transformation, or an empty list if the

given vertex lies outside the NetLogo world.

gis:set-property-value

gis:set-property-value VectorFeature property-name value

Sets the value of the given property of the given VectorFeature. The type of the given value (string or number) must match the property type of the VectorFeature. This command may be

used in conjunction with store-dataset to make changes to VectorFeatures and export them back as GIS datasets.

gis:property-value

gis:property-value VectorFeature property-name

Reports the value of the property with the given name for the given VectorDataset. The reported value may be a number, a string, or a boolean value, depending on the type of the field in

the underlying data file.

For shapefiles, values from dBase CHARACTER and DATE fields are returned as strings, values from NUMBER and FLOAT fields are returned as numbers, and values from LOGICAL fields

are returned as boolean values. MEMO fields are not supported. DATE values are converted to strings using ISO 8601 format (YYYY-MM-DD).

gis:find-features

gis:find-features VectorDataset property-name specified-value

Reports a list of all VectorFeatures in the given dataset whose value for the property property-name matches specified-value (a string or number).

For strings, value comparison is not case sensitive, and the wildcard character “*” will match any number of occurrences (including zero) of any character.

For numbers, beware that there are some numbers that are too big to be represented as an integer in NetLogo, so integer data imported into NetLogo may start to lose precision if they are

larger than around 10^14.

gis:find-one-feature

gis:find-one-feature VectorDataset property-name specified-value

Reports the first VectorFeature in the dataset whose value for the property property-name matches the given string or number. Reports nobody if no matching VectorFeature is found.

For strings, Value comparison is not case sensitive, and the wildcard character “*” will match any number of occurrences (including zero) of any character. Features are searched in the

order that they appear in the data file that was the source of the dataset, and searching stops as soon as a match is found.

For numbers, beware that there are some numbers that are too big to be represented as an integer in NetLogo, so if you want to be able to identify features based on a unique ID, keep the

IDs you use on the relatively small side to play it safe. Any number that can fit into a 32 bit unsigned integer will work, but any larger than 10^14 and you could run into issues. (Helpfully,

the NetLogo app will warn you if you try to type one of these too-large numbers into the editor if you want to check.)

gis:find-less-than

gis:find-less-than VectorDataset property-name value

Reports a list of all VectorFeatures in the given dataset whose value for the property property-name is less than the given value. String values are compared using case-sensitive lexico‑
graphic order as defined in the Java Documentation. Using a string value for a numeric property or a numeric value for a string property will cause an error.

http://www.faqs.org/faqs/graphics/algorithms-faq/
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)

gis:find-greater-than

gis:find-greater-than VectorDataset property-name value

Reports a list of all VectorFeatures in the given dataset whose value for the property property-name is greater than the given value. String values are compared using case-sensitive lexi‑

cographic order as defined in the Java Documentation. Using a string value for a numeric property or a numeric value for a string property will cause an error.

gis:find-range

gis:find-range VectorDataset property-name minimum-value maximum-value

Reports a list of all VectorFeatures in the given dataset whose value for the property property-name is strictly greater than minimum-value and strictly less than maximum-value. String

values are compared using case-sensitive lexicographic order as defined in the Java Documentation. Using a string value for a numeric property or a numeric value for a string property

will cause an error.

gis:property-minimum

gis:property-minimum VectorDataset property-name

Reports the smallest value for the given property over all of the VectorFeatures in the given dataset. String values are compared using case-sensitive lexicographic order as defined in the

Java Documentation.

gis:property-maximum

gis:property-maximum VectorDataset property-name

Reports the largest value for the given property over all of the VectorFeatures in the given dataset. String values are compared using case-sensitive lexicographic order as defined in the

Java Documentation.

gis:apply-coverage

gis:apply-coverage VectorDataset property-name patch-variable

Copies values from the given property of the VectorDataset’s features to the given patch variable. The dataset must be a polygon dataset; points and lines are not supported.

For each patch, it finds all VectorFeatures that intersect that patch. Then, if the property is a string property, it computes the majority value by computing the total area of the patch cov‑

ered by VectorFeatures having each possible value of the property, then returning the value which represents the largest proportion of the patch area. If the property is a numeric prop‑

erty, it computes a weighted average of property values from all VectorFeatures which intersect the patch, weighted by the proportion of the patch area they cover.

There are two exceptions to this default behavior:

If a percentage of a patches’ area greater than the coverage-maximum-threshold is covered by a single VectorFeature, then the property value from that VectorFeature is copied directly.

If more than one VectorFeature covers a percentage of area greater than the threshold, only the first will be used.

If the total percentage of a patches’ area covered by VectorFeatures is less than the coverage-minimum-threshold, the target patch variable is set to Not A Number.

By default, the minimum threshold is 10% and the maximum threshold is 33%. These values may be modified using the four primitives that follow.

gis:create-turtles-from-points

gis:create-turtles-from-points VectorDataset breed commands

For each point in a VectorDataset of points, create a turtle of the specified breed at the point’s location. For each agent variable (as defined in <breeds>-own), if there is a property with

the same name in the dataset, set that variable’s value to be the value of that property. Finally, execute any commands in the optional command block. To use generic turtles as the cho‑
sen breed, simply supply turtles as the breed argument.

Property names and variable names are compared case-insensitively. Keep in mind that when importing shapefiles, property names may be modified for backwards compatibility reasons.

The names given by gis:property-names can always be trusted as authoritative. For manually specifying a mapping between property names and variable names, see the create-tur‑

tles-from-points-manual primitive.

For multi-point datasets, a turtle is created at each point of multi-point feature, each with the same set of variable values.

Built-in variables such as “label” and “heading” are supported. NetLogo color numeric representations are supported for setting “color” and “label-color”, as well as the 15 default color

string representations (“red”, “blue”, “black”, etc.).

As an example: say you wanted to create a turtle of breed “cities/city” for each city in a dataset of cities like the one included in the “GIS General Examples” model from the models library.

The cities dataset has four properties, “NAME”, “COUNTRY”, “POPULATION”, and “CAPITAL”. To map them all to NetLogo turtle variables and set their shapes to circles, you could do this:

extensions [gis]

breed [cities city]

cities-own [name country population capital]

globals [cities-dataset]

to setup

 set cities-dataset gis:load-dataset "cities.shp"

 gis:create-turtles-from-points cities-dataset cities [

 set shape "circle"

]

end

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)

gis:create-turtles-from-points-manual

gis:create-turtles-from-points-manual VectorDataset breed property-mapping commands

Like create-turtles-from-points , creates a turtle for each point in a VectorDataset of points and populates their variables with the values of corresponding gis properties.

This primitive can be used to specify additional mappings between gis property names and NetLogo variable names. These mappings are specified as a list of lists of strings like so:

[["property-name" "turtle-variable-name"] ["property-name" "turtle-variable-name"] (etc.)]

These manual mappings modify the automatic mapping process that takes place in the create-turtles-from-points primitive, so you only need to specify the changes you want to

make to the default mappings, and the rest of the mappings will be untouched.

To return to the cities example from the create-turtles-from-points entry, the variable name “capital” is not very descriptive. something like “is-capital?” fits the NetLogo style much

better. To make that change, you would modify the example like so.

extensions [gis]

breed [cities city]

cities-own [name country population is-capital?]

globals [cities-dataset]

to setup

 set cities-dataset gis:load-dataset "cities.shp"

 ;; Since we only want to change how the "CAPITAL" property is mapped, we only need to specify that one change.

 gis:create-turtles-from-points-manual cities-dataset cities [["CAPITAL" "is-capital?"]] [

 set shape "circle"

]

 ;; Each city turtle still has a name, country, and population set just like the non-manual version.

end

gis:create-turtles-inside-polygon

gis:create-turtles-inside-polygon VectorFeature breed n commands

Randomly create “n” turtles of the given breed within the given VectorFeature and for each agent variable (as defined in -own), if there is a property with the same name in the dataset, set

that variable’s value to be the value of that property. Finally, execute any commands in the optional command block. To use generic turtles as the chosen breed, simply supply turtles as

the breed argument.

Property names and variable names are compared case-insensitively. Keep in mind that when importing shapefiles, property names may be modified for backwards compatibility reasons.

The names given by gis:property-names can always be trusted as authoritative. For manually specifying a mapping between property names and variable names, see the create-tur‑

tles-inside-polygon-manual primitive.

Built-in variables such as “label” and “heading” are supported. NetLogo color numeric representations are supported for setting “color” and “label-color”, as well as the 15 default color

string representations (“red”, “blue”, “black”, etc.).

As an example: say you had a VectorDataset of polygons representing different zip codes within a state and you want to create 100 different turtles within each zip code and have each

turtle know which zip code it originated in. The VectorDataset has a field named “zip”, so you should add a variable named “zip” to the turtles with turtles-own . Then, loop through each

VectorFeature in the VectorDataset and use the create-turtles-inside-polygon primitive to create 100 new turtles.

extensions [gis]

globals [dataset]

turtles-own [zip]

to setup

 set dataset gis:load-dataset "dataset.shp"

 gis:set-world-envelope envelope-of dataset

 gis:set-drawing-color red

 gis:draw dataset 1

 foreach gis:feature-list-of dataset [this-vector-feature ->

 gis:create-turtles-inside this-vector-feature turtles 100 [

 set shape "person"

]

]

end

gis:create-turtles-inside-polygon-manual

gis:create-turtles-inside-polygon-manual VectorFeature breed n property-mapping commands

Like create-turtles-inside-polygon , creates “n” different turtles within the given VectorFeature and populates their agent variables with values corresponding to the property values of

the VectorFeature.

This primitive can be used to specify additional mappings between gis property names and NetLogo variable names. These mappings are specified as a list of lists of strings like so:

[["property-name" "turtle-variable-name"] ["property-name" "turtle-variable-name"] (etc.)]

These manual mappings modify the automatic mapping process that takes place in the create-turtles-inside-polygon primitive, so you only need to specify the changes you want to

make to the default mappings, and the rest of the mappings will be untouched.

See the create-turtles-from-points-manual entry for an example of how to override default mappings with manual ones.

gis:coverage-minimum-threshold

gis:coverage-minimum-threshold

Reports the current coverage minimum threshold used by gis:apply-coverage.

gis:set-coverage-minimum-threshold

gis:set-coverage-minimum-threshold new-threshold

Sets the current coverage minimum threshold to be used by gis:apply-coverage.

gis:coverage-maximum-threshold

gis:coverage-maximum-threshold

Reports the current coverage maximum threshold used by gis:apply-coverage.

gis:set-coverage-maximum-threshold

gis:set-coverage-maximum-threshold new-threshold

Sets the current coverage maximum threshold to be used by gis:apply-coverage.

gis:intersects?

gis:intersects? x y

Reports true if the given objects’ spatial representations share at least one point in common, and false otherwise. The objects x and y may be any one of:

a VectorDataset, in which case the object’s spatial representation is the union of all the points, lines, or polygons the dataset contains.

a VectorFeature, in which case the object’s spatial representation is defined by the point, line, or polygon the feature contains.

A turtle, in which case the spatial representation is a point.

A link, whose spatial representation is a line segment connecting the two points represented by the turtles the link is connecting.

A patch, whose spatial representation is a rectangular polygon.

An agentset, whose spatial representation is the union of the representations of all of the agents it contains.

A list containing of any of the items listed here, including another list. The spatial representation of such a list is the union of the spatial representations of its contents.

gis:contains?

gis:contains? x y

Reports true if every point of y’s spatial representation is also a part of x’s spatial representation. Note that this means that polygons do contain their boundaries. The objects x and y may

be any one of

a VectorDataset, in which case the object’s spatial representation is the union of all the points, lines, or polygons the dataset contains.

a VectorFeature, in which case the object’s spatial representation is defined by the point, line, or polygon the feature contains.

A turtle, in which case the spatial representation is a point.

A link, whose spatial representation is a line segment connecting the two points represented by the turtles the link is connecting.

A patch, whose spatial representation is a rectangular polygon.

An agentset, whose spatial representation is the union of the representations of all of the agents it contains.

A list containing of any of the items listed here, including another list. The spatial representation of such a list is the union of the spatial representations of its contents.

gis:contained-by?

gis:contained-by? x y

Reports true if every point of x’s spatial representation is also a part of y’s spatial representation. The objects x and y may be any one of:

a VectorDataset, in which case the object’s spatial representation is the union of all the points, lines, or polygons the dataset contains.

a VectorFeature, in which case the object’s spatial representation is defined by the point, line, or polygon the feature contains.

A turtle, in which case the spatial representation is a point.

A link, whose spatial representation is a line segment connecting the two points represented by the turtles the link is connecting.

A patch, whose spatial representation is a rectangular polygon.

An agentset, whose spatial representation is the union of the representations of all of the agents it contains.

A list containing of any of the items listed here, including another list. The spatial representation of such a list is the union of the spatial representations of its contents.

gis:have-relationship?

gis:have-relationship? x y

Reports true if the spatial representations of the two objects have the given spatial relationship, and false otherwise. The spatial relationship is specified using a Dimensionally Extended

Nine- Intersection Model (DE-9IM) matrix. The matrix consists of 9 elements, each of which specifies the required relationship between the two objects’ interior space, boundary space,

or exterior space. The elements must have one of six possible values:

“T”, meaning the spaces must intersect in some way

“F”, meaning the spaces must not intersect in any way

“0”, meaning the dimension of the spaces’ intersection must be zero (i.e., it must be a point or non-empty set of points).

“1”, meaning the dimension of the spaces’ intersection must be one (i.e., it must be a line or non-empty set of line segments).

“2”, meaning the dimension of the spaces’ intersection must be two (i.e., it must be a polygon or set of polygons whose area is greater than zero).

“*”, meaning that the two spaces may have any relationship.

For example, this matrix:

x

Interior Boundary Exterior

y Interior T * *

Boundary * * *

Exterior F F *

would return true if and only if some part of object x’s interior lies inside object y’s interior, and no part of object x’s interior or boundary intersects object y’s exterior. This is essentially a

more restrictive form of the contains? primitive; one in which polygons are not considered to contain their boundaries.

The matrix is given to the have-relationship? primitive as a string, whose elements are given in the following order:

1 2 3

4 5 6

7 8 9

So to use the example matrix above, you would write:

gis:have-relationship? x y "T*****FF*"

A much more detailed and formal description of the DE-9IM matrix and the associated point-set theory can be found in the OpenGIS Simple Features Specification for SQL.

The objects x and y may be any one of:

a VectorDataset, in which case the object’s spatial representation is the union of all the points, lines, or polygons the dataset contains.

a VectorFeature, in which case the object’s spatial representation is defined by the point, line, or polygon the feature contains.

A turtle, in which case the spatial representation is a point.

A link, whose spatial representation is a line segment connecting the two points represented by the turtles the link is connecting.

A patch, whose spatial representation is a rectangular polygon.

An agentset, whose spatial representation is the union of the representations of all of the agents it contains.

A list containing of any of the items listed here, including another list. The spatial representation of such a list is the union of the spatial representations of its contents.

gis:relationship-of

gis:relationship-of x y

Reports the Dimensionally Extended Nine-Intersection Model (DE-9IM) matrix that describes the spatial relationship of the two objects. The matrix consists of 9 elements, each of which

describes the relationship between the two objects’ interior space, boundary space, or exterior space. Each element will describe the dimension of the intersection of two spaces, mean‑

ing that it may have one of four possible values:

“-1”, meaning the spaces do not intersect

“0”, meaning the dimension of the spaces’ intersection is zero (i.e., they intersect at a point or set of points).

“1”, meaning the dimension of the spaces’ intersection is one (i.e., they intersect along one or more lines).

“2”, meaning the dimension of the spaces’ intersection is two (i.e., their intersection is a non-empty polygon).

For example, the two polygons x and y shown here:

have the following DE-9IM matrix:

x

Interior Boundary Exterior

y Interior 2 1 2

Boundary 1 0 1

Exterior 2 1 2

Which would be reported by the relationship-of primitive as the string “212101212”.

http://www.opengeospatial.org/standards/sfs

A much more detailed and formal description of the DE-9IM matrix and the associated point-set theory can be found in the OpenGIS Simple Features Specification for SQL.

The objects x and y may be any one of:

a VectorDataset, in which case the object’s spatial representation is the union of all the points, lines, or polygons the dataset contains.

a VectorFeature, in which case the object’s spatial representation is defined by the point, line, or polygon the feature contains.

A turtle, in which case the spatial representation is a point.

A link, whose spatial representation is a line segment connecting the two points represented by the turtles the link is connecting.

A patch, whose spatial representation is a rectangular polygon.

An agentset, whose spatial representation is the union of the representations of all of the agents it contains.

A list containing of any of the items listed here, including another list. The spatial representation of such a list is the union of the spatial representations of its contents.

gis:intersecting

patch-set gis:intersecting data

Reports a new agent set containing only those members of the given agent set which intersect given GIS data, which may be any one of: a VectorDataset, a VectorFeature, an Agent, an

Agent Set, or a list containing any of the above.

gis:width-of

gis:width-of RasterDataset

Reports the number of columns in the dataset. Note that this is the number of cells from left to right, not the width of the dataset in GIS space.

gis:height-of

gis:height-of RasterDataset

Reports the number of rows in the dataset. Note that this is the number of cells from top to bottom, not the height of the dataset in GIS space.

gis:raster-value

gis:raster-value RasterDataset x y

Reports the value of the given raster dataset in the given cell. Cell coordinates are numbered from left to right, and from top to bottom, beginning with zero. So the upper left cell is (0, 0),

and the bottom right cell is (gis:width-of dataset - 1, gis:height-of dataset - 1).

gis:set-raster-value

gis:set-raster-value RasterDataset x y value

Sets the value of the given raster dataset at the given cell to a new value. Cell coordinates are numbered from left to right, and from top to bottom, beginning with zero. So the upper left

cell is (0, 0), and the bottom right cell is (gis:width-of dataset - 1, gis:height-of dataset - 1).

gis:minimum-of

gis:minimum-of RasterDataset

Reports the highest value in the given raster dataset.

gis:maximum-of

gis:maximum-of RasterDataset

Reports the lowest value in the given raster dataset.

gis:sampling-method-of

gis:sampling-method-of RasterDataset

Reports the sampling method used to compute the value of the given raster dataset at a single point, or over an area smaller than a single raster cell. Sampling is performed by the GIS

extension primitives raster-sample, resample, convolve, and apply-raster. The sampling method will be one of the following:

"NEAREST_NEIGHBOR" : the value of the cell nearest the sampling location is used.

"BILINEAR" : the value of the four nearest cells are sampled by linear weighting, according to their proximity to the sampling site.

"BICUBIC" : the value of the sixteen nearest cells are sampled, and their values are combined by weight according to a piecewise cubic polynomial recommended by Rifman (see Digital

Image Warping, George Wolberg, 1990, pp 129-131, IEEE Computer Society Press).

"BICUBIC_2" : the value is sampled using the same procedure and the same polynomial as with BICUBIC above, but using a different coefficient. This method may produce somewhat

sharper results than BICUBIC , but that result is data dependent.

For more information on these sampling methods and on raster sampling in general, see this wikipedia article.

http://www.opengeospatial.org/standards/sfs
https://en.wikipedia.org/wiki/Image_scaling

gis:set-sampling-method

gis:set-sampling-method RasterDataset sampling-method

Sets the sampling method used by the given raster dataset at a single point, or over an area smaller than a single raster cell. Sampling is performed by the GIS extension primitives raster-

sample, resample, convolve, and apply-raster. The sampling method must be one of the following:

"NEAREST_NEIGHBOR"

"BILINEAR"

"BICUBIC"

"BICUBIC_2"

See sampling-method-of above for a more specific description of each sampling method.

gis:raster-sample

gis:raster-sample RasterDataset sample-location

Reports the value of the given raster over the given location. The location may be any of the following:

A list of length 2, which is taken to represent a point in netlogo space ([xcor ycor]) of the sort reported by location-of Vertex. The raster dataset is sampled at the point of that location.

A list of length 4, which is taken to represent an envelope in GIS space, of the sort reported by envelope-of. The raster dataset is sampled over the area of that envelope.

A patch, in which case the raster dataset is sampled over the area of the patch.

A turtle, in which case the raster dataset is sampled at the location of that turtle.

A Vertex, in which case the raster dataset is sampled at the location of that Vertex.

If the requested location is outside the area covered by the raster dataset, this primitive reports the special value representing “not a number”, which is printed by NetLogo as “NaN”.

Using the special “not a number” value as an argument to primitives that expect a number may cause an error, but you can test the value reported by this primitive to filter out “not a num‑
ber” values. A value that is not a number will be neither less than nor greater than a number value, so you can detect “not a number” values using the following:

let value gis:raster-sample dataset turtle 0

; set color to blue if value is a number, red if value is "not a number"

ifelse (value <= 0) or (value >= 0)

[set color blue]

[set color red]

If the requested location is a point, the sample is always computed using the method set by set-sampling-method. If the requested location is an area (i.e., an envelope or patch), the

sample is computed by taking the average of all raster cells covered by the requested area.

gis:raster-world-envelope

gis:raster-world-envelope RasterDataset x y

Reports the GIS envelope needed to match the boundaries of NetLogo patches with the boundaries of cells in the given raster dataset. This envelope could then be used as an argument

to set-transformation-ds.

There may be more cells in the dataset than there are patches in the NetLogo world. In that case, you will need to select a subset of cells in the dataset by specifying which cell in the

dataset you want to match with the upper-left corner of the NetLogo world. Cells are numbered from left to right, and from top to bottom, beginning with zero. So the upper left cell is (0,

0), and the bottom right cell is (gis:width-of dataset - 1, gis:height-of dataset - 1).

gis:create-raster

gis:create-raster width height envelope

Creates and reports a new, empty raster dataset with the given number of columns and rows, covering the given envelope.

gis:resample

gis:resample RasterDataset envelope width height

Reports a new dataset that consists of the given RasterDataset resampled to cover the given envelope and to contain the given number of columns and rows. If the new raster’s cells are

smaller than the existing raster’s cells, they will be resampled using the method set by set-sampling-method. If the new cells are larger than the original cells, they will be sampled using

the "NEAREST_NEIGHBOR" method.

gis:convolve

gis:convolve RasterDataset kernel-rows kernel-columns kernel key-column key-row

Reports a new raster whose data consists of the given raster convolved with the given kernel.

A convolution is a mathematical operation that computes each output cell by multiplying elements of a kernel with the cell values surrounding a particular source cell. A kernel is a matrix

of values, with one particular value defined as the “key element”, the value that is centered over the source cell corresponding to the destination cell whose value is being computed.

The values of the kernel matrix are given as a list, which enumerates the elements of the matrix from left to right, top to bottom. So the elements of a 3-by-3 matrix would be listed in the

following order:

1 2 3

4 5 6

7 8 9

The key element is specified by column and row within the matrix. Columns are numbered from left to right, beginning with zero. Rows are numbered from top to bottom, also beginning

with zero. So, for example, the kernel for the horizontal Sobel operator, which looks like this:

1 0 -1

2 0

(key)

-2

1 0 -1

would be specified as follows:

let horizontal-gradient gis:convolve dataset 3 3 [1 0 -1 2 0 -2 1 0 -1] 1 1

gis:apply-raster

gis:apply-raster RasterDataset patch-variable

Copies values from the given raster dataset to the given patch variable, resampling the raster as necessary so that its cell boundaries match up with NetLogo patch boundaries. This

resampling is done as if using resample rather than raster-sample, for the sake of efficiency. However, patches not covered by the raster are assigned values of “not a number” in the

same way that raster-sample reports values for locations outside the raster.

gis:drawing-color

gis:drawing-color

Reports the color used by the GIS extension to draw vector features into the NetLogo drawing layer. Color can be represented either as a NetLogo color (a single number between zero

and 140) or an RGB color (a list of 3 numbers). See details in the Colors section of the Programming Guide.

gis:set-drawing-color

gis:set-drawing-color color

Sets the color used by the GIS extension to draw vector features into the NetLogo drawing layer. Color can be represented either as a NetLogo color (a single number between zero and

140) or an RGB color (a list of 3 numbers). See details in the Colors section of the Programming Guide.

gis:draw

gis:draw vector-data line-thickness

Draws the given vector data to the NetLogo drawing layer, using the current GIS drawing color, with the given line thickness. The data may consist either of an entire VectorDataset, or a

single VectorFeature. This primitive draws only the boundary of polygon data, and for point data, it fills a circle with a radius equal to the line thickness.

gis:fill

gis:fill vector-data line-thickness

Fills the given vector data in the NetLogo drawing layer using the current GIS drawing color, using the given line thickness around the edges. The data may consist either of an entire

VectorDataset, or a single VectorFeature. For point data, it fills a circle with a radius equal to the line thickness.

gis:paint

gis:paint RasterDataset transparency

Paints the given raster data to the NetLogo drawing layer. The highest value in the dataset is painted white, the lowest is painted in black, and the other values are painted in shades of

gray scaled linearly between white and black.

The transparency input determines how transparent the new image in the drawing will be. Valid inputs range from 0 (completely opaque) to 255 (completely transparent).

gis:import-wms-drawing

gis:import-wms-drawing server-url spatial-reference layers transparency

Imports an image into the NetLogo drawing layer using the Web Mapping Service protocol, as defined by the Open Geospatial Consortium.

The spatial reference and layers inputs should be given as strings. The spatial reference input corresponds to the SRS parameter to the GetMap request as defined in section 7.2.3.5 of

version 1.1.1 of the WMS standard. The layers input corresponds to the LAYERS parameter to the as defined in 7.2.3.3 of version 1.1.1 of the WMS standard.

You can find the list of valid spatial reference codes and layer names by examining the response to a GetCapabilities request to the WMS server. Consult the relevant standard for instruc‑

tions on how to issue a GetCapabilities request to the server and how to interpret the results.

The transparency input determines how transparent the new image in the drawing will be. Valid inputs range from 0 (completely opaque) to 255 (completely transparent).

https://en.wikipedia.org/wiki/Sobel_operator
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/

GoGo

NetLogoLab and the GoGo Board Extension for sensors and robotics

This is the extension for physical computing, using sensors, motors, etc in NetLogo. It interfaces with GoGo boards running Human Interface Driver (HID) firmware, and it replaces the old GoGo

Extension, which used USB-serial communications. (The USB-serial GoGo extension is still available for NetLogo 5.3.1 and earlier here.)

This extension comes bundled with NetLogo 5.2 and later. The source code is hosted online at https://github.com/NetLogo/GoGo-HID-Extension.

NetLogoLab and the GoGo Board Extension

What is NetLogoLab?

NetLogoLab is the technological infrastructure that connects NetLogo and the physical world. It can be used for robotics, interactive art, scientific investigations, and model validation. This infra‑
structure was created at the CCL by Paulo Blikstein and Uri Wilensky in 2005 as part of the Bifocal Modeling project. For more information, please check the new and old websites, where you

will find academic papers, models, and demos.

NetLogoLab is comprised of the following software and hardware components:

1. A NetLogo extension to control a robotics or data-logging board.

2. A robotics or data-logging board (also know as a serial interface board, or analog-to-digital board).

3. Sensor and actuator toolkits.

4. NetLogo models.

NetLogo’s robotics/data-logging board of choice is the GoGo Board, an open-source, easy-to-build, low-cost interface designed by Arnan Sipitakiat and Paulo Blikstein, first at the MIT Media

Lab, then at Northwestern’s CCL, and is in continuous refinement. Other robotics hardware can be used with NetLogo, including those that are commercially available, such

as Arduino boards, Vernier and Pasco sensors and actuators, Phidgets, and VEX kits, but specific extensions have not yet been developed for each of those platforms. So far, only the GoGo

Board extension is available with NetLogo’s standard distribution.

The GoGo Board NetLogo extension

The GoGo Extension for NetLogo provides primitives to communicate with a GoGo Board. This enables the user to connect NetLogo with the physical world using sensors, motors, light bulbs,

LEDs, relays and other devices.

GoGo Board: a low-cost robotics and data-logging board

A GoGo Board is a low cost, general purpose serial interface board especially designed to be used in school and for educational projects. It was created by Arnan Sipitakiat and Paulo

Blikstein at the MIT Media Lab in 2001, and has been actively developed since then. It is currently used in over 10 countries, such as the United States, China, Thailand, South Korea, Brazil,

Portugal, Mexico, Malaysia, and Egypt. For more information see the the gogo board about page.

Up to 8 sensors (i.e., temperature, light, pressure) and 4 output devices (i.e., motors, light bulbs, LEDs, relays) can be connected to the board simultaneously. The board also has a connector for

add-on devices (such as displays, Bluetooth or ZigBee wireless modules, voice recorders, real-time clock, and GPS).

Sensor and actuator toolkits

NetLogo models can interact with the physical world in two ways. First, they can gather data from the environment. This information can be used by the model to change or calibrate its behav‑

ior. This data is gathered using electronic sensors, which can measure a wide range of phenomena: temperature, light, touch (see pictures below), pH, chemical concentration, pressure, etc.

See the Gogo docs here for info on the the sensors that are included with a GoGo board kit.

The second mode of interaction between NetLogo and the physical world is the control of output devices, or “actuators” - motors, light bulbs (see pictures below), LEDs, and more complex

devices that include these outputs such as toys, remote controlled cars, electrical appliances, and automated laboratory equipment. See the Using Output Ports section of the GoGo docs for

more info.

The GoGo board also comes with Terminal Connectors to wire in additional sensor that don’t come included. Additional sensors and actuators can be found through online retailers such

as Digikey, Mouser, Phidgets, Spark Fun, and Solarbotics.

NetLogo models

To make use of the GoGo Board extension and the NetLogoLab framework, users need to create NetLogo models using the special primitives made available by the extension. Later in this docu‑
ment, we will provide examples of models that do this.

How to get a GoGo Board?

Gogo Boards can be purchased from the SEED Foundation.

https://github.com/NetLogo/GoGo-Serial-Extension
https://github.com/NetLogo/GoGo-HID-Extension
http://www.blikstein.com/paulo
https://tltlab.org/bifocal-modeling/
http://ccl.northwestern.edu/netlogolab/
http://www.gogoboard.org/
http://alumni.media.mit.edu/~arnans/
http://www.blikstein.com/paulo
http://www.arduino.cc/
http://www.vernier.com/
http://www.pasco.com/
http://www.phidgets.com/
http://www.vexrobotics.com/
http://www.gogoboard.org/
http://alumni.media.mit.edu/~arnans/
http://www.blikstein.com/paulo
http://www.blikstein.com/paulo
http://www.media.mit.edu/
https://gogoboard.org/about/
https://docs.gogoboard.org/#/en/sensor/sensor-set
https://docs.gogoboard.org/#/en/04-output
https://docs.gogoboard.org/#/en/sensor/sensor-set?id=terminal-connector-
http://www.digikey.com/
http://www.mouser.com/
http://www.phidgets.com/
http://www.sparkfun.com/
http://www.solarbotics.com/
https://www.seeedstudio.com/GoGo-Board-Kit-p-2717.html

Installing and testing the GoGo Extension

The GoGo Board connects with the computer via the USB port. Turn the GoGo Board on using the switch behind the power connector: the board will beep twice and the red light will turn on.

Windows

Plug in your GoGo board and go to https://code.gogoboard.org/. The website should prompt you to download the gogo plugin for Windows. You can now try using the NetLogo GoGo exten‑

sion. If you don’t have Java installed, you will be prompted to locate your java executable. You will need to install Java to get the extension to work. We recommend using the Java 17 which is

the version used by NetLogo as of NetLogo 6.3.0, installer here: https://www.oracle.com/java/technologies/downloads/#java17. You can check which Java version your system is using by run‑

ning java -version in the command line.

Mac OS X

The GoGo extension requires no special installation on Mac OS X. If you don’t have Java installed, you will need to install Java 17 which is the version used by NetLogo as of NetLogo 6.3.0,

installer here: https://www.oracle.com/java/technologies/downloads/#java17. You can check which Java version your system is using by running java -version in the command line.

Linux

Many versions of Linux require no special installation.

Usage

The GoGo Extension comes preinstalled when you download and install NetLogo. To use the extension in your model, add this line to the top of your Code tab:

extensions [gogo]

If your model already uses other extensions, then it already has an extensions line in it, so just add gogo to the list.

If you are using a GoGo board 6, you will also need to initialize the extension by typing the following command into the command center:

gogo:init "gogo6"

You can see if the GoGo board is connected by seeing if it will beep when you type into the command center:

gogo:beep

Or, you can see whether one or more HID-based gogos are on and attached to the computer by typing the following into the command center:

gogo:howmany-gogos

For examples that use the GoGo extension see GoGoMonitor and GoGoMonitorSimple models in the Models Library and the example projects at the bottom of this page.

Changes

Compared to previous versions of the GoGo extension, this version offers:

Improved robustness. With prior versions of the GoGo extension, crashes were fairly common due to problems in the USB-Serial stack across platforms. The switch to HID improved

robustness, and the new extension also uses a “daemon” architecture which shields NetLogo from any problems that may occur in direct communication with the GoGo board. The result is a

substantial reduction in the number of crashes of NetLogo.

No Installation of Drivers. Because the new GoGo firmware presents the board as an HID device, the extension could be written so as not to require installing drivers. This means there is no

need for the user to have administrator rights on the computer.

Directionality for Motors. The board now has polarity-ensuring output connectors, so that “counterclockwise” or “clockwise” can now be specified in code.

Primitives

Looking for the primitive reference for the GoGo extension? You can find it here.

Other Outputs

gogo:led gogo:beep

Utilities

gogo:read-all

https://code.gogoboard.org/
https://www.oracle.com/java/technologies/downloads/#java17
https://www.oracle.com/java/technologies/downloads/#java17
file:///tmp/sbt_6c39b28e/gogo/index.html

General

gogo:primitives gogo:howmany-gogos gogo:init

Sensors

gogo:read-sensors gogo:read-sensor

Outputs and Servos

gogo:talk-to-output-ports gogo:talk-to-servo-ports gogo:set-output-port-power gogo:output-port-on gogo:output-port-off gogo:output-port-clockwise gogo:output-port-

counterclockwise gogo:set-servo

gogo:primitives

gogo:primitives

Returns a list of the primitives of this extension.

gogo:howmany-gogos

gogo:howmany-gogos

Reports the number of USB HID devices visible to the computer and having the correct vendor and product ID to be a GoGo board. A board will only be detected if it is both connected

and powered on. Using this primitive is one way to determine quickly whether a GoGo board has the HID firmware loaded. (A USB-Serial version of the board will not be detected.).

gogo:init

gogo:init

Initialize the extension. The parameter name is a string representing the name of the backend to initialize. There are currently 2 backends. One is the "gogo" backend that supports GoGo

board 5 and earlier versions. Another is the "gogo6" backend that supports GoGo board 6. You only need to use this primitive if you are using a GoGo board 6. The extension will auto‑

matically initialize itself with the "gogo" backend if this primitive is not called.

gogo:talk-to-output-ports

gogo:talk-to-output-ports list-of-portnames

Establishes a list of output ports that will be controlled with subsequent output-port commands. See below…

gogo:talk-to-servo-ports

gogo:talk-to-servo-ports list-of-portnames

Establishes a list of servo ports that will be controlled with subsequent output-port commands. See below…

This command is only available with the “gogo6” backend.

gogo:set-output-port-power

gogo:set-output-port-power power-level

power-level is a number between 0 and 100, reflecting the percentage of maximum power. Sets the amount of power that will be fed to the output ports indicated in talk-to-output-

ports . This will not affect the on-off state of the output ports. So, for example, if a motor is already connected to an output port and running, changing its power will change its speed. If

the motor is not running, changing the power level will not turn it on; instead, it will affect the speed at which the motor starts when it is turned on with output-port-on .

gogo:output-port-on

gogo:output-port-on

Turns on the output ports which have been indicated with talk-to-output-ports. If none have been set with talk-to-output-ports, no ports will be turned on.

gogo:output-port-off

gogo:output-port-off

Turns off the output ports which have been indicated with talk-to-output-ports. If none have been set with talk-to-output-ports, no ports will be turned off.

gogo:output-port-clockwise

gogo:output-port-clockwise

Sets the polarity of the output port(s) that have been specified with talk-to-output-ports, so that a motor attached to one of these ports would turn clockwise.

gogo:output-port-counterclockwise

gogo:output-port-counterclockwise

Sets the polarity of the output port(s) that have been specified with talk-to-output-ports , so that a motor attached to one of these ports would turn counterclockwise.

gogo:set-servo

gogo:set-servo number

Sets the Pulse-Width Modulation (PWM) proportion of the output port(s) that have been specified with talk-to-output-ports. Note that the servo connectors are the male pins next to the

standard motor connectors. Different servos respond to different PWM ranges, but all servos read PWM proportions and set the position of their main gear accordingly.

gogo:led

gogo:led on-or-off

Turns the user-LED on or off, depending on the argument. gogo:led 1 turns the LED on; gogo:led 0 turns it off.

gogo:beep

gogo:beep

Causes the GoGo board to beep.

gogo:read-sensors

gogo:read-sensors

Reports a list containing the current readings of all eight sensors ports of the GoGo.

gogo:read-sensor

gogo:read-sensor which-sensor

Reports the value of sensor number which-sensor, where which-sensor is a number between 0-7.

gogo:read-all

gogo:read-all

Reports all data available from the board, in a raw-list form useful for debugging.

gogo:send-bytes

gogo:send-bytes list

Sends a list of bytes to the GoGo board. Useful for debugging or for testing any new or future functionality that is added to the GoGo board with new firmware updates.

Examples of NetLogoLab models

Controlling a car

The first step when creating a NetLogoLab model is to add the extensions keyword to NetLogo’s Code tab. Just go to the Code tab and add this line:

extensions [gogo]

Now let’s start the model. Imagine that we want to control a car with four wheels and two motors attached to the back wheels. We will assume that you have built such as car and connected the

motors to the output ports “a” and “b” on the GoGo board. One very simple approach could be to create two buttons for each motor, “on” and “off”:

The code associated with these buttons is very simple: for the “on” button, we could simply have

gogo:talk-to-output-ports ["a"]

gogo:output-port-on

For the off button, it would be very similar:

gogo:talk-to-output-ports ["a"]

gogo:output-port-off

The other set of “on” and “off” buttons, used to control the second motor, would have very similar code, except that we would use the second output port (“b”), so:

gogo:talk-to-output-ports ["b"]

We could make our model more interesting by adding a “toggle direction” button, adding a button with the following code, which would reverse the direction of motors “a” and “b”:

gogo:talk-to-output-ports ["a" "b"]

gogo:output-port-reverse

A simple sensing project

To create a simple sensing project, we will assume that you have added the GoGo extension to your model and successfully opened a connection to the GoGo board, i.e., adding the “exten‑

sions” command to the Code Tab. For this sensing project we do not need motors, but we will need another device: a temperature sensor. A standard GoGo board comes with a temperature

sensor. It is labeled (TEMP Sensor). More info on the sensors that come standard with a gogo board can be found in the GoGo Docs. The simplest use of a temperature sensor, obviously, is to

display the temperature. We could achieve this by plugging the sensor in to input 1 and adding a monitor to the NetLogo interface with this code:

gogo:read-sensor 1

The GoGo docs say, “Note that the readout is not in Celsius or Fahrenheit. The value is reflects the resistance of the sensor. Mappings between the resistance and the standard units must be

done manually.” So, to figure out how these values map to a real temperature, you will need to use a thermometer and see how the reading on the temperature sensor corresponds to the tem‑

perature in degrees. If you found out that the conversion is to divide by 30, the monitor on the NetLogo interface could be changed to:

gogo:read-sensor 1 / 30

The sensor value could also be used to control on-screen objects, such as turtles. For example, let us create two buttons: a “create one turtle” button, which will clear the world and create a tur‑

tle, and a “move with heat” button, that will cause the turtle to move forwards depending on the temperature reading from the sensor. The code would look like this:

to create-one-turtle

 clear-all

 create-turtle

end

to move-with-heat

 if gogo:read-sensor 1 > 500

 [forward 1]

end

If the “move with heat” forever button is activated and the user heats up the sensor (by rubbing it, or slowly bringing a flame near it), the heat threshold will be achieved (> 500) and the turtle

will move.

A more elaborate use of this sensor apparatus would be to control output devices, such as motors. The user could, for example, turn a motor on when the value from the temperature sensor

reaches 500, using the following code:

to turn-motor-on-with-heat

 if gogo:read-sensor 1 > 500

 [

 gogo:talk-to-output-ports ["a"]

 gogo:output-port-on

]

end

Another possible use of the sensing primitives is to plot and log data. Logging could be useful for more elaborate data analysis and comparison, and can be achieved with NetLogo’s list com‑
mands. For example, if the user wants to log sensor values from sensor 1 every 0.5 seconds, the code could look like this:

https://docs.gogoboard.org/#/en/sensor/sensor-set

to log-data-from-sensor

 set data-vector lput (gogo:read-sensor 1) data-vector

 wait 0.5

end

Finally, plotting data is straightforward. The following code, for example, would create a graph for the value of sensor 1:

plot (gogo:read-sensor 1)

LevelSpace

LevelSpace fundamentals

LevelSpace must be loaded in a model using extensions [ls] at the top of your model. Once this is done, a model will be able to load up other models using the LevelSpace primitives, run

commands and reporters in them, and close them down when they are no longer needed.

Asking and reporting in LevelSpace is conceptually pretty straight forward: You pass blocks of code to child models, and the child models respond as if you had typed that code into their

Command Center. LevelSpace allows you to report strings, numbers, and lists from a child to its parent. It is not possible to directly report turtles, patches, links, or any of their respective sets.

Further, it is not possible to push data from a child to its parent - parents must ask their children to report. This mimicks the way in which turtles cannot “push” data to the observer, but rely on

the observer to ask them for it.

In general, the LevelSpace syntax has been designed to align with existing NetLogo primitives whenever possible.

Headless and Interactive Models

LevelSpace has two different child model types; headless models and interactive models. They each have their strengths and weaknesses:

Interactive models * are full-fledged models that give full access to their interface and widgets, * run a bit slower, and use more memory * are visible by default

Headless Models * only give you access to their view and command center * are faster and use less memory than interactive models. * are hidden by default

Typically you will want to use headless models when you are running a large number of models, or if you simply want to run them faster. Interactive models are good if you run a small amount of

models, if you are writing a LevelSpace model and need to be able to debug, or if you need access to widgets during runtime.

Keeping Track of Models

Child models are kept track of in the extension with an id number, starting with 0, and all communication from parent to child is done by referencing this number, henceforth referred to as

model-id .

The easiest way to work with multiple models is to store their model-id in a list, and use NetLogo’s list primitives to sort, filter, etc. them during runtime.

Keeping track of models is important: Most LevelSpace primitives will fail and cause a runtime interruption if provided a model-id to a non-existing model. You can use ls:model-exists?

model-id to check if model-id refers to an existing model.

A general use case: Asking and Reporting

This use case is based on the Model Visualizer and Plotter Example-model from the NetLogo Models Library.

A simple thing we can do is to open up some models, run them concurrently, and calculate the average of some reporter. Let’s say that we are interested in finding the mean number of sheep in

a bunch of Wolf Sheep Predation models. First we would open up some of these models, and set them up:

to setup

 ls:reset

 ca

 ls:create-models 30 "Wolf Sheep Predation.nlogox"

 ls:ask ls:models [set grass? true setup]

 reset-ticks

end

We then want to run all our child models, and then find out what the mean number of sheep is:

to go

 ls:ask ls:models [go]

 show mean [count sheep] ls:of ls:models

end

A general use case: Inter-Model Interactions

This use case is based on the Model Interactions Example-model from the NetLogo Models Library.

Let’s imagine that we have two models: a Wolf Sheep Predation-model called WSP , and a Climate Change model called CC . Now let’s imagine that we want the regrowth time in the wSP model

to depend on the temperature in the CC model. Using LevelSpace’s primitives, we could do something like this:

 ; save new regrowth time in a temporary LevelSpace let-variable

 ls:let new-regrowth-time 25 + (abs [temperature - 55] ls:of CC) / 2

 ; remove decimals, pass it to the wolf sheep predation model and change the time

 ls:ask WSP [

 set grass-regrowth-time round new-regrowth-time

]

 ; finally ask both models to go

 ls:ask ls:models [go]

A general Usecase: Tidying up “Dead” Child Models

As previously mentioned, it is important to keep track of “living” and “dead” models when you dynamically create and dispose of models. Let us imagine we have some lists of models of differ‑
ent kinds, and we want to make sure that we only keep the models that are alive. After running code that kills child models we can use the ls:model-exists? primitive to clean up our list of

models like this:

to-report remove-dead-models [list-of-models]

 report filter [[model-id] -> ls:model-exists model-id] list-of-models

end

We then reassign each list of models with this, e.g.

set a-list-of-models remove-dead-models a-list-of-models

set another-list-of-models remove-dead-models a-list-of-models

Citing LevelSpace in Research

If you use LevelSpace in research, we ask that you cite us,

Hjorth, A. Head, B. & Wilensky, U. (2015). “LevelSpace NetLogo extension”. http://ccl.northwestern.edu/rp/levelspace/index.shtml Evanston, IL: Center for Connected Learning and Computer

Based Modeling, Northwestern University.

Primitives

Looking for the primitive reference for the LevelSpace extension? You can find it here.

Commanding and Reporting

ls:ask ls:of ls:report ls:with ls:let ls:assign

Logic and Control

ls:models ls:show ls:show-all ls:hide ls:hide-all ls:path-of ls:name-of ls:model-exists?

Opening and Closing Models

ls:create-models ls:create-interactive-models ls:close ls:reset

ls:create-models

ls:create-models number path

ls:create-models number path anonymous command

Create the specified number of instances of the given model. The path can be absolute, or relative to the main model. Compared with ls:create-interactive-models , this primitive cre‑

ates lightweight models that are hidden by default. You should use this primitive if you plan on having many instances of the given model. The models may be shown using ls:show ;

when visible, they will have a view and command center, but no other widgets, e.g. plots or monitors.

If given a command, LevelSpace will call the command after loading each instance of the model with the model-id as the argument. This allows you to easily store model ids in a variable

or list when loading models, or do other initialization. For example, to store a model id in a variable, you can do:

let model-id 0

(ls:create-models "My-Model.nlogox" [[id] -> set model-id id])

Child model RNGs are seeded from the parent models RNG when they are created. Thus, if you seed the parent’s model RNG before child model before child models are created, the sim‑

ulation as a whole will be reproducible. Use the ls:random-seed primitive to seed the model system’s RNGs after child models have been created.

ls:create-interactive-models

ls:create-interactive-models number path

ls:create-interactive-models number path anonymous command

Like ls:create-models , creates the specified number of instances of the given model. Unlike ls:create-models , ls:create-interactive-models creates models that are visible by

default, and have all widgets. You should use this primitive if you plan on having only a handful of instances of the given model, and would like to be able to interact with the instances

through their interfaces during runtime.

Child model RNGs are seeded from the parent models RNG when they are created. Thus, if you seed the parent’s model RNG before child model before child models are created, the sim‑
ulation as a whole will be reproducible. Use the ls:random-seed primitive to seed the model system’s RNGs after child models have been created.

http://ccl.northwestern.edu/rp/levelspace/index.shtml
file:///tmp/sbt_6c39b28e/ls/index.html

ls:close

ls:close model-or-list-of-models

Close the model or models with the given model-id .

ls:reset

ls:reset

Close down all child models (and, recursively, their child models). You’ll often want to call this in your setup procedure.

Note that clear-all does not close LevelSpace models.

ls:ask

ls:ask model-or-list-of-models command argument

Ask the given child model or list of child models to run the given command. This is the primary of doing things with child models. For example:

ls:ask model-id [create-turtles 5]

You can also ask a list of models to all do the same thing:

ls:ask ls:models [create-turtles 5]

You may supply the command with arguments, just like you would with anonymous commands:

let turtle-id 0

let speed 5

(ls:ask model-id [[t s] -> ask turtle t [fd s]] turtle-id speed)

Note that the commands cannot access variables in the parent model directly. You must either pass information in through arguments or using ls:let .

ls:of

reporter ls:of model-or-list-of-models

Run the given reporter in the given model and report the result.

ls:of is designed to work like NetLogo’s inbuilt of : If you send ls:of a model-id , it will report the value of the reporter from that model. If you send it a list of model-ids, it will report a

list of values of the reporter string from all models. You cannot pass arguments to ls:of , but you can use ls:let .

[count turtles] ls:of model-id

ls:report

ls:report model-or-list-of-models reporter argument

Run the given reporter in the given model and report the result. This form exists to allow you to pass arguments to the reporter.

let turtle-id 0

(ls:report model-id [[a-turtle] -> [color] of turtle a-turtle] turtle-id)

ls:with

list-of-models ls:with reporter

Reports a new list of models containing only those models that report true when they run the reporter block.

ls:models ls:with [count turtles > 100]

ls:let

ls:let variable-name value

Creates a variable containing the given data that can be accessed by the child models.

ask turtles [

 ls:let my-color color

 ls:ask my-model [

 ask turtles [set color my-color]

]

]

ls:let works quite similar to let in that the variable is only locally accessible:

ask turtles [

 ls:let my-color color

]

;; my-color is innaccessible here

ls:let is very similar to let , except in a few cases.

ls:let will overwrite previous values in the variable

If you do

ls:let my-var 5

ls:let my-var 6

my-var will be set equal to 6 . There is no ls:set .

ls:let supports variable shadowing

If you do

ls:let my-var 5

ask turtles [

 ls:let my-var 6

 ls:ask child-model [show my-var]

]

ls:ask child-model [show my-var]

child-model will show 6 and then 5 . This is known as variable shadowing.

The parent model cannot directly read the value of an ls variable

For example, this does not work.

ls:let my-var 5

show my-var

This is intentional. ls variables are meant to be used for sharing data with child models. The parent model already has access to the data.

Furthermore, changing the value of an ls let variable in a child model will not affect it in any other model. For example:

ls:let my-var 0

ls:ask ls:models [

 set my-var my-var + 1

 show my-var

]

All models will print 1 .

ls:assign

ls:assign model-or-list-of-models global-variable value

Sets the given global variable in child model to given value. For instance

ls:assign ls:models glob1 count turtles

sets the global variable glob1 in all models to the parent’s model count turtles .

ls:models

ls:models

Report a list of model-ids for all existing models.

ls:show

ls:show model-or-list-of-models

Makes all of the given models visible.

ls:show-all

ls:show-all model-or-list-of-models

Makes all of the given models and their descendents visible.

ls:hide

ls:hide model-or-list-of-models

Hide all of the given models. Hiding models is a good way of making your simulation run faster.

https://en.wikipedia.org/wiki/Variable_shadowing

ls:hide-all

ls:hide-all model-or-list-of-models

Hide all of the given models and their descendents. Hiding models is a good way of making your simulation run faster.

ls:path-of

ls:path-of model-or-list-of-models

Report the full path, including the file name of the model. If a list of models is given, a list of paths is reported.

ls:name-of

ls:name-of model-or-list-of-models

Reports the name of the model file. This is the name of the window in which the model appears when visible. If a list of models is given, a list of names is reported.

ls:model-exists?

ls:model-exists? model-or-list-of-models

Report a boolean value for whether there is a model with that model-id. This is often useful when you are dynamically generating models, and want to ensure that you are not asking mod‑

els that no longer exist to do stuff.

ls:random-seed

ls:random-seed seed

Behaves exactly like NetLogo’s built-in primitive random-seed , except that child models have their RNGs seeded based on the given seed as well (as well their child models, and their

child models’ child models, and so forth). This primitive should almost always be used instead of NetLogo’s built-in one for seeding RNG when using LevelSpace.

Matrix

Using

The matrix extension adds a new matrix data structure to NetLogo. A matrix is a mutable 2-dimensional array containing only numbers.

When to Use

Although matrices store numbers, much like a list of lists, or an array of arrays, the primary reason to use the matrix data type is to take advantage of special mathematical operations associated

with matrices. For instance, matrix multiplication is a convenient way to perform geometric transformations, and the repeated application of matrix multiplication can also be used to simulate

other dynamic processes (for instance, processes on graph/network structures).

If you’d like to know more about matrices and how they can be used, you might consider a course on linear algebra, or search the web for tutorials. The matrix extension also allows you to solve

linear algebraic equations (specified in a matrix format), and even to identify trends in your data and perform linear (ordinary least squares) regressions on data sets with multiple explanatory

variables.

How to Use

The matrix extension comes preinstalled.

To use the matrix extension in your model, add a line to the top of your Code tab:

extensions [matrix]

If your model already uses other extensions, then it already has an extensions line in it, so just add matrix to the list.

Example

let m matrix:from-row-list [[1 2 3] [4 5 6]]

print m

=> {{matrix: [[1 2 3][4 5 6]]}}

print matrix:pretty-print-text m

=>

[[1 2 3]

 [4 5 6]]

print matrix:dimensions m

=> [2 3]

;;(NOTE: row & column indexing starts at 0, not 1)

print matrix:get m 1 2 ;; what number is in row 1, column 2?

=> 6

matrix:set m 1 2 10 ;; change the 6 to a 10

print m

=> {{matrix: [[1 2 3][4 5 10]]}}

let m2 matrix:make-identity 3

print m2

=> {{matrix: [[1 0 0][0 1 0][0 0 1]]}}

print matrix:times m m2 ;; multiplying by the identity changes nothing

=> {{matrix: [[1 2 3][4 5 10]]}}

;; make a new matrix with the middle 1 changed to -1

let m3 (matrix:set-and-report m2 1 1 -1)

print m3

=> {{matrix: [[1 0 0][0 -1 0][0 0 1]]}}

print matrix:times m m3

=> {{matrix: [[1 -2 3][4 -5 10]]}}

print matrix:to-row-list (matrix:plus m2 m3)

=> [[2 0 0] [0 0 0] [0 0 2]]

Primitives

Looking for the primitive reference for the Matrix extension? You can find it here.

Matrix creation and conversion to/from lists

matrix:make-constant matrix:make-identity matrix:from-row-list matrix:from-column-list matrix:to-row-list matrix:to-column-list matrix:copy matrix:pretty-print-

text

file:///tmp/sbt_6c39b28e/matrix/index.html

Advanced features

matrix:solve matrix:forecast-linear-growth matrix:forecast-compound-growth matrix:forecast-continuous-growth matrix:regress

Matrix data retrieval and manipulation

matrix:get matrix:get-row matrix:get-column matrix:set matrix:set-row matrix:set-column matrix:swap-rows matrix:swap-columns matrix:set-and-report

matrix:dimensions matrix:submatrix matrix:map

Math operations

matrix:times-scalar matrix:times matrix:* matrix:times-element-wise matrix:plus-scalar matrix:plus matrix:+ matrix:minus matrix:- matrix:inverse matrix:transpose

matrix:real-eigenvalues matrix:imaginary-eigenvalues matrix:eigenvectors matrix:det matrix:rank matrix:trace

matrix:make-constant

matrix:make-constant n-rows n-cols initialValue

Reports a new n-rows by n-cols matrix object, with all entries in the matrix containing the same value (number).

matrix:make-identity

matrix:make-identity size

Reports a new square matrix object (with dimensions n-size x n-size), consisting of the identity matrix (1s along the main diagonal, 0s elsewhere).

matrix:from-row-list

matrix:from-row-list nested-list

Reports a new matrix object, created from a NetLogo list, where each item in that list is another list (corresponding to each of the rows of the matrix.)

print matrix:from-row-list [[1 2] [3 4]]

=> {{matrix: [[1 2][3 4]]}}

;; Corresponds to this matrix:

;; 1 2

;; 3 4

matrix:from-column-list

matrix:from-column-list nested-list

Reports a new matrix object, created from a NetLogo list containing each of the columns of the matrix.

matrix:to-row-list

matrix:to-row-list matrix

Reports a list of lists, containing each row of the matrix.

matrix:to-column-list

matrix:to-column-list matrix

Reports a list of lists, containing each column of the matrix.

matrix:copy

matrix:copy matrix

Reports a new matrix that is an exact copy of the given matrix. This primitive is important because the matrix type is mutable (changeable). Here’s a code example:

let m1 matrix:from-column-list [[1 4 7][2 5 8][3 6 9]] ; a 3x3 matrix

print m1

=> {{matrix: [[1 2 3][4 5 6][7 8 9]]}}

let m2 m1 ;; m2 refers to the same matrix object as m1

let m3 matrix:copy m1 ;; m3 is a new copy containing m1's data

matrix:set m1 0 0 100 ;; now m1 is changed

print m1

=> {{matrix: [[100 2 3][4 5 6][7 8 9]]}}

print m2

=> {{matrix: [[100 2 3][4 5 6][7 8 9]]}}

;;Notice that m2 was also changed, when m1 was changed!

print m3

=> {{matrix: [[1 2 3][4 5 6][7 8 9]]}}

matrix:pretty-print-text

matrix:pretty-print-text matrix

Reports a string that is a textual representation of the matrix, in a format that is reasonably human-readable when displayed.

matrix:get

matrix:get matrix row-i col-j

Reports the (numeric) value at location row-i (second argument), col-j (third argument), in the given matrix given in the first argument

matrix:get-row

matrix:get-row matrix row-i

Reports a simple (not nested) NetLogo list containing the elements of row-i (second argument) of the matrix supplied in the first argument.

matrix:get-column

matrix:get-column matrix col-j

Reports a simple (not nested) NetLogo list containing the elements of col-j of the matrix supplied in the first argument.

matrix:set

matrix:set matrix row-i col-j new-value

Changes the given matrix by setting the value at location row-i, col-j to new-value

matrix:set-row

matrix:set-row matrix row-i simple-list

Changes the given matrix matrix by replacing the row at row-i with the contents of the simple (not nested) NetLogo list simple-list. The simple-list must have a length equal to the number

of columns in the matrix, i.e., the matrix row length.

matrix:set-column

matrix:set-column matrix col-j simple-list

Changes the given matrix matrix by replacing the column at col-j with the contents of the simple (not nested) NetLogo list simple-list. The simple-list must have a length equal to the num‑

ber of rows in the matrix, i.e., the matrix column length length.

matrix:swap-rows

matrix:swap-rows matrix row1 row2

Changes the given matrix matrix by swapping the rows at row1 and row2 with each other.

matrix:swap-columns

matrix:swap-columns matrix col1 col2

Changes the given matrix matrix by swapping the columns at col1 and col2 with each other.

matrix:set-and-report

matrix:set-and-report matrix row-i col-j new-value

Reports a new matrix, which is a copy of the given matrix except that the value at row-i,col-j has been changed to new-value. A NetLogo statement such as set mat matrix:set-and-

report mat 2 3 10 will result in mat pointing to this new matrix, a copy of the old version of mat with the element at row 2, column 3 being set to 10. The old version of mat will be

“lost”.

matrix:dimensions

matrix:dimensions matrix

Reports a 2-element list ([num-rows,num-cols]), containing the number of rows and number of columns in the given matrix

matrix:submatrix

matrix:submatrix matrix r1 c1 r2 c2

Reports a new matrix object, consisting of a rectangular subsection of the given matrix. The rectangular region is from row r1 up to (but not including) row r2, and from column c1 up to

(but not including) column c2.

Here is an example:

let m matrix:from-row-list [[1 2 3][4 5 6][7 8 9]]

print matrix:submatrix m 0 1 2 3 ; matrix, row-start, col-start, row-end, col-end

 ; rows from 0 (inclusive) to 2 (exclusive),

 ; columns from 1 (inclusive) to 3 (exclusive)

=> {{matrix: [[2 3][5 6]]}}

matrix:map

matrix:map anonymous reporter matrix

matrix:map anonymous reporter matrix anything

Reports a new matrix which results from applying reporter (an anonymous reporter or the name of a reporter) to each of the elements of the given matrix. For example,

matrix:map sqrt matrix

would take the square root of each element of matrix. If more than one matrix argument is provided, the reporter is given the elements of each matrix as arguments. Thus,

(matrix:map + matrix1 matrix2)

would add matrix1 and matrix2.

This reporter is meant to be the same as map , but for matrices instead of lists.

matrix:times-scalar

matrix:times-scalar matrix factor

As of NetLogo 5.1, matrix:times can multiply matrices by scalars making this function obsolete. Use matrix:times instead.

Reports a new matrix, which is the result of multiplying every entry in the original matrix by the given scaling factor.

matrix:times

matrix:times m1 m2

matrix:times m1 m2 ...

Reports a matrix, which is the result of multiplying the given matrices and scalars (using standard matrix multiplication – make sure your matrix dimensions match up.) Without parenthe‑
ses, it takes two arguments. With parentheses it takes two or more. The arguments may either be numbers or matrices, but at least one must be a matrix.

matrix:*

m1 matrix:* m2

Reports a matrix, which is the result of multiplying the given matrices and/or scalars (using standard matrix multiplication – make sure your matrix dimensions match up.) This is exactly

the same as matrix:times m1 m2

Takes precedence over matrix:+ and matrix:- , same as normal multiplication.

matrix:times-element-wise

matrix:times-element-wise m1 m2

Reports a matrix, which is the result of multiplying the given matrices together, element-wise. All elements are multiplied by scalar arguments as well. Note that all matrix arguments must

have the same dimensions. Without parentheses, it takes two arguments. With parentheses it takes two or more. The arguments may either be numbers or matrices, but at least one must

be a matrix.

matrix:plus-scalar

matrix:plus-scalar matrix number

As of NetLogo 5.1, matrix:plus can add matrices and scalars making this function obsolete. Use matrix:plus instead.

Reports a matrix, which is the result of adding the constant number to each element of the given matrix.

matrix:plus

matrix:plus m1 m2

matrix:plus m1 m2 ...

Reports a matrix, which is the result of adding the given matrices and scalars. Scalars are added to each element. Without parentheses, it takes two arguments. With parentheses it takes

two or more. The arguments may either be numbers or matrices, but at least one must be a matrix.

matrix:+

m1 matrix:+ m2

Reports a matrix, which is the result of adding the given matrices and/or scalars. This is exactly the same as matrix:plus m1 m2

Takes precedence after matrix:* , same as normal addition.

matrix:minus

matrix:minus m1 m2

matrix:minus m1 m2 ...

Reports a matrix, which is the result of subtracting all arguments besides m1 from m1. Scalar arguments are treated as matrices of the same size as the matrix arguments with every ele‑
ment equal to that scalar. Without parentheses, it takes two arguments. With parentheses it takes two or more. The arguments may either be numbers or matrices, but at least one must be

a matrix.

matrix:-

m1 matrix:- m2

Reports a matrix, which is the result of subtracting the given matrices and/or scalars. This is exactly the same as

matrix:minus m1 m2

Takes precedence after matrix:* , same as normal subtraction.

matrix:inverse

matrix:inverse matrix

Reports the inverse of the given matrix, or results in an error if the matrix is not invertible.

matrix:transpose

matrix:transpose matrix

Reports the transpose of the given matrix.

matrix:real-eigenvalues

matrix:real-eigenvalues matrix

Reports a list containing the real eigenvalues of the given matrix.

matrix:imaginary-eigenvalues

matrix:imaginary-eigenvalues matrix

Reports a list containing the imaginary eigenvalues of the given matrix.

matrix:eigenvectors

matrix:eigenvectors matrix

Reports a matrix that contains the eigenvectors of the given matrix. (Each eigenvector as a column of the resulting matrix.)

matrix:det

matrix:det matrix

Reports a the determinant of the matrix.

matrix:rank

matrix:rank matrix

Reports the effective numerical rank of the matrix,obtained from SVD (Singular Value Decomposition).

matrix:trace

matrix:trace matrix

Reports the trace of the matrix, which is simply the sum of the main diagonal elements.

matrix:solve

matrix:solve A C

Reports the solution to a linear system of equations, specified by the A and C matrices. In general, solving a set of linear equations is akin to matrix division. That is, the goal is to find a

matrix B such that A * B = C. (For simple linear systems, C and B can both be 1-dimensional matrices – i.e. vectors). If A is not a square matrix, then a “least squares” solution is returned.

;; To solve the set of equations x + 3y = 10 and 7x - 4y = 20

;; We make our A matrix [[1 3][7 -4]], and our C matrix [[10][20]]

let A matrix:from-row-list [[1 3][7 -4]]

let C matrix:from-row-list [[10][20]]

print matrix:solve A C

=> {{matrix: [[4][2.0000000000000004]]}}

;; NOTE: as you can see, the results may be only approximate

;; (In this case, the true solution should be x=4 and y=2.)

matrix:forecast-linear-growth

matrix:forecast-linear-growth data-list

Reports a four-element list of the form:

[forecast constant slope R]

The forecast is the predicted next value that would follow in the sequence given by the data-list input, based on a linear trend-line. Normally data-list will contain observations on some

variable, Y, from time t = 0 to time t = (n-1) where n is the number of observations. The forecast is the predicted value of Y at t = n. The constant and slope are the parameters of the

trend-line

Y = *constant* + *slope* * t.

The R value measures the goodness of fit of the trend-line to the data, with an R = 1 being a perfect fit and an R of 0 indicating no discernible trend. Linear growth assumes that the

variable Y grows by a constant absolute amount each period.

;; a linear extrapolation of the next item in the list.

print matrix:forecast-linear-growth [20 25 28 32 35 39]

=> [42.733333333333334 20.619047619047638 3.6857142857142824 0.9953743395474031]

;; These results tell us:

;; * the next predicted value is roughly 42.7333

;; * the linear trend line is given by Y = 20.6190 + 3.6857 * t

;; * Y grows by approximately 3.6857 units each period

;; * the R^2 value is roughly 0.9954 (a good fit)

matrix:forecast-compound-growth

matrix:forecast-compound-growth data-list

Reports a four-element list of the form:

[forecast constant growth-proportion R]

Whereas matrix:forecast-linear-growth assumes growth by a constant absolute amount each period, matrix:forecast-compound-growth assumes that Y grows by a constant proportion

each period. The constant and growth-proportion are the parameters of the trend-line

Y = constant * growth-proportion .

Note that the growth proportion is typically interpreted as growth-proportion = (1.0 + growth-rate). Therefore, if matrix:forecast-compound-growth returns a growth-proportion of 1.10,

that implies that Y grows by (1.10 - 1.0) = 10% each period. Note that if growth is negative, matrix:forecast-compound-growth will return a growth-proportion of less than one. E.g., a

growth-proportion of 0.90 implies a growth rate of -10%.

NOTE: The compound growth forecast is achieved by taking the ln of Y. (See matrix:regress, below.) Because it is impossible to take the natural log of zero or a negative number,

matrix:forecast-compound-growth will result in an error if it finds a zero or negative number in data-list.

;; a compound growth extrapolation of the next item in the list.

print matrix:forecast-compound-growth [20 25 28 32 35 39]

=> [45.60964465307147 21.15254147944863 1.136621034423892 0.9760867518334806]

;; These results tell us:

;; * the next predicted value is approximately 45.610

;; * the compound growth trend line is given by Y = 21.1525 * 1.1366 ^ t

;; * Y grows by approximately 13.66% each period

;; * the R^2 value is roughly 0.9761 (a good fit)

2

2 2 2

2

t

matrix:forecast-continuous-growth

matrix:forecast-continuous-growth data-list

Reports a four-element list of the form:

[forecast constant growth-rate R]. Whereas matrix:forecast-compound-growth assumes discrete time with Y growing by a given proportion each finite period of time

(e.g., a month or a year), matrix:forecast-continuous-growth assumes that Y is compounded continuously (e.g., each second or fraction of a second). The constant and growth-rate are

the parameters of the trend-line

Y = constant * e

matrix:forecast-continuous-growth is the “calculus” analog of matrix:forecast-compound-growth. The two will normally yield similar (but not identical) results, as shown in the example

below. growth-rate may, of course, be negative.

NOTE: The continuous growth forecast is achieved by taking the ln of Y. (See matrix:regress, below.) Because it is impossible to take the natural log of zero or a nega‑
tive number, matrix:forecast-continuous-growth will result in an error if it finds a zero or negative number in data-list.

;; a continuous growth extrapolation of the next item in the list.

print matrix:forecast-continuous-growth [20 25 28 32 35 39]

=> [45.60964465307146 21.15254147944863 0.12805985615332668 0.9760867518334806]

;; These results tell us:

;; * the next predicted value is approximately 45.610

;; * the compound growth trend line is given by Y = 21.1525 * e ^ (0.1281 * t)

;; * Y grows by approximately 12.81% each period if compounding takes place continuously

;; * the R^2 value is roughly 0.9761 (a good fit)

matrix:regress

matrix:regress data-matrix

All three of the forecast primitives above are just special cases of performing an OLS (ordinary-least-squares) linear regression – the matrix:regress primitive provides a flexible/general-

purpose approach. The input is a matrix data-matrix, with the first column being the observations on the dependent variable and each subsequent column being the observations on the

(1 or more) independent variables. Thus each row consists of an observation of the dependent variable followed by the corresponding observations for each independent variable.

The output is a Logo nested list composed of two elements. The first element is a list containing the regression constant followed by the coefficients on each of the independent variables.

The second element is a 3-element list containing the R statistic, the total sum of squares, and the residual sum of squares. The following code example shows how the matrix:regress

primitive can be used to perform the same function as the code examples shown in the matrix:forecast-*-growth primitives above. (However, keep in mind that the matrix:regress primi‑
tive is more powerful than this, and can have many more independent variables in the regression, as indicated in the fourth example below.)

;; this is equivalent to what the matrix:forecast-linear-growth does

let data-list [20 25 28 32 35 39]

let indep-var (n-values length data-list [x -> x]) ; 0,1,2...,5

let lin-output matrix:regress matrix:from-column-list (list data-list indep-var)

let lincnst item 0 (item 0 lin-output)

let linslpe item 1 (item 0 lin-output)

let linR2 item 0 (item 1 lin-output)

;;Note the "6" here is because we want to forecast the value at time t=6.

print (list (lincnst + linslpe * 6) (lincnst) (linslpe) (linR2))

;; this is equivalent to what the matrix:forecast-compound-growth does

let com-log-data-list (map ln [20 25 28 32 35 39])

let com-indep-var2 (n-values length com-log-data-list [x -> x]) ; 0,1,2...,5

let com-output matrix:regress matrix:from-column-list (list com-log-data-list com-indep-var2)

let comcnst exp item 0 (item 0 com-output)

let comprop exp item 1 (item 0 com-output)

let comR2 item 0 (item 1 com-output)

;;Note the "6" here is because we want to forecast the value at time t=6.

print (list (comcnst * comprop ^ 6) (comcnst) (comprop) (comR2))

;; this is equivalent to what the matrix:forecast-continuous-growth does

let con-log-data-list (map ln [20 25 28 32 35 39])

let con-indep-var2 (n-values length con-log-data-list [x -> x]) ; 0,1,2...,5

let con-output matrix:regress matrix:from-column-list (list con-log-data-list con-indep-var2)

let concnst exp item 0 (item 0 con-output)

let conrate item 1 (item 0 con-output)

let conR2 item 0 (item 1 con-output)

print (list (concnst * exp (conrate * 6)) (concnst) (conrate) (conR2))

;; example of a regression with two independent variables:

;; Pretend we have a dataset, and we want to know how well happiness

;; is correlated to snack-food consumption and accomplishing goals.

let happiness [2 4 5 8 10]

let snack-food-consumed [3 4 3 7 8]

let goals-accomplished [2 3 5 8 9]

print matrix:regress matrix:from-column-list (list happiness snack-food-consumed goals-accomplished)

=> [[-0.14606741573033788 0.3033707865168543 0.8202247191011234] [0.9801718440185063 40.8 0.8089887640449439]]

;; linear regression: happiness = -0.146 + 0.303*snack-food-consumed + 0.820*goals-accomplished

;; (Since the 0.820 coefficient is higher than the 0.303 coefficient, it appears that each goal

;; accomplished yields more happiness than does each snack consumed, although both are positively

;; correlated with happiness.)

;; Also, we see that R^2 = 0.98, so the two factors together provide a good fit.

2

(growth-rate * t)

2

Networks

Usage

The first thing that one needs to understand in order to work with the network extension is how to tell the extension which network to work with. Consider the following example situation:

breed [bankers banker]

breed [clients client]

undirected-link-breed [friendships friendship]

directed-link-breed [accounts account]

Basically, you have bankers and clients. Clients can have accounts with bankers. Bankers can probably have account with other bankers, and anyone can be friends with anyone.

Now we might want to consider this whole thing as one big network. If that is the case, there is nothing special to do: by default, the NW extension primitives consider all turtles and all links to

be part of the current network.

We could also, however, be only interested in a subset of the network. Maybe we want to consider only friendship relations. Furthermore, maybe we want to consider only the friendships

between bankers. After all, having a very high centrality in a network of banker friendships is very different from having a high centrality in a network of client friendships.

To specify such networks, we need to tell the extension both which turtles and which links we are interested in. All the turtles from the specified set of turtles will be included in the network, and

only the links from the specified set of links that are between turtles of the specified set will be included. For example, if you ask for bankers and friendships , even the lonely bankers with no

friends will be included, but friendship links between bankers and clients will not be included. The way to tell the extension about this is with the nw:set-context primitive, which you must call

prior to doing any operations on a network.

Some examples:

nw:set-context turtles links will give you everything: bankers and clients, friendships and accounts, as one big network.

nw:set-context turtles friendships will give you all the bankers and clients and friendships between any of them.

nw:set-context bankers friendships will give you all the bankers, and only friendships between bankers.

nw:set-context bankers links will give you all the bankers, and any links between them, whether these links are friendships or accounts.

nw:set-context clients accounts will give you all the clients, and accounts between each other, but since in our fictional example clients can only have accounts with bankers, this will be

a completely disconnected network.

Special agentsets vs normal agentsets

It must be noted that NetLogo has two types of agentsets that behave slightly differently, and that this has an impact on the way nw:set-context works. We will say a few words about these

concepts here but, for a thorough understanding, it is highly recommended that you read the section on agentsets in the NetLogo programming guide.

The “special” agentsets in NetLogo are turtles , links and the different “breed” agentsets. What is special about them is that they can grow: if you create a new turtle, it will be added to the

turtles agentset. If you have a bankers breed and you create a new banker, it will be added to the bankers agentset and to the turtles agentset. Same goes for links. Other agentsets,

such as those created with the with primitive (e.g., turtles with [color = red]) or the turtle-set and link-set primitives) are never added to. The content of normal agentsets will

only change if the agents that they contain die.

To show how different types of agentsets interact with nw:set-context , let’s create a very simple network:

clear-all

create-turtles 3 [create-links-with other turtles]

Let’s set the context to turtles and links (which is the default anyway) and use nw:get-context to see what we have:

nw:set-context turtles links

show map sort nw:get-context

We get all three turtles and all three links:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

Now let’s kill one turtle:

ask one-of turtles [die]

show map sort nw:get-context

As expected, the context is updated to reflect the death of the turtle and of the two links that died with it:

[[(turtle 0) (turtle 1)] [(link 0 1)]]

What if we now create a new turtle?

create-turtles 1

show map sort nw:get-context

Since our context is using the special turtles agentset, the new turtle is automatically added:

[[(turtle 0) (turtle 1) (turtle 3)] [(link 0 1)]]

Now let’s demonstrate how it works with normal agentsets. We start over with a new network of red turtles:

clear-all

create-turtles 3 [

 create-links-with other turtles

 set color red

]

And we set the context to turtles with [color = red]) and links

nw:set-context (turtles with [color = red]) links

show map sort nw:get-context

Since all turtles are red, we get everything in our context:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

But what if we ask one of them to turn blue?

ask one-of turtles [set color blue]

show map sort nw:get-context

No change. The agentset used in our context remains unaffected:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

If we kill one of them, however…

ask one-of turtles [die]

show map sort nw:get-context

It gets removed from the set:

[[(turtle 0) (turtle 2)] [(link 0 2)]]

What if we add a new red turtle?

create-turtles 1 [set color red]

show map sort nw:get-context

Nope:

[[(turtle 0) (turtle 2)] [(link 0 2)]]

A note regarding floating point calculations

Neither JGraphT nor Jung, the two network libraries that we use internally, use strictfp floating point calculations. This does mean that exact reproducibility of results involving floating point

calculations between different hardware architectures is not fully guaranteed. (NetLogo itself always uses strict math so this only applies to some primitives of the NW extension.)

Performance

In order to be fast in as many circumstances as possible, the NW extension tries hard to never calculate things twice. It remembers all paths, distances, and centralities that it calculates. So,

while the first time you ask for the distance between turtle 0 and turtle 3782 may take some time, after that, it should be almost instantaneous. Furthermore, it keeps track of values it just

happened to calculate along the way. For example, if turtle 297 is closer to turtle 0 than turtle 3782 is, it may just happen to figure out the distance between turtle 0 and turtle 297

while it figures out the distance between turtle 0 and turtle 3782 . It will remember this value, so that if you ask it for the distance between turtle 0 and turtle 297 , it doesn’t have to do

all that work again.

There are a few circumstances where the NW extension has to forget things. If the network changes at all (you add turtles or links, or remove turtles or links), it has to forget everything. For

weighted primitives, if the value of the weight variable changes for any of the links in the network, it will forget the values associated with that weight variable.

If you’re working on a network that can change regularly, try to do all your network calculations at once, then all your network changes at once. The more your interweave network calculations

and network changes, the more the NW extension will have to recalculate things. For example, if you have a traffic model, and cars need to figure out the shortest path to their destination based

on the traffic each tick, have all the cars find their shortest paths, then change the network weights to account for how traffic has changed.

https://github.com/jgrapht
http://jung.sourceforge.net/
https://en.wikipedia.org/wiki/Strictfp

There may be rare occasions in which you don’t want the NW extension to remember values. For example, if you’re working on an extremely large network, remembering all those values may

take more memory than you have. In that case, you can just call nw:set-context (first nw:get-context) (last nw:get-context) to force the NW extension to immediately forget

everything.

Primitives

Looking for the primitive reference for the Networks extension? You can find it here.

Generators

nw:generate-preferential-attachment nw:generate-random nw:generate-watts-strogatz nw:generate-small-world nw:generate-lattice-2d nw:generate-ring nw:generate-star

nw:generate-wheel

Path and Distance

nw:turtles-in-radius nw:turtles-in-reverse-radius nw:distance-to nw:weighted-distance-to nw:path-to nw:turtles-on-path-to nw:weighted-path-to nw:turtles-on-

weighted-path-to nw:mean-path-length nw:mean-weighted-path-length

Clusterer/Community Detection

nw:bicomponent-clusters nw:weak-component-clusters nw:louvain-communities nw:maximal-cliques nw:biggest-maximal-cliques

Context Management

nw:set-context nw:get-context nw:with-context

Import and Export

nw:save-matrix nw:load-matrix nw:save-graphml nw:load-graphml nw:load nw:save

Centrality Measures

nw:betweenness-centrality nw:eigenvector-centrality nw:page-rank nw:closeness-centrality nw:weighted-closeness-centrality

Clustering Measures

nw:clustering-coefficient nw:modularity

nw:set-context

nw:set-context turtleset linkset

Specifies the set of turtles and the set of links that the extension will consider to be the current graph. All the turtles from turtleset and all the links from linkset that connect two turtles

from turtleset will be included.

This context is used by all other primitives (unless specified otherwise) until a new context is specified. (At the moment, only the generator primitives and the file input primitives are

exceptions to this rule.)

See the usage section for a much more detailed explanation of nw:set-context .

nw:get-context

nw:get-context

Reports the content of the current graph context as a list containing two agentsets: the agentset of turtles that are part of the context and the agentset of links that are part of the context.

Let’s say we start with a blank slate and the default context consisting of turtles and links , nw:get-context will report a list the special turtles and links breed agentsets:

observer> clear-all

observer> show nw:get-context

observer: [turtles links]

If we add some turtles and links to our context, we’ll still see the same thing, even though turtles and links have internally grown:

observer> crt 2 [create-links-with other turtles]

observer> show nw:get-context

observer: [turtles links]

If you had set your context to normal agentsets instead (built with turtle-set , link-set or with) here is what you would see:

file:///tmp/sbt_6c39b28e/nw/index.html

observer> clear-all

observer> nw:set-context turtle-set turtles link-set links

observer> show nw:get-context

observer: [(agentset, 0 turtles) (agentset, 0 links)]

If you then create new turtles and links, they are not added to the context because normal agentsets don’t grow (see Special agentsets vs normal agentsets):

observer> crt 2 [create-links-with other turtles]

observer> show nw:get-context

observer: [(agentset, 0 turtles) (agentset, 0 links)]

But if you construct new agentsets and set the context to them, your new agents will be there:

observer> nw:set-context turtle-set turtles link-set links

observer> show nw:get-context

observer: [(agentset, 2 turtles) (agentset, 1 link)]

If you want to see the actual content of your context, it is easy to turn your agentsets into lists that can be nicely displayed. Just use a combination of map and sort :

observer> show map sort nw:get-context

observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]

Finally, you can use nw:get-context to store a context that you eventually want to restore:

extensions [nw]

to store-and-restore-context

 clear-all

 crt 2 [

 set color red

 create-links-with other turtles with [color = red] [

 set color yellow

]

]

 crt 2 [

 set color blue

 create-links-with other turtles with [color = blue] [

 set color green

]

]

 nw:set-context turtles with [color = red] links with [color = yellow]

 show map sort nw:get-context

 let old-turtles item 0 nw:get-context

 let old-links item 1 nw:get-context

 nw:set-context turtles with [color = blue] links with [color = green]

 show map sort nw:get-context

 nw:set-context old-turtles old-links

 show map sort nw:get-context

end

Here is the result:

observer> store-and-restore-context

observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]

observer: [[(turtle 2) (turtle 3)] [(link 2 3)]]

observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]

nw:with-context

nw:with-context turtleset linkset command-block

Executes the command-block with the context temporarily set to turtleset and linkset. After command-block finishes running, the previous context will be restored.

For example:

observer> create-turtles 3 [create-links-with other turtles]

observer> nw:with-context (turtle-set turtle 0 turtle 1) (link-set link 0 1) [show nw:get-context]

observer: [(agentset, 2 turtles) (agentset, 1 link)

observer> show nw:get-context

observer: [turtles links]

If you have NW extension code running in two forever buttons or loop blocks that each need to use different contexts, you should use nw:with-context in each to make sure they are

operating in the correct context.

nw:turtles-in-radius

nw:turtles-in-radius radius

Returns the set of turtles within the given distance (number of links followed) of the calling turtle in the current context, including the calling turtle.

nw:turtles-in-radius form will follow both undirected links and directed out links. You can think of turtles-in-radius as “turtles who I can get to in radius steps”.

If you want the primitive to follow only undirected links or only directed links, you can do it by setting the context appropriately. For example: nw:set-context turtles undir-links

(assuming undir-links is an undirected link breed) or nw:set-context turtles dir-links (assuming dir-links is a directed link breed).

Example:

clear-all

create-turtles 5

ask turtle 0 [create-link-with turtle 1]

ask turtle 0 [create-link-with turtle 2]

ask turtle 1 [create-link-with turtle 3]

ask turtle 2 [create-link-with turtle 4]

ask turtle 0 [

 show sort nw:turtles-in-radius 1

]

Will output:

(turtle 0): [(turtle 0) (turtle 1) (turtle 2)]

As you may have noticed, the result includes the calling turtle. This mimics the behavior of the regular NetLogo in-radius primitive.

nw:turtles-in-reverse-radius

nw:turtles-in-reverse-radius radius

Like nw:turtles-in-radius, but follows in-links instead of out-links. Also follow undirected links. You can think of turtles-in-reverse-radius as “turtles who can get to me in radius

steps”.

nw:distance-to

nw:distance-to target-turtle

Finds the shortest path to the target turtle and reports the total distance for this path, or false if no path exists in the current context. Each link counts for a distance of one.

Example:

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1]

 ask turtle 1 [create-link-with turtle 2]

 ask turtle 0 [create-link-with turtle 3]

 ask turtle 3 [create-link-with turtle 4]

 ask turtle 4 [create-link-with turtle 2]

 ask turtle 0 [show nw:distance-to turtle 2]

end

Will output:

(turtle 0): 2

nw:weighted-distance-to

nw:weighted-distance-to target-turtle weight-variable

Like nw:distance-to, but takes link weight into account. The weights cannot be negative numbers.

Example:

links-own [weight]

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]

 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]

 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]

 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]

 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]

 ask turtle 0 [show nw:weighted-distance-to turtle 2 weight]

end

Will output:

(turtle 0): 1.5

nw:path-to

nw:path-to target-turtle

Finds the shortest path to the target turtle and reports the actual path between the source and the target turtle. The path is reported as the list of links that constitute the path.

If no path exist between the source and the target turtles, false will be reported instead.

Note that the NW-Extension remembers paths that its calculated previously unless the network changes. Thus, you don’t need to store paths to efficiently move across the network; you

can just keep re-calling one of the path primitives. If the network changes, however, the stored answers are forgotten. Example:

links-own [weight]

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1]

 ask turtle 1 [create-link-with turtle 2]

 ask turtle 0 [create-link-with turtle 3]

 ask turtle 3 [create-link-with turtle 4]

 ask turtle 4 [create-link-with turtle 2]

 ask turtle 0 [show nw:path-to turtle 2]

end

Will output:

(turtle 0): [(link 0 1) (link 1 2)]

nw:turtles-on-path-to

nw:turtles-on-path-to target-turtle

Like nw:path-to , but the turtles on the path are reported, instead of the links, including the source turtle and target turtle.

Example:

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1]

 ask turtle 1 [create-link-with turtle 2]

 ask turtle 0 [create-link-with turtle 3]

 ask turtle 3 [create-link-with turtle 4]

 ask turtle 4 [create-link-with turtle 2]

 ask turtle 0 [show nw:turtles-on-path-to turtle 2]

end

Will output:

(turtle 0): [(turtle 0) (turtle 1) (turtle 2)]

nw:weighted-path-to

nw:weighted-path-to target-turtle weight-variable

Like nw:path-to , but takes link weight into account.

Example:

links-own [weight]

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]

 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]

 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]

 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]

 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]

 ask turtle 0 [show nw:weighted-path-to turtle 2 weight]

end

Will output:

(turtle 0): [(link 0 3) (link 3 4) (link 2 4)]

nw:turtles-on-weighted-path-to

nw:turtles-on-weighted-path-to target-turtle weight-variable

Like nw:turtles-on-path-to , but takes link weight into account.

Example:

links-own [weight]

to go

 clear-all

 create-turtles 5

 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]

 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]

 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]

 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]

 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]

 ask turtle 0 [show nw:weighted-path-to turtle 2 weight]

end

Will output:

(turtle 0): [(turtle 0) (turtle 3) (turtle 4) (turtle 2)]

nw:mean-path-length

nw:mean-path-length

Reports the average shortest-path length between all distinct pairs of nodes in the current context.

Reports false unless paths exist between all pairs.

Example:

links-own [weight]

to go

 clear-all

 create-turtles 3

 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]

 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]

 show nw:mean-path-length

 create-turtles 1 ; create a new, disconnected turtle

 show nw:mean-path-length

end

Will ouput:

observer: 1.3333333333333333

observer: false

nw:mean-weighted-path-length

nw:mean-weighted-path-length weight-variable

Like nw:mean-path-length , but takes into account link weights.

Example:

links-own [weight]

to go

 clear-all

 create-turtles 3

 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]

 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]

 show nw:mean-path-length

 show nw:mean-weighted-path-length weight

 create-turtles 1 ; create a new, disconnected turtle

 show nw:mean-path-length

 show nw:mean-weighted-path-length weight

end

Will ouput:

observer: 2.6666666666666665

observer: false

nw:betweenness-centrality

nw:betweenness-centrality

To calculate the betweenness centrality of a turtle, you take every other possible pairs of turtles and, for each pair, you calculate the proportion of shortest paths between members of

the pair that passes through the current turtle. The betweenness centrality of a turtle is the sum of these.

As of now, link weights are not taken into account.

nw:eigenvector-centrality

nw:eigenvector-centrality

The Eigenvector centrality of a node can be thought of as the amount of influence a node has on a network. In practice, turtles that are connected to a lot of other turtles that are them‑

selves well-connected (and so on) get a higher Eigenvector centrality score.

In this implementation, the eigenvector centrality is normalized such that the highest eigenvector centrality a node can have is 1. This implementation is designed to agree with Gephi’s

implementation out to at least 3 decimal places. If you discover that it disagrees with Gephi on a particular network, please report it.

The primitive respects link direction, even in mixed-directed networks. This is the one place where it should disagree with Gephi; Gephi refuses to treat directed links as directed in mixed-

networks.

As of now, link weights are not taken into account.

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
https://github.com/NetLogo/NW-Extension/issues/new

nw:page-rank

nw:page-rank

The page rank of a node can be thought of as the proportion of time that an agent walking forever at random on the network would spend at this node. The agent has an equal chance of

taking any of a nodes edges, and will jump around the network completely randomly 15% of the time. In practice, like with eigenvector centrality, turtles that are connected to a lot of other

turtles that are themselves well-connected (and so on) get a higher page rank.

Page rank is one of the several algorithms that search engines use to determine the importance of a website.

The sum of all page rank values should be approximately one. Unlike eigenvector centrality, page rank is defined for all networks, no matter the connectivity. Currently, it treats all links as

undirected links.

As of now, link weights are not taken into account.

nw:closeness-centrality

nw:closeness-centrality

The closeness centrality of a turtle is defined as the inverse of the average of it’s distances to all other turtles. (Some people use the sum of distances instead of the average, but the

extension uses the average.)

Note that this primitive reports the intra-component closeness of a turtle, that is, it takes into account only the distances to the turtles that are part of the same component as the current

turtle, since distance to turtles in other components is undefined. The closeness centrality of an isolated turtle is defined to be zero.

nw:weighted-closeness-centrality

nw:weighted-closeness-centrality link-weight-variable

This is identical to nw:closeness-centrality , except that weights provided by the given variable are treated as the distances of links.

nw:clustering-coefficient

nw:clustering-coefficient

Reports the local clustering coefficient of the turtle. The clustering coefficient of a node measures how connected its neighbors are. It is defined as the number of links between the

node’s neighbors divided by the total number of possible links between its neighbors.

nw:clustering-coefficient takes the directedness of links into account. A directed link counts as a single link whereas an undirected link counts as two links (one going one-way, one

going the other).

The global clustering coefficient measures how much nodes tend to cluster together in the network in general. It is defined based on the types of triplets in the network. A triplet consists

of a central node and two of its neighbors. If its neighbors are also connected, it’s a closed triplet. If its neighbors are not connected, it’s an open triplet. The global clustering coefficient is

simply the number of closed triplets in a network divided by the total number of triplets. It can be calculated from the local clustering coefficient quite easily with the following code

to-report global-clustering-coefficient

 let closed-triplets sum [nw:clustering-coefficient * count my-links * (count my-links - 1)] of turtles

 let triplets sum [count my-links * (count my-links - 1)] of turtles

 report closed-triplets / triplets

end

Note that the above will only work with the default context, and may need to tweaked if you’ve set the turtles or links in the network to something other than turtles and links .

The average local clustering coefficient is another popular method for measuring the amount of clustering in the network as a whole. It may be calculated with

mean [nw:clustering-coefficient] of turtles

nw:modularity

nw:modularity

Modularity is a measurement of community structure in the network. It is defined based on the number of in-community links versus the number of between-community links. This primi‑

tive takes as input a list of agentsets, where each of the agentsets is one the communities that you’re separating the network into.

This measurement works on undirected, directed, and mixed-directedness networks. In the case of mixed-directedness, undirected links are treated essentially the same as two opposing

directed links. It does not take weight into account.

Example:

nw:modularity (list (turtles with [color = blue]) (turtles with [color = red]))

nw:bicomponent-clusters

nw:bicomponent-clusters

Reports the list of bicomponent clusters in the current network context. A bicomponent (also known as a maximal biconnected subgraph) is a part of a network that cannot be discon‑

nected by removing only one node (i.e. you need to remove at least two to disconnect it). The result is reported as a list of agentsets, in random order. Note that one turtle can be a mem‑
ber of more than one bicomponent at once.

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Global_clustering_coefficient
https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Biconnected_component

nw:weak-component-clusters

nw:weak-component-clusters

Reports the list of “weakly” connected components in the current network context. A weakly connected component is simply a group of nodes where there is a path from each node to

every other node. A “strongly” connected component would be one where there is a directed path from each node to every other. The extension does not support the identification of

strongly connected components at the moment.

The result is reported as a list of agentsets, in random order. Note that one turtle cannot be a member of more than one weakly connected component at once.

nw:louvain-communities

nw:louvain-communities

Detects community structure present in the network. It does this by maximizing modularity using the Louvain method. The communities are reported as a list of turtle-sets.

Often you’ll want to tell turtles about the community that they are in. You can do this like so:

turtles-own [community]

...

foreach nw:louvain-communities [[comm] ->

 ask comm [set community comm]

]

You can give each community its own color with something like this:

let communities nw:louvain-communities

let colors sublist 0 (length communities) base-colors

(foreach communities colors [[community col] ->

 ask community [set color col]

])

nw:maximal-cliques

nw:maximal-cliques

A clique is a subset of a network in which every node has a direct link to every other node. A maximal clique is a clique that is not, itself, contained in a bigger clique.

The result is reported as a list of agentsets, in random order. Note that one turtle can be a member of more than one maximal clique at once.

The primitive uses the Bron–Kerbosch algorithm and only works with undirected links.

nw:biggest-maximal-cliques

nw:biggest-maximal-cliques

The biggest maximal cliques are, as the name implies, the biggest cliques in the current context. Often, more than one clique are tied for the title of biggest clique, so the result is reported

as a list of agentsets, in random order. If you want only one clique, use one-of nw:biggest-maximal-cliques .

The primitive uses the Bron–Kerbosch algorithm and only works with undirected links.

nw:generate-preferential-attachment

nw:generate-preferential-attachment turtle-breed link-breed num-nodes min-degree optional-command-block

Generates a new network using a version of the Barabási–Albert algorithm. This network will have the property of being “scale free”: the distribution of degrees (i.e. the number of links

for each turtle) should follow a power law.

Generation works as follows turtles are added, one by one, each forming min-degree links to a previously added turtles, until num-nodes is reached. The more links a turtle already has,

the greater the probability that new turtles form links with it when they are added.

If you specify an optional-command-block , it is executed for each turtle in the newly created network. For example:

nw:generate-preferential-attachment turtles links 100 1 [set color red]

nw:generate-random

nw:generate-random turtle-breed link-breed num-nodes connection-probability optional-command-block

Generates a new random network of num-nodes turtles in which each one has a connection-probability (between 0 and 1) of being connected to each other turtles. The algorithm uses

the G(n, p) variant of the Erdős–Rényi model.

The algorithm is O(n²) for directed networks and O(n²/2) for undirected networks, so generating more than a couple thousand nodes will likely take a very long time.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-random turtles links 100 0.5 [set color red]

https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Louvain_Modularity
https://en.wikipedia.org/wiki/Clique_%28graph_theory%29
https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm
https://en.wikipedia.org/wiki/Clique_%28graph_theory%29
https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

nw:generate-watts-strogatz

nw:generate-watts-strogatz turtle-breed link-breed num-nodes neighborhood-size rewire-probability optional-command-block

Generates a new Watts-Strogatz small-world network.

The algorithm begins by creating a ring of nodes, where each node is connected to neighborhood-size nodes on either side. Then, each link is rewired with probability rewire-prob .

If you specify an optional-command-block, it is executed for each turtle in the newly created network. Furthermore, the turtles are generated in the order they appear as in create-

ordered-turtles . So, in order to lay the ring out as a ring, you can do something like:

nw:generate-watts-strogatz turtles links 50 2 0.1 [fd 10]

nw:generate-small-world

nw:generate-small-world turtle-breed link-breed row-count column-count clustering-exponent is-toroidal optional-command-block

Generates a new small-world network using the Kleinberg Model. Note that nw:generate-watts-strogatz generates a more traditional small-world network.

The algorithm proceeds by generating a lattice of the given number of rows and columns (the lattice will wrap around itself if is-toroidal is true). The “small world effect” is created by

adding additional links between the nodes in the lattice. The higher the clustering-exponent, the more the algorithm will favor already close-by nodes when adding new links. A clustering

exponent of 2.0 is typically used.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-small-world turtles links 10 10 2.0 false [set color red]

The turtles are generated in the order that they appear in the lattice. So, for instance, to generate a kleinberg lattice accross the entire world, and lay it out accordingly, try the following:

nw:generate-small-world turtles links world-width world-height 2.0 false

(foreach (sort turtles) (sort patches) [[t p] -> ask t [move-to p]])

nw:generate-lattice-2d

nw:generate-lattice-2d turtle-breed link-breed row-count column-count is-toroidal optional-command-block

Generates a new 2D lattice network (basically, a grid) of row-count rows and column-count columns. The grid will wrap around itself if is-toroidal is true .

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-lattice-2d turtles links 10 10 false [set color red]

The turtles are generated in the order that they appear in the lattice. So, for instance, to generate a lattice accross the entire world, and lay it out accordingly, try the following:

nw:generate-lattice-2d turtles links world-width world-height false

(foreach (sort turtles) (sort patches) [[t p] -> ask t [move-to p]])

nw:generate-ring

nw:generate-ring turtle-breed link-breed num-nodes optional-command-block

Generates a ring network of num-nodes turtles, in which each turtle is connected to exactly two other turtles.

The number of nodes must be at least three.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-ring turtles links 100 [set color red]

nw:generate-star

nw:generate-star turtle-breed link-breed num-nodes optional-command-block

Generates a star network in which there is one central turtle and every other turtle is connected only to this central node. The number of turtles can be as low as one, but it won’t look

much like a star.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-star turtles links 100 [set color red]

nw:generate-wheel

nw:generate-wheel turtle-breed link-breed num-nodes optional-command-block

Variants:

nw:generate-wheel-inward

nw:generate-wheel-outward

https://en.wikipedia.org/wiki/Watts_and_Strogatz_model
https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Small_world_routing#The_Kleinberg_Model
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Star_graph

Generates a wheel network, which is basically a ring network with an additional “central” turtle that is connected to every other turtle.

The number of nodes must be at least four.

The nw:generate-wheel only works with undirected link breeds. The nw:generate-wheel-inward and nw:generate-wheel-outward versions only work with directed link-breed. The

inward and outward part of the primitive names refer to the direction that the “spokes” of the wheel point to relative to the central turtle.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:generate-wheel turtles links 100 [set color red]

nw:save-matrix

nw:save-matrix file-name

Saves the current network, as defined by nw:set-context , to file-name, as a text file, in the form of a simple connection matrix.

Here is, for example, a undirected ring network with four nodes:

0.00 1.00 0.00 1.00

1.00 0.00 1.00 0.00

0.00 1.00 0.00 1.00

1.00 0.00 1.00 0.00

And here is the directed version:

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00

1.00 0.00 0.00 0.00

At the moment, nw:save-matrix does not support link weights. Every link is represented as a “1.00” in the connection matrix. This will change in a future version of the extension.

nw:load-matrix

nw:load-matrix file-name turtle-breed link-breed optional-command-block

Generates a new network according to the connection matrix saved in file-name, using turtle-breed and link-breed to create the new turtles and links.

At the moment, nw:load-matrix does not support link weights.

Please be aware that the breeds used to load the matrix may be different from those that you used when you saved it.

For example:

extensions [nw]

directed-link-breed [dirlinks dirlink]

to go

 clear-all

 crt 5 [create-dirlinks-to other turtles]

 nw:set-context turtles dirlinks

 nw:save-matrix "matrix.txt"

 clear-all

 nw:load-matrix "matrix.txt" turtles links

 layout-circle turtles 10

end

…will give you back undirected links, even if you saved directed links into the matrix.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:load-matrix "matrix.txt" turtles links [set color red]

nw:save-graphml

nw:save-graphml file-name

You can save the current graph to GraphML. The following NetLogo code:

extensions [nw]

breed [bankers banker]

bankers-own [bank-name]

breed [clients client]

clients-own [hometown]

undirected-link-breed [friendships friendship]

directed-link-breed [accounts account]

accounts-own [amount]

to go

 clear-all

 create-bankers 1 [

 set bank-name "The Bank"

https://en.wikipedia.org/wiki/Wheel_graph
https://en.wikipedia.org/wiki/Ring_network

]

 create-clients 1 [

 set hometown "Turtle City"

 create-friendship-with banker 0

 create-account-to banker 0 [

 set amount 9999.99

]

]

 nw:set-context turtles links

 nw:save-graphml "example.graphml"

end

Will produce the following GraphML file:

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">

<key id="PEN-MODE" for="node" attr.name="PEN-MODE" attr.type="string"/>

<key id="YCOR" for="node" attr.name="YCOR" attr.type="double"/>

<key id="PEN-SIZE" for="node" attr.name="PEN-SIZE" attr.type="double"/>

<key id="LABEL" for="node" attr.name="LABEL" attr.type="string"/>

<key id="SHAPE" for="node" attr.name="SHAPE" attr.type="string"/>

<key id="BREED" for="node" attr.name="BREED" attr.type="string"/>

<key id="WHO" for="node" attr.name="WHO" attr.type="double"/>

<key id="HIDDEN?" for="node" attr.name="HIDDEN?" attr.type="boolean"/>

<key id="LABEL-COLOR" for="node" attr.name="LABEL-COLOR" attr.type="double"/>

<key id="HEADING" for="node" attr.name="HEADING" attr.type="double"/>

<key id="BANK-NAME" for="node" attr.name="BANK-NAME" attr.type="string"/>

<key id="HOMETOWN" for="node" attr.name="HOMETOWN" attr.type="string"/>

<key id="COLOR" for="node" attr.name="COLOR" attr.type="double"/>

<key id="XCOR" for="node" attr.name="XCOR" attr.type="double"/>

<key id="SIZE" for="node" attr.name="SIZE" attr.type="double"/>

<key id="END1" for="edge" attr.name="END1" attr.type="string"/>

<key id="TIE-MODE" for="edge" attr.name="TIE-MODE" attr.type="string"/>

<key id="END2" for="edge" attr.name="END2" attr.type="string"/>

<key id="LABEL-COLOR" for="edge" attr.name="LABEL-COLOR" attr.type="double"/>

<key id="THICKNESS" for="edge" attr.name="THICKNESS" attr.type="double"/>

<key id="LABEL" for="edge" attr.name="LABEL" attr.type="string"/>

<key id="SHAPE" for="edge" attr.name="SHAPE" attr.type="string"/>

<key id="BREED" for="edge" attr.name="BREED" attr.type="string"/>

<key id="COLOR" for="edge" attr.name="COLOR" attr.type="double"/>

<key id="AMOUNT" for="edge" attr.name="AMOUNT" attr.type="double"/>

<key id="HIDDEN?" for="edge" attr.name="HIDDEN?" attr.type="boolean"/>

<graph edgedefault="undirected">

<node id="client 1">

<data key="PEN-MODE">up</data>

<data key="YCOR">0</data>

<data key="PEN-SIZE">1</data>

<data key="LABEL"></data>

<data key="SHAPE">default</data>

<data key="BREED">clients</data>

<data key="WHO">1</data>

<data key="HIDDEN?">false</data>

<data key="LABEL-COLOR">9.9</data>

<data key="HEADING">356</data>

<data key="HOMETOWN">Turtle City</data>

<data key="COLOR">115</data>

<data key="XCOR">0</data>

<data key="SIZE">1</data>

</node>

<node id="banker 0">

<data key="PEN-MODE">up</data>

<data key="YCOR">0</data>

<data key="PEN-SIZE">1</data>

<data key="LABEL"></data>

<data key="SHAPE">default</data>

<data key="BREED">bankers</data>

<data key="WHO">0</data>

<data key="HIDDEN?">false</data>

<data key="LABEL-COLOR">9.9</data>

<data key="HEADING">32</data>

<data key="BANK-NAME">The Bank</data>

<data key="COLOR">85</data>

<data key="XCOR">0</data>

<data key="SIZE">1</data>

</node>

<edge source="client 1" target="banker 0">

<data key="END1">(client 1)</data>

<data key="TIE-MODE">none</data>

<data key="END2">(banker 0)</data>

<data key="LABEL-COLOR">9.9</data>

<data key="THICKNESS">0</data>

<data key="LABEL"></data>

<data key="SHAPE">default</data>

<data key="BREED">accounts</data>

<data key="COLOR">5</data>

<data key="AMOUNT">9999.99</data>

<data key="HIDDEN?">false</data>

</edge>

<edge source="banker 0" target="client 1">

<data key="END1">(banker 0)</data>

<data key="TIE-MODE">none</data>

<data key="END2">(client 1)</data>

<data key="LABEL-COLOR">9.9</data>

<data key="THICKNESS">0</data>

<data key="LABEL"></data>

<data key="SHAPE">default</data>

<data key="BREED">friendships</data>

<data key="COLOR">5</data>

<data key="HIDDEN?">false</data>

</edge>

</graph>

</graphml>

A few things to notice:

The breed is stored as data field, both for nodes and edges. Note that the breed is stored in its plural form.

The data includes both NetLogo’s internal variables and the variables that were defined as either breeds-own , turtles-own , linkbreeds-own or links-own .

Each key gets an attr.type based on the actual types of the values contained in the agent variables. The three possible types are "string" , "double" and "boolean" . To determine

the attribute type of a particular agent variable, the extension will look at the first agent in the graph. To see which agent is first, you can look at the result of nw:get-context . Note that

variables containing other types of values, such as turtles, patches, lists, etc., will be stored as strings.

This example only has a directed link, and you will notice the <graph edgedefault="directed"> element. If we had only undirected links, we would have <graph

edgedefault="undirected"> . What if we try to mix both kinds of link? At the moment, the extension will save such a “mixed” graph as if it were an undirected graph (see this issue for

more details). The order of the source and target will be respected, however, so if you know which breeds represent directed links, you can figure it out a posteriori.

nw:load-graphml

nw:load-graphml file-name optional-command-block

Loading a GraphML file into NetLogo with the network extension should be as simple as calling nw:load-graphml "example.graphml" , but there is a bit of preparation involved.

The key idea is that nw:load-graphml will try to assign the attribute values defined in the GraphML file to NetLogo agent variables of the same names (this is not case sensitive). The first

one it tries to set is breed if it is there, so the turtle or link will get the right breed and, hence, the right breed variables. The load expects the plural form of the breed for a turtle or link, it

will not recognize the singular form.

One special case is the who number, which is ignored by the importer if it is present as a GraphML attribute: NetLogo does not allow you to modify this number once a turtle is created

and, besides, there could already be an existing turtle with that number.

The simplest case to handle is when the original GraphML file has been saved from NetLogo by using nw:save-graphml . In this case, all you should have to do is to make sure that you

have the same breed and variables definition as when you saved the file and you should get back your original graph. For example, if you want to load the file from the nw:save-graphml

example above, you should have the following definitions:

breed [bankers banker]

bankers-own [bank-name]

breed [clients client]

clients-own [hometown]

undirected-link-breed [friendships friendship]

directed-link-breed [accounts account]

accounts-own [amount]

Loading a graph that was saved from a different program than NetLogo is quite possible as well, but it may take a bit of tinkering to get all the attribute-variable match up right. If you

encounter major problems, please do not hesitate to open an issue.

The extension will try to assign the type defined by attr.type to each variable that it loads. If it’s unable to convert it to that type, it will load it as a string. If attr.type is not defined, or

is set to an unknown value, the extension will first try to load the value as a double, then try it as a boolean, and finally fall back on a string.

If you specify an optional-command-block, it is executed for each turtle in the newly created network. For example:

nw:load-graphml "example.graphml" [set color red]

Note that this command block can be used to build a list or an agentset containing the newly created nodes:

let node-list []

nw:load-graphml "example.graphml" [

 set node-list lput self node-list

]

let node-set turtle-set node-list

nw:load

nw:load file-name default-turtle-breed default-link-breed optional-command-block

Filetype specific variants:

nw:load

nw:load-dl

nw:load-gdf

nw:load-gexf

nw:load-gml

nw:load-vna

https://github.com/NetLogo/NW-Extension/issues/58
https://github.com/NetLogo/NW-Extension/issues/new

Import the given file into NetLogo. Like nw:load-graphml , the importer will do its best to match node and edge attributes in the file with turtle and link variables in NetLogo. If breed is

specified for nodes and edges in the file and exists in NetLogo, it will be used. Otherwise, the default turtle and link breeds are used.

Limitations:

Multigraphs are not supported in importing. Even if the file format supports it (and many don’t), only the first link will be used on import. This is due to a limitation in the parsing libraries

NW uses. nw:load-graphml does support multigraphs with the normal NetLogo limitation that two turtles can share more than one link only if all the links are of different breeds.

nw:load determines the file-type of given file based on the extension and calls the corresponding load-* primitive on it. Note that GraphML must be imported with nw:load-graphml .

nw:save

nw:save file-name

Filetype specific variants:

nw:save-dl

nw:save-gdf

nw:save-gexf

nw:save-gml

nw:save-vna

Export the network context in the given format to the given file. Turtle and link attributes will be exported to formats that support node and edge properties.

Limitations:

x and y (not xcor and ycor) can only be numbers. x and y are commonly used in formats pertaining to position and behind the scenes NW uses Gephi’s libraries for exporting.

Furthermore, x and y will be added even if they didn’t exist in the model. Again, this is because NW uses Gephi’s libraries which assume that nodes have positions stored in x and y . If

you wish to export to Gephi specifically, we recommend creating x and y turtles variables and setting them to xcor and ycor before export.

Color will be exported in a standard RGB format. This should hopefully increase compatibility with other programs.

Turtle and link variables that contain values of different types will be stored as strings. Unfortunately, most network formats require that node and attributes have a single type.

Many programs use label to store the id of nodes. Thus, if you’re having trouble importing data exported from NetLogo into another program, you might try setting turtles’ labels to their

who number.

Multigraphs are not supported. Thus, two turtles can share at most one link. nw:save-graphml does support multigraphs, so use that if turtles can have more than one type of link

connecting them.

nw:save determines the file-type of the given file based on the extension and calls the corresponding save-* primitive on it. Note that GraphML must be exported with nw:save-

graphml .

Palette

Using the Palette Extension

The NetLogo palette extension offers the user more control over their colors. The colors go beyond NetLogo colors, including ColorBrewer color schemes and arbitrary RGB colors. Additionally,

users can control specific components of their color such as alpha, hue and red.

Getting Started

To get started with palettes add to the top of your Code tab:

extensions [palette]

you can then call any of the primitives by adding palette: before the primitive:

palette:hue-of

palette:set-saturation

palette:scale-gradient

palette:scale-scheme

Background

Review of color representation in NetLogo

Colors can be represented as NetLogo colors or RGB or RGBA colors

A NetLogo color (NLC or NL color) is a number in the range 0 to 140, with the exception of 140 itself, other values are ‘wrapped.’

NetLogo colors are shades of a base color which has units digit 5, and is in the middle of the shade range.

An RGB color is a list of 3 numbers.

The numbers represent red, green and blue and are in the range 0 to 255.

An RGBA color is a list of 4 numbers.

The fourth number is called alpha and is in the range 0 to 255.

Alpha represents transparency with 0 fully transparent, and 255 fully opaque.

RGB/A will be used to denote a color that is either RGB or RGBA.

Transparency

The degree to which one can see through a color can also be specified by referring to transparency. Transparency is in the range 0 to 100, with 0 fully opaque and 100 fully transparent.

Transparency is not stored as part of a color, but is mathematically converted to and from alpha.

HSB Color Specification

Colors can also be specified (but not stored as color values) by reference to HSB - hue, saturation and brightness.

Hue ranges 0 to 360 and forms a cycle.

Saturation ranges 0 to 100.

Brightness ranges 0 to 100.

For more information, search the web for ‘hsb color system.’

More control over the color

Palette primitives allow the user to:

Report a specific component of a color

e.g. palette:hue-of

Report the result of changing a specific component of a color

e.g. palette:with-hue

Report a specific component of an agent’s color

e.g. palette:hue

Change a specific component of an agent’s color

e.g. palette:set-hue

The user can also create color gradients and access ColorBrewer color schemes.

Varying an Agent’s Transparency or Color

You can make a turtle more transparent by decreasing alpha, or increasing transparency. A similar approach can be used to adjust color components such as brightness. Here are two examples:

ask turtles [palette:set-transparency palette:transparency + 10]

ask turtles [palette:set-alpha .9 * palette:alpha]

Because an error will result if the value passed to a set command is not in the correct range, a little additional code is sometimes needed.

ask turtles [palette:set-transparency min list 100 (palette:transparency + 10)]

ask turtles [palette:set-alpha max list 0 (palette:alpha - 25.5)]

How do I choose a color scheme?

ColorBrewer has three kinds of color schemes: Sequential, Divergent and Qualitative. Although choosing a color palette is a design problem that does not have a single solution we offer the fol‑

lowing guidelines for choosing colors for a NetLogo model:

Decide first whether to use a Sequential, Divergent or Qualitative color scheme

Sequential color schemes are best for models of continuous natural phenomena such as as heat diffusion in physics or fire in earth sciences.

Divergent color schemes are useful for highlighting a middle value in a model. Therefore they could be used with the heat diffusion model if the goal were to highlight regions with the middle

temperature.

Qualitative colors are best for choosing colors in models where color denotes category and not value.

Additional color considerations

For agents that cover large areas avoid strong colors and try to use pastel colors. However, for a few small isolated agents try to use strong colors such as such an accent.

The main goal is to avoid having a large area covered with agents with a bright color and or having small areas having a muted pastel color.

If you are coloring both turtles and patches, make sure they have different ranges of hue, saturation and value. For example, use different hues of pastel for patches and accent for turtles.

You can learn more about the use of these color collections in the original ColorBrewer paper (Harrower, Brewer 2003), which focuses on their application to maps. See (Kornhauser, Wilensky,

and Rand 1999) for design guidelines for visualization of Agent Based Models.

Should I use a continuous color gradient or just a discrete color set?

The answer depends on the focus of the user experience.

For example, gradients are more aesthetic thus are more memorable than discrete colors. Consequently, a gradient can be a better choice for presentations where the main goal of the image is

to be attractive and memorable. However, binning values in a discrete set of colors simplifies tasks such as estimation and counting by removing unnecessary detail and focusing on the big pic‑

ture. Thus, discrete colors can be a better choice for a written document for which the user will have the time and interest to study the visualization.

In order to see the difference you can turn on and off the gradient in the Heat Diffusion model. You can observe that turning gradient on makes the model more aesthetic, but it becomes harder

to estimate the value of a patch at a given position.

Example Models

There are a few examples of using the palette primitives in the Code Examples section of the models library:

Palette Example

Color Bubbles

Color Painting

Color Reveal

And one Sample Model that uses the extension:

Heat Diffusion - Alternative Gradient

Further Reading

Be sure to check the ColorBrewer web page.

To get a deeper understanding of how to use the color schemes read the ColorBrewer paper (Harrower, Brewer 2003).

Primitives

Looking for the primitive reference for the Palette extension? You can find it here.

palette:alpha-of palette:with-alpha palette:alpha palette:set-alpha palette:transparency-of palette:with-transparency palette:transparency palette:set-

transparency palette:hue-of palette:with-hue palette:hue palette:set-hue palette:saturation-of palette:with-saturation palette:saturation palette:set-saturation

palette:brightness-of palette:with-brightness palette:brightness palette:set-brightness palette:R-of palette:with-R palette:R palette:set-R palette:G-of

palette:with-G palette:G palette:set-G palette:B-of palette:with-B palette:B palette:set-B palette:scale-gradient palette:scale-gradient-hsb palette:scheme-

colors palette:scale-scheme palette:scheme-dialog

http://colorbrewer2.org/
file:///tmp/sbt_6c39b28e/palette/index.html

palette:alpha-of

palette:alpha-of color

Reports a value in the range 0 to 255 representing the alpha of the given NL, RGB or RGBA color. The alpha value of an NL or RGB color is 255.

Example:

show palette:alpha-of red ;; 255

show palette:alpha-of [3 14 159 26] ;; 26

palette:with-alpha

color palette:with-alpha number

Reports an RGBA color with alpha component equal to number and the RGB content of color. An error message results if alpha is not in the range from 0 to 255.

Example:

show [12 34 55 6] palette:with-alpha 99 ;; [12 34 55 99]

palette:alpha

palette:alpha

Get the alpha value of the color of the agent. The alpha value of an NL or RGB color is 255.

Example:

show [palette:alpha] of turtles

palette:set-alpha

palette:set-alpha number

Set the color of the agent to the RGBA color with alpha value number and the RGB content of the color of the turtle or link (or patch in NetLogo3D). An error message results if number is

not in the range 0 to 255.

Example:

ask turtles [palette:set-alpha 100]

palette:transparency-of

palette:transparency-of color

Reports a value in the range 0 to 100 representing the percent transparency of the given NL, RGB or RGBA color. The percent transparency of an NL or RGB color is 0.

Example:

show palette:transparency-of [100 100 100 100] ;; 60.7843137254902

show palette:transparency-of red ;; 0

palette:with-transparency

color palette:with-transparency number

Reports an RGBA color with an alpha value equivalent to the transparency number and the RGB content of color. An error message results if number is not in the range 0 to 100.

Example:

show red palette:with-transparency 100 ;; [215 50 41 0]

palette:transparency

palette:transparency

Reports the transparency equivalent of the agent’s alpha.

Example:

show [palette:transparency] of turtles

palette:set-transparency

palette:set-transparency number

Set the color of the agent to the RGBA color with alpha value equivalent to the transparency number and the RGB content of the color of the turtle or link. An error message results if num‑
ber is not in the range 0 to 100.

Example:

ask turtles [palette:set-transparency 30]

palette:hue-of

palette:hue-of color

Reports a value in the range 0 to 360 representing the hue component in HSB color space of the given NL, RGB or RGBA color.

Example:

show palette:hue-of red ;; 3.103

palette:with-hue

color palette:with-hue number

Reports an RGBA color with hue component in HSB color space equal to number and the other HSB components of the input color unchanged. An error message results if number is not in

the range 0 to 360.

Example:

show red palette:with-hue 100 ;; [99 215 41]

palette:hue

palette:hue

Reports a number in the range 0 to 360 that represents the hue of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:hue] of turtle 0 ;; 3.103

palette:set-hue

palette:set-hue number

Changes an agent’s hue value to number, leaving the other HSB components unchanged. An error message results if number is not in the range from 0 to 360.

Example:

ask turtles [palette:set-hue 30]

palette:saturation-of

palette:saturation-of color

Reports a value in the range 0 to 100 representing the saturation component in HSB color space of the given NL, RGB or RGBA color.

Example:

show palette:saturation-of red ;; 80.93

palette:with-saturation

color palette:with-saturation number

Reports an RGBA color with saturation component in HSB color space equal to number and the other HSB components of the input color unchanged. An error message results if number

is not in the range 0 to 100.

Example:

show red palette:with-saturation 50 ;; [215 113 108]

palette:saturation

palette:saturation

Reports a number in the range 0 to 100 that represents the saturation of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:saturation] of turtle 0 ;; 80.93

palette:set-saturation

palette:set-saturation number

Changes an agent’s saturation leaving the other HSB components unchanged. An error message results if number is not in the range from 0 to 100.

Example:

ask turtles [palette:set-saturation 30]

palette:brightness-of

palette:brightness-of color

Reports a value in the range 0 to 100 representing the brightness component in HSB color space of the given NL, RGB or RGBA color.

Example:

show palette:brightness-of red ;; 84.314

palette:with-brightness

color palette:with-brightness number

Reports an RGBA color with brightness component in HSB color space equal to number and the other HSB components of the input color unchanged. An error message results if number

is not in the range 0 to 100.

Example:

show red palette:with-brightness 50 ;; [128 30 24]

palette:brightness

palette:brightness

Reports a number in the range 0 to 100 that represents the brightness of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:brightness] of turtle 0 ;; 84.314

palette:set-brightness

palette:set-brightness number

Changes an agent’s brightness leaving the other HSB components unchanged. An error message results if number is not in the range from 0 to 100.

Example:

ask turtles [palette:set-brightness 30]

palette:R-of

palette:R-of color

Reports a value in the range 0 to 255 representing the red component in the RGB color space of the given NL, RGB or RGBA color.

Example:

show palette:R-of red ;; 215

palette:with-R

color palette:with-R number

Reports an RGBA color with red component in RGB color space equal to number and the other RGB components of the input color unchanged. An error message results if number is not in

the range 0 to 255.

Example:

show red palette:with-R 50 ;; [50 50 41]

palette:R

palette:R

Reports a number in the range 0 to 255 that represents the red of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:R] of turtle 0 ;; 215

palette:set-R

palette:set-R number

Changes an agent’s red component of its RGB/A color leaving the other RGB components unchanged. An error message results if number is not in the range from 0 to 255.

Example:

ask turtles [palette:set-R 30]

palette:G-of

palette:G-of color

Reports a value in the range 0 to 255 representing the green component in the RGB color space of the given NL, RGB or RGBA color.

Example:

show palette:G-of red ;; 50

palette:with-G

color palette:with-G number

Reports an RGBA color with green component in RGB color space equal to number and the other RGB components of the input color unchanged. An error message results if number is not

in the range 0 to 255.

Example:

show red palette:with-G 56 ;; [215 56 41]

palette:G

palette:G

Reports a number in the range 0 to 255 that represents the green of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:G] of turtle 0 ;; 50

palette:set-G

palette:set-G number

Changes an agent’s green component of its RGB/A color leaving the other RGB components unchanged. An error message results if number is not in the range from 0 to 255.

Example:

ask turtles [palette:set-G 30]

palette:B-of

palette:B-of color

Reports a value in the range 0 to 255 representing the blue component in the RGB color space of the given NL, RGB or RGBA color.

Example:

show palette:B-of red ;; 41

palette:with-B

color palette:with-B number

Reports an RGBA color with blue component in RGB color space equal to number and the other RGB components of the input color unchanged. An error message results if number is not

in the range 0 to 255.

Example:

show red palette:with-B 56 ;; [215 50 56]

palette:B

palette:B

Reports a number in the range 0 to 255 that represents the blue of an agent’s color or pcolor.

Example:

crt 1 [set color red]

[palette:B] of turtle 0 ;; 41

palette:set-B

palette:set-B number

Changes an agent’s blue component of its RGB/A color leaving the other RGB components unchanged. An error message results if number is not in the range from 0 to 255.

Example:

ask turtles [palette:set-B 30]

palette:scale-gradient

palette:scale-gradient rgb-color-list number range1 range2

Reports an RGB color proportional to number using a gradient generated with rgb-color-list. The rgb-color-list is a list containing NL or RGB colors: e.g. [NL1 [r1 g1 b1] [r2 g2 b2] [r3 g3 b3]

NL2 …].

When range1 is less than or equal to range2, the color will be directly mapped to gradient colors. When range2 is less than range1, the color gradient is inverted.

Let min-range be the minimum of range1 and range2. If number is less than or equal to min-range, then the result is the same as if number was equal to min-range.

Let max-range be the maximum of range1 and range2. If number is greater than max-range, then the result is the same as if number was equal to max-range.

Example:

ask patches

[

 set pcolor palette:scale-gradient [[255 0 0] [0 0 255]] pxcor min-pxcor max-pxcor

]

;; colors each patch with a color proportional to the gradient

palette:scale-gradient-hsb

palette:scale-gradient-hsb rgb-color-list number range1 range2

Reports an RGB color equivalent to a color in HSB space proportional to number using a gradient generated with hsb-list. The hsb-list is a list containing three-element lists of HSB colors:

[[h1 s1 b1] [h2 s2 b2] [h3 s3 b3] …].

When range1 is less than or equal to range2, the HSB color will be directly mapped to gradient HSB colors. When range2 is less than range1, the color gradient is inverted.

Let min-range be the minimum of range1 and range2. If number is less than or equal to min-range, then the result is the same as if number was equal to min-range.

Let max-range be the maximum of range1 and range2. If number is greater than max-range, then the result is the same as if number was equal to max-range.

Example:

ask patches

[

ask patches [set pcolor palette:scale-gradient-hsb [[200 50 50] [100 60 70]] pxcor min-pxcor max-pxcor]

]

;; colors each patch with a color proportional to the gradient

palette:scheme-colors

palette:scheme-colors scheme-type scheme-color number-of-classes

Reports a list of RGB colors using ColorBrewer scheme of type scheme-type with name scheme-color containing number-of-classes colors. Scheme types are “Sequential,” “Divergent”

and “Qualitative.” The choice of scheme names depends on the scheme type and includes “Reds”, “Spectral” and “Set1”. The minimum number of colors is 3 and a maximum is between 8

and 12 depending on the color scheme. For more information go to http://www.colorbrewer.org.

Example:

show palette:scheme-colors "Divergent" "Spectral" 3

=> [[252 141 89] [255 255 191] [153 213 148]]

; The scheme-colors primitive can be used with the scale-gradient primitive.

ask patches

 [set pcolor palette:scale-gradient palette:scheme-colors "Divergent" "Spectral" 9 pxcor min-pxcor max-pxcor]

palette:scale-scheme

palette:scale-scheme scheme-type scheme-color number-of-classes number range1 range2

Reports an RGB color from the ColorBrewer scheme of type scheme-type with name scheme-color containing number-of-classes colors. The color is chosen using the proportionality of

number in the range specified by range1 and range2.

When range1 is less than or equal to range2, the colors are ordered as in the ColorBrewer scheme. When range2 is less than range1, the color order is reversed.

Let min-range be the minimum of range1 and range2. If number is less or equal to than min-range, then the result is the same as if number was equal to min-range. This will be the first

color in the color list if range1 is less than range2.

Let max-range be the maximum of range1 and range2. If number is greater than max-range, then the result is the same as if number was equal to max-range. This will be the last color in

the color list if range1 is less than range2.

Example:

ask patches

[

 set pcolor palette:scale-scheme "Divergent" "Spectral" 8 pxcor min-pxcor max-pxcor

]

;; colors each patch with a color from the Color Brewer Schemes

palette:scheme-dialog

palette:scheme-dialog

Launches a dialog for previewing all the ColorBrewer color schemes.

Use the leftmost pulldown menu to select the scheme type: “Sequential,” “Divergent” or “Qualitative.” Use the next pulldown menu to select a named scheme. Finally select the number of

colors. The maximum number depends on the color scheme. Use the Copy button to copy the scheme information into the clipboard. This information can be pasted into commands such

as palette:scheme-colors. The Close button can be used to close the dialog.

Example:

 palette:scheme-dialog

 ;; In the dialog the user selects scheme type "Divergent," the scheme named "Spectral," and the number 3, and clicks the *Copy* button.

 ;; In the Command Center the user types "show palette:scheme-colors " and then pastes the clipboard contents, and hits *Enter*.

 show palette:scheme-colors "Divergent" "Spectral" 3

 => [[252 141 89] [255 255 191] [153 213 148]]

References

ColorBrewer www.colorbrewer.org

HARROWER, M. and C. BREWER (2003). ColorBrewer: An online tool for selecting color schemes for maps. The Cartographic Journal 40(1): 27-37.)

HEALEY, C G (2006) Perception in Visualization, (comprehensive review updated regularly).

HEALEY, C G, BOOTH K S, and ENNS, J T (1995). Visualizing Real-Time Multivariate Data Using Preattentive Processing. ACM Transactions on Modeling and Computer Simulation 5, 3, 190-

221.

KORNHAUSER, D, WILENSKY, U and RAND, W (1999). Design Guidelines for Agent Based Model Visualization. Journal of Artificial Societies and Social Simulation 12(2)1.

TUFTE, E (1983) The Visual Display of Quantitative Information, Graphics Press.

WARE, C (2004) Information Visualization, 2nd Ed., Morgan Kaufmann.

http://www.colorbrewer.org/
http://www.colorbrewer.org/
https://www.tandfonline.com/doi/abs/10.1179/000870403235002042
http://www.csc.ncsu.edu/faculty/healey/PP/index.html
https://www.csc2.ncsu.edu/faculty/healey/download/tomacs.95.pdf
https://www.jasss.org/12/2/1.html

Profiler

Using the Profiler Extension

If you’d like your model to run faster, the profiler extension may be useful to you. It includes primitives that measure how many times the procedures in your model are called during a run and

how long each call takes. You can use this information to where to focus your speedup efforts.

Caution:

The profiler extension is experimental. It is not yet well tested or user friendly. Nonetheless, we think some users will find it useful.

How to use

The profiler extension comes preinstalled. To use the extension in your model, add a line to the top of your Code tab:

extensions [profiler]

If your model already uses other extensions, then it already has an extensions line in it, so just add profiler to the list.

For more information on using NetLogo extensions, see the Extensions Guide

Example

setup ;; set up the model

profiler:start ;; start profiling

repeat 20 [go] ;; run something you want to measure

profiler:stop ;; stop profiling

print profiler:report ;; view the results

profiler:reset ;; clear the data

Another way to use the profiler is to export its raw data using the csv extension and the profiler:data primitive:

extensions [csv profiler]

to profile

 setup ;; set up the model

 profiler:start ;; start profiling

 repeat 20 [go] ;; run something you want to measure

 profiler:stop ;; stop profiling

 csv:to-file "profiler_data.csv" profiler:data ;; save the results

 profiler:reset ;; clear the data

end

Running the above procedure will write a profiler_data.csv file that you can then load into your favorite data analysis program. Here is an example data file produced using the Wolf Sheep

Predation model:

procedure,calls,inclusive_time,exclusive_time

EAT-SHEEP,1085,1.237283,11.637364

DISPLAY-LABELS,20,17.389512,17.389512

MOVE,3578,14.164451,14.164451

GO,20,683.414619,604.773837

GRASS,3,0.05384,0.05384

DEATH,1085,3.172517,3.172517

REPRODUCE-SHEEP,2493,10.265135,10.265135

REPRODUCE-WOLVES,1039,5.599509,5.599509

Thanks to Roger Peppe for his contributions to the code.

Primitives

Looking for the primitive reference for the Profiler extension? You can find it here.

profiler:calls profiler:exclusive-time profiler:inclusive-time profiler:start profiler:stop profiler:reset profiler:report profiler:data

profiler:calls

profiler:calls procedure-name

Reports the number of times that procedure-name was called. If procedure-name is not defined, then reports 0.

file:///tmp/sbt_6c39b28e/extensions.html
file:///tmp/sbt_6c39b28e/csv.html
https://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
https://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
file:///tmp/sbt_6c39b28e/profiler/index.html

profiler:exclusive-time

profiler:exclusive-time procedure-name

Reports the exclusive time, in milliseconds, that procedure-name was running for. Exclusive time is the time from when the procedure was entered, until it finishes, but does not include

any time spent in other user-defined procedures which it calls.

If procedure-name is not defined, then reports 0.

profiler:inclusive-time

profiler:inclusive-time procedure-name

Reports the inclusive time, in milliseconds, that procedure-name was running for. Inclusive time is the time from when the procedure was entered, until it finishes.

If procedure-name is not defined, then reports 0.

profiler:start

profiler:start

Instructs the profiler to begin recording user-defined procedure calls.

profiler:stop

profiler:stop

Instructs the profiler to stop recording user-defined procedure calls.

profiler:reset

profiler:reset

Instructs the profiler to erase all collected data.

profiler:report

profiler:report

Reports a string containing a breakdown of all user-defined procedure calls. The Calls column contains the number of times a user-defined procedure was called. The Incl T(ms) col‑

umn is the total time, in milliseconds, it took for the call to complete, including the time spent in other user-defined procedures. The Excl T(ms) column is the total time, in milliseconds,

spent within that user-defined procedure, not counting other user-define procedures it called. The Excl/calls column is an estimate of the time, in milliseconds, spent in that user-

defined procedure for each call.

Here is example output:

Sorted by Exclusive Time

Name Calls Incl T(ms) Excl T(ms) Excl/calls

CALLTHEM 13 26.066 19.476 1.498

CALLME 13 6.413 6.413 0.493

REPORTME 13 0.177 0.177 0.014

Sorted by Inclusive Time

Name Calls Incl T(ms) Excl T(ms) Excl/calls

CALLTHEM 13 26.066 19.476 1.498

CALLME 13 6.413 6.413 0.493

REPORTME 13 0.177 0.177 0.014

Sorted by Number of Calls

Name Calls Incl T(ms) Excl T(ms) Excl/calls

CALLTHEM 13 26.066 19.476 1.498

profiler:data

profiler:data

Reports a list of lists containing the results of the profiler in a format that is suitable for exporting with the csv extension.

The first sublist contains the name of the data columns: procedure , calls , inclusive_time and exclusive_time . This is followed by one sublist containing the profiler data for each

user-defined procedure. The reported times are in milliseconds.

file:///tmp/sbt_6c39b28e/csv.html

Python

Using

As with all NetLogo extensions, you must declare that you’re using this extension in your NetLogo code with:

extensions [

 py

 ; ... your other extensions

]

The general workflow of this extension is to run py:setup py:python to initialize the Python session that NetLogo will talk to, and then use py:run , py:runresult , and py:set to interact with

that Python session. By default, py:python will report the latest version of Python that the extension finds on your system. You can also use py:python3 or py:python2 to use Python 3 or 2

specifically. See the Configuring section below to specify exactly which Python installations to use.

Here’s an example to get you started:

observer> py:setup py:python

observer> show py:runresult "1 + 1"

observer: 2

observer> py:run "print('hi')"

hi

observer> py:run "import math"

observer> show py:runresult "[math.factorial(i) for i in range(10)]"

observer: [1 1 2 6 24 120 720 5040 40320 362880]

observer> py:set "patch_xs" [pxcor] of patches

observer> show py:runresult "max(patch_xs)"

observer: 16

observer> py:run "print(min(patch_xs))"

-16

See the documentation for each of the particular primitives for details on, for instance, how to multi-line statements and how object type conversions work. See the demo models included in the

demo folder for some examples of using libraries such as numpy and tensorflow .

See the documentation on py:set to learn how to have the extension serialize entire agents and agentsets into Python dictionaries.

There is also a separate interactive Python console that can be found under Python > Interactive Python Console. This console is connected to the same Python session as all the Python

NetLogo primitives, so you can define a variable in your model and access it in the interactive Python console window.

Error handling

Python errors will be reported in NetLogo as “Extension exceptions”. For instance, this code:

py:run "raise Exception('hi')"

will result in the NetLogo error “Extension exception: hi”. To see the Python stack trace of the exception, click “Show internal details”. If you then scroll down, you will find the Python stack trace

in the middle of the Java stack trace.

Configuring

By default, the py:python2 , py:python3 , and py:python commands will attempt to find a Python executable of the appropriate version. If you’d like to change which Python executable they

use, or they can’t find a Python executable, you should configure which Python executables to use. You can do this by either:

Using the configuration menu under the Python toolbar menu that appears when you use a model that uses the Python extension.

Editing the python.properties file that appears in the Python extension installation folder as follows:

python3=/path/to/python3

python2=/path/to/python2

Primitives

Looking for the primitive reference for the Python extension? You can find it here.

py:setup py:python py:python2 py:python3 py:run py:runresult py:set

py:setup

py:setup python-executable

file:///tmp/sbt_6c39b28e/py/index.html

Create the Python session that this extension will use to execute code. The session will be started with the given Python executable. This command must be run before running any other

Python extension primitive. Running this command again will shutdown the current Python environment and start a new one.

The executable may be specified as a relative path, absolute path, or just the executable name if it is on your PATH. Furthermore, this extension offers a few helper primitives for getting

particular versions of Python in system independent ways.

In general, unless working with a virtual environment or a specific system setup, you should do:

py:setup py:python ; if your code works with either Python 2 or 3

py:setup py:python3 ; for Python 3

py:setup py:python2 ; for Python 2

py:setup may be invoked by directly referring to different Pythons as well. For instance:

py:setup "python3" ; if `python3` is on your PATH

py:setup "python" ; if `python` is on your PATH

If you use virtualenv or Conda, simply specify the path of the Python executable in the environment you wish to use:

py:setup "/path/to/myenv/bin/python"

The path may be relative or absolute. So, if you have a virtual environment in the same folder as your model, you can do:

py:setup "myenv/bin/python"

py:python

py:python

Reports either the path to the latest version of Python configured in the python.properties file or, if that is blank, looks for a Python executable on your system’s PATH. For Windows,

there is an installation option for including Python on your PATH. For MacOS and Linux, it will likely already be on your PATH. The output of this reporter is meant to be used with

py:setup , but you may also use it to see which Python installation this extension will use by default.

For example, on MacOS with Homebrew installed Python 3:

observer> show py:python

observer: "/usr/local/bin/python3"

py:python2

py:python2

Reports either the path to Python 2 configured in the python.properties file or, if that is blank, looks for a Python 2 executable on your system’s PATH. For Windows, there is an installa‑

tion option for including Python on your PATH. For MacOS and Linux, it will likely already be on your PATH. The output of this reporter is meant to be used with py:setup , but you may

also use it to see which Python 2 installation this extension will use by default.

For example, on MacOS with Homebrew installed Python 2:

observer> show py:python2

observer: "/usr/local/bin/python2"

py:python3

py:python3

Reports either the path to Python 3 configured in the python.properties file or, if that is blank, looks for a Python 3 executable on your system’s PATH. For Windows, there is an installa‑

tion option for including Python on your PATH. For MacOS and Linux, it will likely already be on your PATH. The output of this reporter is meant to be used with py:setup , but you may

also use it to see which Python 3 installation this extension will use by default.

For example, on MacOS with Homebrew installed Python 3:

observer> show py:python3

observer: "/usr/local/bin/python3"

py:run

py:run python-statement

Runs the given Python statements in the current Python session. To make multi-line Python code easier to run, this command will take multiple strings, each of which will be interpreted as

a separate line of Python code. For instance:

(py:run

 "import matplotlib"

 "matplotlib.use('TkAgg')"

 "import numpy as np"

 "import matplotlib.pyplot as plt"

 "for i in range(10):"

 " plt.plot([x ** i for x in np.arange(-1, 1, 0.1)])"

 "plt.show()"

)

py:run will wait for the statements to finish running before continuing. Thus, if you have long running Python code, NetLogo will pause while it runs.

py:runresult

py:runresult python-expression

Evaluates the given Python expression and reports the result. py:runresult attempts to convert from Python data types to NetLogo data types. Numbers, strings, and booleans convert

as you would expect. Any list-like object in Python (that is, anything with a length that you can iterate through) will be converted to a NetLogo list. For instance, Python lists and NumPy

arrays will convert to NetLogo lists. Python dicts (and dict-like objects) will convert to a NetLogo list of key-value pairs (where each pair is represented as a list). None will be converted to

nobody . Other objects will simply be converted to a string representation.

Note that due a current issue, dict keys will always be reported as strings. If you need to report non-string keys, report the .items() of the dict instead of the dict itself.

py:set

py:set variable-name value

Sets a variable in the Python session with the given name to the given NetLogo value. NetLogo objects will be converted to Python objects as expected.

All vanilla NetLogo objects are supported, but objects from other extensions, even other bundled extensions, are not supported.

py:set "x" [1 2 3]

show py:runresult "x" ;; Shows [1 2 3]

Agents are converted into dictionaries with elements for each agent variable. Agentsets are converted into lists of agent dictionaries.

breed [goats goat]

goats-own [energy]

create-goats 1 [set heading 0 set color 75]

ask goat 0 [set energy 42]

py:set "goat" goat 0

py:runresult "str(goat)" ;; Should output: "{'WHO': 0, 'COLOR': 75, 'HEADING': 0, 'XCOR': 0, 'YCOR': 0, 'SHAPE': 'default', 'LABEL': '', 'LABEL-COLO

Agents with variables containing references to agentsets will have those variables converted into the string representation of that agentset.

https://github.com/qiemem/PythonExtension/issues/6

Resource

Using

Purpose

The resource extension allows you to retrieve the contents of files that are bundled with a model. Bundled resources, which were added in NetLogo 7, provide a way to use the contents of other

files in a model without needing to send the files alongside the model. When you add a resource to a model, the contents of the source file are stored in the model file.

For details on bundled resources, see Resource Manager.

Getting Started

The resource extension comes pre-installed with NetLogo. To use the resource extension in your model, add a line to the top of your Code tab:

extensions [resource]

If your model already uses other extensions, then it already has an extensions line in it, so just add resource to the list.

For more information on using NetLogo extensions, see the Extensions Guide

Primitives

Looking for the primitive reference for the Resource extension? You can find it here.

resource:get resource:list

resource:get

resource:get name

Reports the contents of the resource whose name matches the input string. If the resource is plain text, the contents will be reported as such. Otherwise, the contents will be reported as a

Base64 string. An error will be thrown if the specified resource does not exist.

resource:list

resource:list

Reports a list of names of the bundled resources present in the model.

file:///tmp/sbt_6c39b28e/resource-manager.html
file:///tmp/sbt_6c39b28e/extensions.html
file:///tmp/sbt_6c39b28e/resource/index.html

Rnd

This extension adds the ability to do roulette wheel selection in NetLogo. It provides a simpler way to accomplish the same thing as the Lottery Example from the NetLogo Models Library.

Usage

Which primitive to use depends on whether you want to select an item from a list or from an agenset. It also depends on whether you want one or many items and, if you want many, if repeats

are allowed or not. The following table summarizes the situation:

From an AgentSet From a List

One item rnd:weighted-one-of rnd:weighted-one-of-list

Many items, without repeats rnd:weighted-n-of rnd:weighted-n-of-list

Many items, with repeats rnd:weighted-n-of-with-repeats rnd:weighted-n-of-list-with-repeats

(Note: the initial version of the extension had a single set of primitives for both lists and agentsets, but it turned out to be confusing, so we changed it. If you were using the old version of the

extension, you will need to modify your code to use the new primitives.)

In all cases, you will need to provide two things to the primitive:

The “candidates”: the items that the primitive will select from.

The “weight”: how likely it is for each candidate to be selected.

If you want to select more than one items, you will also need to tell it:

How many items to select.

A note about performance

The extension uses Keith Schwarz’s implementation of Vose’s Alias Method (see Schwarz’s Darts, Dice, and Coins page). Assuming you are choosing n candidates for a collection of size m with

repeats, this method has an initialization cost of O(m) followed by a cost of O(1) for each item you pick, so O(m + n) overall.

For example, in the following code:

let candidates n-values 500 [[n] -> n]

rnd:weighted-n-of-list-with-repeats 100 candidates [[w] -> w]

n-values 100 [rnd:weighted-one-of-list candidates [[w] -> w]]

…the line using rnd:weighted-n-of-list-with-repeats will likely run 100 times faster than the line using a combination of n-values and rnd:weighted-one-of-list . This is because

rnd:weighted-n-of-list-with-repeats only initializes the algorithm once and rnd:weighted-one-of does it each time it is called.

(Note that composing n-values with rnd:weighted-one-of-list does not preserve the order of the original candidate list, while rnd:weighted-n-of-list-with-repeats does.)

Things are a bit more complicated if you are choosing without repeats, however. In this case, the algorithm may have to discard some picks because the candidates have already been selected.

When this starts happening too often (maybe because some weights are much bigger than others), the extension re-initializes the algorithm with the already-picked candidates excluded. This

should not happen too often, however, so while picking without repeats has an upper bound of O(m * n) in theory, it should usually not be much more than O(m + n) in practice.

The previous remarks apply to agentset primitives as much as they apply to list primitives.

Primitives

Looking for the primitive reference for the Rnd extension? You can find it here.

AgentSet Primitives

rnd:weighted-one-of rnd:weighted-n-of rnd:weighted-n-of-with-repeats

List Primitives

rnd:weighted-one-of-list rnd:weighted-n-of-list rnd:weighted-n-of-list-with-repeats

rnd:weighted-one-of

rnd:weighted-one-of agentset reporter

Reports a random agent from agentset.

The probability of each agent being picked is proportional to the weight given by the reporter for that agent. The weights must not be negative.

If the agentset is empty, it reports nobody .

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://github.com/NetLogo/models/blob/master/Code%20Examples/Lottery%20Example.nlogo
http://www.keithschwarz.com/darts-dice-coins/
file:///tmp/sbt_6c39b28e/rnd/index.html

Here is a full rewrite of the Lottery Example model using the rnd:weighted-one-of primitive:

extensions [rnd]

to setup

 clear-all

 ; create a turtle on every fifth patch

 ask patches with [pxcor mod 5 = 0 and pycor mod 5 = 0] [

 sprout 1 [

 set size 2 + random 6 ; vary the size of the turtles

 set label 0 ; start them out with no wins

 set color color - 2 ; make turtles darker so the labels stand out

]

]

 reset-ticks

end

to go

 ask rnd:weighted-one-of turtles [size] [

 set label label + 1

]

 tick

end

rnd:weighted-n-of

rnd:weighted-n-of size agentset [reporter]

Reports an agentset of the given size randomly chosen from the agentset, with no repeats.

The probability of each agent being picked is proportional to the weight given by the reporter for that agent. The weights must be non-negative numbers.

It is an error for size to be greater than the size of the agentset.

If, at some point during the selection, there remains only candidates with a weight of 0.0 , they all have an equal probability of getting picked.

rnd:weighted-n-of-with-repeats

rnd:weighted-n-of-with-repeats size agentset [reporter]

Reports a list of the given size randomly chosen from the agentset, with repeats. (Why a list instead of an agentset? Because an agentset cannot contain the same agent more than

once.)

The probability of each agent being picked is proportional to the weight given by the reporter for that agent. The weights must be non-negative numbers.

It is not an error for size to be greater than the size of the agentset, but there has to be at least one candidate.

If, at some point during the selection, there remains only candidates with a weight of 0.0 , they all have an equal probability of getting picked.

If all weights are 0.0 , each candidate has an equal probability of being picked.

rnd:weighted-one-of-list

rnd:weighted-one-of-list list anonymous-reporter

Reports a random item from list.

The probability of each item being picked is proportional to the weight given by the anonymous-reporter for that item. The weights must not be negative. The first argument passed to

the anonymous procedure refers to the list item. (See the Anonymous Procedures section of the Programming Guide for more details.)

It is an error for the list to be empty.

A common way to use the primitive is to have a list of lists, where the first item of each sublist is the thing you want to choose and the second item is the weight. Here is a short example:

let pairs [["A" 0.2] ["B" 0.8]]

repeat 25 [

 ; report the first item of the pair selected using

 ; the second item (i.e., `last p`) as the weight

 type first rnd:weighted-one-of-list pairs [[p] -> last p]

]

This should print B roughly four times more often than it prints A .

If you happen to have your items and your weights in two separate lists, you can combine them into pairs by using a combination of map and list :

let items ["A" "B" "C"]

let weights [0.1 0.2 0.7]

let pairs (map list items weights)

Since we apply map to both the items list and the weights list, the parentheses are needed in (map list items weights) . We also use the concise anonymous procedure syntax (see

the programming guide) to pass list as the reporter for map . The same thing could have been written (map [[a b] -> list a b] items weights) .

rnd:weighted-n-of-list

rnd:weighted-n-of-list size list anonymous-reporter

Reports a list of the given size randomly chosen from the list of candidates, with no repeats.

The probability of each item being picked is proportional to the weight given by the anonymous-reporter for that item. The weights must not be negative. The first argument passed to

the anonymous procedure refers to the list item. (See the Anonymous Procedures section of the Programming Guide for more details.)

It is an error for size to be greater than the size of the list of candidates.

If, at some point during the selection, there remains only candidates with a weight of 0.0 , they all have an equal probability of getting picked.

The items in the resulting list appear in the same order that they appeared in the list of candidates. (If you want them in random order, use shuffle on the result).

Example:

let candidates n-values 8 [[n] -> 2 ^ (n + 1)] ; make a list with the powers of two

print rnd:weighted-n-of-list 4 candidates [[w] -> w]

This should print a list of four numbers, where the bigger numbers (32, 64, 128, 256) have a much better chance to show up than the smaller ones (2, 4, 8, 16).

rnd:weighted-n-of-list-with-repeats

rnd:weighted-n-of-list-with-repeats size list anonymous-reporter

Reports a list of the given size randomly chosen from the list of candidates, with repeats.

The probability of each item being picked is proportional to the weight given by the anonymous-reporter for that item. The weights must not be negative. The first argument passed to

the anonymous procedure refers to the list item. (See the Anonymous Procedures section of the Programming Guide for more details.)

It is not an error for size to be greater than the size of the list of candidates, but there has to be at least one candidate.

If, at some point during the selection, there remains only candidates with a weight of 0.0 , they all have an equal probability of getting picked.

If all weights are 0.0 , each candidate has an equal probability of being picked.

The items in the resulting list appear in the same order that they appeared in the list of candidates. (If you want them in random order, use shuffle on the result).

Example:

let pairs [["A" 0.2] ["B" 0.8]]

print map first rnd:weighted-n-of-list-with-repeats 25 pairs [[p] -> last p]

This should print a list of 25 A s and B s, with roughly four times as many B s than A s.

Sound

Using

The Sound Extension lets NetLogo models make two kinds of sounds: MIDI sounds and playback of pre-recorded sound files.

The Java APIs used are javax.sound.midi and java.applet.AudioClip .

How to Use

The sound extension comes preinstalled. To use the extension in your model, add this at the top of your Code tab:

extensions [sound]

If your model already uses other extensions, then it already has an extensions line in it, so just add sound to the list.

For more information on using NetLogo extensions, see the Extensions Guide

For examples that use the sound extension, see the Sound section under Code Examples in the NetLogo Models Library.

MIDI support

The MIDI part of the extension simulates a 128-key electronic keyboard with 47 drums and 128 melodic instruments, as provided by General MIDI Level 1 specification.

It supports 15 polyphonic instrument channels and a single percussion channel. Using more than 15 different melodic instruments simultaneously in a model will cause some sounds to be lost or

cut off.

The pitch of a melodic instrument is specified by a key number. The keys on the keyboard are numbered consecutively from 0 to 127, where 0 is the left-most key. Middle C is key number 60.

The loudness of an instrument is specified by a velocity, which represents the force with which the keyboard key is depressed. Velocity ranges from 0 to 127, where 64 is the standard velocity.

A higher velocity results in a louder sound.

Primitives

Looking for the primitive reference for the Sound extension? You can find it here.

sound:drums sound:instruments sound:play-drum sound:play-note sound:play-note-later

sound:drums

sound:drums

Reports a list of the names of the 47 drums for use with sound:play-drum .

sound:instruments

sound:instruments

Reports a list of the names of the 128 instruments for use with sound:play-note , sound:play-note-later , sound:start-note and sound:stop-note .

sound:play-drum

sound:play-drum drum velocity

Plays a drum.

Example:

sound:play-drum "ACOUSTIC SNARE" 64

sound:play-note

sound:play-note instrument keynumber velocity duration

Plays a note for a specified duration, in seconds. The agent does not wait for the note to finish before continuing to next command.

;; play a trumpet at middle C for two seconds

sound:play-note "TRUMPET" 60 64 2

file:///tmp/sbt_6c39b28e/extensions.html
https://www.midi.org/about-midi/gm/gm1_spec.shtml
file:///tmp/sbt_6c39b28e/sound/index.html

sound:play-note-later

sound:play-note-later delay instrument keynumber velocity duration

Waits for the specified delay before playing the note for a specified duration, in seconds. The agent does not wait for the note to finish before continuing to next command.

Example:

;; in one second, play a trumpet at middle C for two seconds

sound:play-note-later 1 "TRUMPET" 60 64 2

Drum Names

35. Acoustic Bass Drum 59. Ride Cymbal 2

36. Bass Drum 1 60. Hi Bongo

37. Side Stick 61. Low Bongo

38. Acoustic Snare 62. Mute Hi Conga

39. Hand Clap 63. Open Hi Conga

40. Electric Snare 64. Low Conga

41. Low Floor Tom 65. Hi Timbale

42. Closed Hi Hat 66. Low Timbale

43. Hi Floor Tom 67. Hi Agogo

44. Pedal Hi Hat 68. Low Agogo

45. Low Tom 69. Cabasa

47. Open Hi Hat 70. Maracas

47. Low Mid Tom 71. Short Whistle

48. Hi Mid Tom 72. Long Whistle

49. Crash Cymbal 1 73. Short Guiro

50. Hi Tom 74. Long Guiro

51. Ride Cymbal 1 75. Claves

52. Chinese Cymbal 76. Hi Wood Block

53. Ride Bell 77. Low Wood Block

54. Tambourine 78. Mute Cuica

55. Splash Cymbal 79. Open Cuica

56. Cowbell 80. Mute Triangle

57. Crash Cymbal 2 81. Open Triangle

58. Vibraslap

Instrument Names

Piano *Reed*

1. Acoustic Grand Piano 65. Soprano Sax

2. Bright Acoustic Piano 66. Alto Sax

3. Electric Grand Piano 67. Tenor Sax

4. Honky-tonk Piano 68. Baritone Sax

5. Electric Piano 1 69. Oboe

6. Electric Piano 2 70. English Horn

7. Harpsichord 71. Bassoon

8. Clavi 72. Clarinet

Chromatic Percussion *Pipe*

9. Celesta 73. Piccolo

10. Glockenspiel 74. Flute

11. Music Box 75. Recorder

12. Vibraphone 76. Pan Flute

13. Marimba 77. Blown Bottle

14. Xylophone 78. Shakuhachi

15. Tubular Bells 79. Whistle

16. Dulcimer 80. Ocarina

Organ *Synth Lead*

17. Drawbar Organ 81. Square Wave

18. Percussive Organ 82. Sawtooth Wave

19. Rock Organ 83. Calliope

20. Church Organ 84. Chiff

21. Reed Organ 85. Charang

22. Accordion 86. Voice

23. Harmonica 87. Fifths

24. Tango Accordion 88. Bass and Lead

Guitar *Synth Pad*

25. Nylon String Guitar 89. New Age

26. Steel Acoustic Guitar 90. Warm

27. Jazz Electric Guitar 91. Polysynth

28. Clean Electric Guitar 92. Choir

29. Muted Electric Guitar 93. Bowed

30. Overdriven Guitar 94. Metal

31. Distortion Guitar 95. Halo

32. Guitar harmonics 96. Sweep

Bass *Synth Effects*

33. Acoustic Bass 97. Rain

34. Fingered Electric Bass 98. Soundtrack

35. Picked Electric Bass 99. Crystal

36. Fretless Bass 100. Atmosphere

37. Slap Bass 1 101. Brightness

38. Slap Bass 2 102. Goblins

39. Synth Bass 1 103. Echoes

40. Synth Bass 2 104. Sci-fi

Strings *Ethnic*

41. Violin 105. Sitar

42. Viola 106. Banjo

43. Cello 107. Shamisen

44. Contrabass 108. Koto

45. Tremolo Strings 109. Kalimba

47. Pizzicato Strings 110. Bag pipe

47. Orchestral Harp 111. Fiddle

48. Timpani 112. Shanai

Ensemble *Percussive*

49. String Ensemble 1 113. Tinkle Bell

50. String Ensemble 2 114. Agogo

51. Synth Strings 1 115. Steel Drums

52. Synth Strings 2 116. Woodblock

53. Choir Aahs 117. Taiko Drum

54. Voice Oohs 118. Melodic Tom

55. Synth Voice 119. Synth Drum

56. Orchestra Hit 120. Reverse Cymbal

Brass *Sound Effects*

57. Trumpet 121. Guitar Fret Noise

58. Trombone 122. Breath Noise

59. Tuba 123. Seashore

60. Muted Trumpet 124. Bird Tweet

61. French Horn 125. Telephone Ring

62. Brass Section 126. Helicopter

63. Synth Brass 1 127. Applause

64. Synth Brass 2 128. Gunshot

Simple R

Using

To run R code you must install R and have the R executable on your PATH . You can download R from their site.

To use this extension, you must first include it at the top of your NetLogo model code in an extensions declaration.

extensions [

 sr

 ; ... your other extensions

]

You must then initialize the R environment with sr:setup . This only needs to be done once per session. Any subsequent calls will reset your R environment.

Here’s an example to get you started:

observer> sr:setup

;; sr:runresult evaluates R statements and returns the result back to NetLogo

observer> show sr:runresult "2 + 2"

observer: 4

;; sr:run runs R code

observer> sr:run "cat('hello world')"

hello world

;; any standard output gets forwarded to the command center output

;; sr:set sets R variables to values from NetLogo

observer> ask patch 0 0 [set pcolor red]

observer> sr:set "center_patch_color" [pcolor] of patch 0 0

observer> show sr:runresult "center_patch_color"

observer: 15 ;; the NetLogo representation of the color red

See the documentation for each of the particular primitives for details on, for instance, how to multi-line statements and how object type conversions work.

The extension also includes an interactive R console/REPL that is connected to the same R environment as the main window’s NetLogo environment. It is useful for executing longer blocks of R

code or quickly examining or modifying R values. This console can be opened via the menu bar under the SimpleR heading, or by using the sr:show-console command.

Error handling

R errors will be reported in NetLogo as “Extension exceptions”. For instance, this code:

sr:run "stop('hi')"

will result in the NetLogo error “Extension exception: hi” appearing in an error dialog.

Citing Simple R in Research

If you use the Simple R extension in research, we ask that you cite us,

Hovet, J. Head, B. & Wilensky, U. (2022). “Simple R NetLogo extension”. https://github.com/NetLogo/SimpleR-Extension Evanston, IL: Center for Connected Learning and Computer Based

Modeling, Northwestern University.

Primitives

Looking for the primitive reference for the Simple R extension? You can find it here.

sr:setup sr:run sr:runresult sr:set sr:set-agent sr:set-agent-data-frame sr:set-data-frame sr:set-list sr:set-named-list sr:set-plot-device sr:r-home sr:show-

console

sr:setup

sr:setup

Create the R session that this extension will use to execute code. This command must be run before running any other R extension primitive. Running this command again will shutdown

the current R environment and start a new one.

sr:run

sr:run R-statement

sr:run R-statement anything...

https://www.r-project.org/
https://github.com/NetLogo/SimpleR-Extension
file:///tmp/sbt_6c39b28e/sr/index.html

Runs the given R statements in the current session. To make multi-line R code easier to run, this command will take multiple strings, each of which will be interpreted as a separate line of

R code. This requires putting the command in parentheses.

For instance:

(sr:run

 "domain <- seq(-3.14, 3.14, 0.01)"

 "range <- sin(domain)"

 "png('my_file.png')"

 "plot(domain, range, "

 " pch = 20,"

 " main = 'y = sin(x)',"

 " xlab = 'x',"

 " ylab = 'y')"

 "dev.off()"

)

sr:run will wait for the statements to finish before continuing. If you have long-running R code, NetLogo may freeze for a bit while it runs.

sr:runresult

sr:runresult R-expression

Evaluates the given R expression and reports the result. rs:runresult attempts to convert from R data types to NetLogo data types.

Numbers, strings, and booleans convert as you would expect, except for outliers like Infinity and NaN which will be converted into the strings ‘Inf’ and ‘NaN’, respectively.

R vectors and R lists will be converted to NetLogo lists. NA values will be converted into the string ‘NA’.

R matrices will be flattened into one-dimensional lists using column-major order. If you want to convert a matrix into a list of lists before sending it to NetLogo, use the R asplit com‑

mand. To convert into a list of column lists, use asplit(<matrix>, 1) ; for a list of row lists, use asplit(<matrix>, 2) .

An R DataFrame will be converted into a list of lists, where the first item in each sublist is the name of the column and the second item is a list containing all that row data. For example, the

first 6 rows of the iris dataset will be converted into NetLogo like so:

[

 ["Sepal.Length" [5.1 4.9 4.7 4.6 5 5.4]]

 ["Sepal.Width" [3.5 3 3.2 3.1 3.6 3.9]]

 ["Petal.Length" [1.4 1.4 1.3 1.5 1.4 1.7]]

 ["Petal.Width" [0.2 0.2 0.2 0.2 0.2 0.4]]

 ["Species" ["setosa" "setosa" "setosa" "setosa" "setosa" "setosa"]]

]

Other objects will be converted to a string representation if possible and and may throw an error if not.

sr:set

sr:set variable-name value

Sets a variable in the R session with the given name to the given NetLogo value. NetLogo objects will be converted to R objects as expected.

Note that lists in NetLogo are converted into lists in R if the elements are of different types. If all the elements of a NetLogo list are of the identical number, boolean, or string type then the

data will be automatically converted into a vector in R.

sr:set "x" 42

sr:run "print(x)" ;; prints `[1] 42` to the command center

sr:set "y" [1 2 3]

sr:run "print(typeof(y))" ;; prints `[1] "double"` to the command center

sr:run "print(typeof(list(y)))" ;; prints `[1] "list"` to the command center

sr:run "print(y)" ;; prints `[1] 1 2 3` to the command center

show sr:runresult "y" ;; reports [1 2 3]

Agents are converted into lists with named elements for each agent variable.

Agentsets are converted into a list of the above lists. If you want to convert agents to a data frame, see sr:set-agent-data-frame . If you want to use sr:set and do the conversion

manually, try the following:

my_data_frame <- as.data.frame(do.call(rbind, <agentset-list-of-lists>))

For example:

breed [goats goat]

goats-own [energy]

create-goats 2 [set color 75]

ask goat 0 [set energy 42 set xcor 5]

ask goat 1 [set energy -42 set xcor -5]

sr:set "goat" goat 0

sr:run "print(typeof(goat))" ;; prints `[1] "list"` to the command center

sr:run "print(goat)"

;; Should output:

;; $WHO

;; [1] 0

;;

;; $COLOR

;; [1] 75

;; (etc.)

sr:set "goats_list_of_lists" goats

sr:run "goats_data_frame <- as.data.frame(do.call(rbind, goats_list_of_lists))"

sr:run "print(goats_data_frame)"

;; Should output:

;; WHO COLOR HEADING XCOR YCOR SHAPE LABEL LABEL-COLOR BREED HIDDEN? SIZE

;; 1 0 75 82 5 0 default 9.9 GOATS FALSE 1

;; 2 1 75 200 -5 0 default 9.9 GOATS FALSE 1

;; PEN-SIZE PEN-MODE ENERGY

;; 1 1 up 42

;; 2 1 up -42

;;

Agents with variables containing references to agentsets will have those variables converted into the string representation of that agentset.

sr:set-agent

sr:set-agent r-variable-name agent or agentset agent-variable-name

sr:set-agent r-variable-name agent or agentset agent-variable-name1 agent-variable-name2...

Creates a new named list in R with the given variable name. If you want multiple agent variables make sure to surround the command in parenthesis.

clear-all

sr:setup

create-turtles 2

ask turtle 0 [set color red set xcor 5]

ask turtle 1 [set color blue set xcor -5]

(sr:set-agent "t0" turtle 0 "who" "color" "xcor" "hidden?")

sr:run "print(typeof(t0))"

;; [1] "list"

sr:run "print(t0)"

;; $who

;; [1] 0

;;

;; $color

;; [1] 15

;;

;; $xcor

;; [1] 5

;;

;; $`hidden?`

;; [1] FALSE

sr:set-agent-data-frame

sr:set-agent-data-frame r-variable-name agents agent-variable-name

sr:set-agent-data-frame r-variable-name agents agent-variable-name1 agent-variable-name2...

Creates a new data frame in R with the given variable name. The columns will have the names of the NetLogo agent variables used and each row will be one agent’s data. If you want mul‑

tiple agent variables make sure to surround the command in parenthesis.

clear-all

sr:setup

create-turtles 2

ask turtle 0 [set color red set xcor 5]

ask turtle 1 [set color blue set xcor -5]

(sr:set-agent-data-frame "turtles_data_frame" turtles "who" "color" "xcor" "hidden?")

sr:run "print(typeof(turtles_data_frame))"

;; [1] "list"

sr:run "print(is.data.frame(turtles_data_frame))"

;; [1] TRUE

sr:run "print(turtles_data_frame)"

;; who color xcor hidden?

;; 1 0 15 5 FALSE

;; 2 1 105 -5 FALSE

sr:set-data-frame

sr:set-data-frame r-variable-name column-name list or anything

sr:set-data-frame variable-name column-name1 list or anything 1 column-name2 list or anything 2...

Creates a new data frame in R with the given variable name. The columns will have the names given. If the value for a column is a list, those will be the values for that column. If the value

is a non-list, it will be used as the single item in that column. You can add additional column names and values by surrounding the command in parenthesis.

clear-all

sr:setup

let l1 [10 20 30 40]

let l2 [false true false false]

let l3 ["orange" "green" "blue" "purple"]

(sr:set-data-frame "df1" "score" l1 "enabled" l2 "color" l3)

sr:run "print(typeof(df1))"

;; [1] "list"

sr:run "print(is.data.frame(df1))"

;; [1] TRUE

sr:run "print(df1)"

;; score enabled color

;; 1 10 FALSE orange

;; 2 20 TRUE green

;; 3 30 FALSE blue

;; 4 40 FALSE purple

sr:set-list

sr:set-list r-variable-name anything

sr:set-list r-variable-name anything1 anything2...

Creates a new list in R with the given variable name. You can add additional values by surrounding the command in parenthesis.

sr:set-named-list

sr:set-named-list r-variable-name column-name list or anything

sr:set-named-list r-variable-name column-name1 list or anything 1 column-name2 list or anything 2...

Creates a new named list in R with the given variable name. The columns will have the names given. If the value for a column is a list, those will be the values for that column. If the value

is a non-list, it will be used as the single item in that column. You can add additional column names and values by surrounding the command in parenthesis.

sr:set-plot-device

sr:set-plot-device

Activates the visual plot device for R, popping open a window if one is not already open.

sr:r-home

sr:r-home

Outputs the R home directory which is the top-level directory of the R installation being run.

observer> sr:setup

observer> show sr:r-home

observer: "/Library/Frameworks/R.framework/Resources"

sr:show-console

sr:show-console

Opens the R console. This console can be opened via the menu bar under the SimpleR heading.

Transitioning from the old R extension

As of version 2.0 of the Simple R extension, most primitives from the old R extension have a direct equivalent you can switch over to use, with a different name but identical syntax. One change

in functionality is that when a named list with a single row and column is returned, in the R extension you’d get simply the value, in the Simple R extension you will get a list with the column name

and the value as elements. If there is more than 1 element, you will get a list with the column name and a list of the values.

Using the Simple R code converter

Open the code tab of your model.

Change r to sr in the extensions line .

Click the “Check” button.

From the “SimpleR Extension” menu choose “Convert code from R extension”.

The primitives will be updated.

You may need to add sr:setup in your setup procedure (or equivalent) in order too start a new R environment.

You will need to change any code that returns a named list.

R Extension Primitive Simple R Extension Primitive

r:put sr:set

r:get sr:runresult

r:eval sr:run

r:__evaldirect sr:run

r:putList sr:set-list

R Extension Primitive Simple R Extension Primitive

r:putNamedList sr:set-named-list

r:putDataFrame sr:set-data-frame

r:putAgent sr:set-agent

r:putAgentDf sr:set-agent-data-frame

r:setPlotDevice sr:set-plot-device

r:interactiveShell sr:show-console

r:clear No exact equivalent, but sr:setup will start a new R environment

r:clearLocal No exact equivalent, but sr:setup will start a new R environment

r:gc No equivalent, functionality is no longer needed

r:stop No equivalent, functionality is no longer needed

r:jri-path No equivalent, functionality is no longer needed

Handling a named list

R’s statistical functions often return lists. The R extension stripped out names to give you values. With the Simple R extension the user must extract the value

sr:run "c <- cor.test(turtles$weight, turtles$height, method = 'spearm', alternative = 'g')"

 ;; original code

 ;; let p sr:get "c$p.value"

 ;; let rho sr:get "c$estimate" # sample value 0.673271955983285

 let estimate sr:runresult "c$estimate" # sample value [[rho -0.121575984990619]]

 let p sr:runresult "c$p.value"

 ;; select result from list

 let rho item 1 (item 0 estimate)

Table

Using

The table extension is pre-installed in NetLogo.

To use the table extension in your model, add a line to the top of your Code tab:

extensions [table]

If your model already uses other extensions, then it already has an extensions line in it, so just add table to the list.

For more information on using NetLogo extensions, see the Extensions Guide

When to Use

In general, anything you can do with an table in NetLogo, you could also just use a list for. But you may want to consider using an table instead for speed reasons. Lists and tables have different

performance characteristics, so you may be able to make your model run faster by selecting the appropriate data structure.

Tables are useful when you need to do associate values with other values. For example, you might make a table of words and their definitions. Then you can look up the definition of any word.

Here, the words are the "keys". You can easily retrieve the value for any key in the table, but not vice versa.

Unlike NetLogo’s lists and strings, tables are “mutable”. That means that you can actually modify them directly, rather than constructing an altered copy as with lists. If the table is used in more

than one place in your code, any changes you make will show up everywhere. It’s tricky to write code involving mutable structures and it’s easy to make subtle errors or get surprising results, so

we suggest sticking with lists and strings unless you’re certain you want and need mutability.

Example

let dict table:make

table:put dict "turtle" "cute"

table:put dict "bunny" "cutest"

print dict

=> {{table: "turtle" -> "cute", "bunny" -> "cutest" }}

print table:length dict

=> 2

print table:get dict "turtle"

=> "cute"

print table:get dict "leopard"

=> (error)

print table:keys dict

=> ["turtle" "bunny"]

Manipulating Tables

If the same key is used with table:put more than once for the same table, the value provided to last call of table:put will be the value shown when table:get is used. Here is an example:

let dict table:make

table:put dict "a" 5

table:put dict "a" 3

print table:get dict "a"

=> 3

Because tables are mutable, manipulating existing values should be done by calling table:get or table:get-or-default on a key, transforming the returned value, and then calling

table:put to update the transformed value in the table. Here is an example procedure which increments a value in a table at a given key. If the key doesn’t exist, it puts a 1 at that key instead.

to increment-table-value [dict key]

 let i table:get-or-default dict key 0

 table:put dict key i + 1

end

As increment-table-value shows, when a table is given as an input for a procedure, modifications made to it with table:put , table:remove , or table:clear are reflected in the original

value outside of the procedure. This is different behavior than with list values, which are immutable and so cannot be changed when given as inputs. Caution needs to be exercised when using

let or set , as they can give a different variable name to the same table. If you change the value for a key in the table using one variable, any other variables assigned that same table will also

reflect the change.

let dict table:make

table:put dict "a" 5

let alt dict

table:put alt "a" 3

print table:get dict "a"

=> 3 ; changed because `dict` and `alt` refer to the same table

file:///tmp/sbt_6c39b28e/extensions.html

print table:get alt "a"

=> 3

If you want to create a copy of a table instead of assigning the same table to multiple variable names, here is a simple reporter for creating a duplicate table from an existing one:

to-report copy-table [orig]

 let copy table:make

 foreach (table:keys orig) [

 [key] -> table:put copy key (table:get orig key)

]

 report copy

end

And here is a sample usage of the copy-table reporter:

let dict table:make

table:put dict "a" 5

let alt copy-table dict

table:put alt "a" 3

print table:get dict "a"

=> 5 ; `dict` is not changed because we created a new table copy for `alt`

print table:get alt "a"

=> 3

Key Restrictions

Table keys are limited to the following NetLogo types:

Numbers

Strings

Booleans

Lists containing only elements which are themselves valid keys

If you attempt to use an illegal value, the table extension will raise an exception, as shown in the following example.

crt 1

let dict table:make

table:put dict (one-of turtles) 10

;; Errors with the following message:

;; (turtle 0) is not a valid table key (a table key may only be a number, a string, true or false, or a list whose items are valid keys)

Primitives

Looking for the primitive reference for the Table extension? You can find it here.

table:clear table:counts table:group-agents table:group-items table:from-list table:from-json table:from-json-file table:get table:get-or-default table:has-key?

table:keys table:length table:make table:put table:remove table:to-list table:to-json table:values

table:clear

table:clear table

Removes all key-value pairs from table.

table:counts

table:counts list

Counts the occurrences of each element of the given list and reports the counts in a table.

table:group-agents

table:group-agents agentset anonymous reporter

Groups the agents in the agentset based on the given reporter. Agents that report the same thing for reporter will be grouped together. The results of the reporter will be used as the keys

in the resulting table and the groups will be agentsets.

For example:

observer> create-turtles 100 [set color one-of [red green blue]]

observer> show table:group-agents turtles [color]

observer: {{table: [[105 (agentset, 38 turtles)] [55 (agentset, 32 turtles)] [15 (agentset, 30 turtles)]]}}

file:///tmp/sbt_6c39b28e/table/index.html

table:group-items

table:group-items list anonymous-reporter

Groups the items of the list based on the given reporter. The reporter should take a single argument, which will be the items of the list. Items that report the same thing when passed to the

reporter will be grouped together. The results of the reporter will be used as the keys in the resulting table and the groups will be lists.

For example:

observer> show table:group-items range 10 [num -> num mod 3]

observer: {{table: [[0 [0 3 6 9]] [1 [1 4 7]] [2 [2 5 8]]]}}

table:from-list

table:from-list list

Reports a new table with the contents of list. list must be a list of two element lists, or pairs. The first element in the pair is the key and the second element is the value.

table:from-json

table:from-json string

Reads in the JSON object from the given string argument, converts it to a table, and reports the table.

The JSON object in the argument must be an object, not an array (i.e. the outmost characters must be `{` and `}`, not `[` and `]`),

but there can be arrays inside the JSON object which will be converted to NetLogo lists.

table:from-json-file

table:from-json-file filename

Reads in the JSON object from *filename.json*, converts it to a table and reports the table.

The JSON object in *filename.json* must be an object, not an array (i.e. the outmost characters of the file must be `{` and `}`, not `[` and `]`),

but there can be arrays inside the JSON object which will be converted to NetLogo lists.

table:get

table:get table key

Reports the value that key is mapped to in the table. Causes an error if there is no entry for the key.

table:get-or-default

table:get-or-default table key default-value

Reports the value that key is mapped to in the table. Reports the default-value if there is no entry for the key.

table:has-key?

table:has-key? table key

Reports true if key has an entry in table.

table:keys

table:keys table

Reports a list of all the keys in table, in the same order the keys were inserted.

table:length

table:length table

Reports the number of entries in table.

table:make

table:make

Reports a new, empty table.

table:put

table:put table key value

Maps key to value in table. If an entry already exists in the table for the given key, it is replaced.

table:remove

table:remove table key

Removes the mapping in table for key.

table:to-list

table:to-list table

Reports a list with the content of table. The list will be a list of two element lists, or pairs. The first element in the pair is the key and the second element is the value. The keys appear in

the same order they were inserted.

table:to-json

table:to-json table

Reports a string with the contents of the given table as a JSON string.

table:values

table:values table

Reports a list with the entries of table. The entries will appear in the same order they were inserted, with duplicates included.

Time

The Time extension provides NetLogo with three kinds of capabilities for models that use discrete-event simulation or represent time explicitly. The package provides tools for common date and

time operations, discrete event scheduling, and using time-series input data.

Quickstart

What is it?

Installation

Examples

Behavior

Format

Primitives

Date/Time Utilities

Time Series Tool

Discrete Event Scheduler

Building

Authors

Feedback

Credits

Terms of use

Quickstart

Include the extension in your NetLogo model (at the top):

extensions [time]

Date/Time Utilities

Create a global date/time and initialize in the setup procedure:

globals[dt]

to setup

 set dt time:create "2000/01/01 10:00"

end

From the console, execute setup and then print a formatted version of your date/time to the console:

setup

print time:show dt "EEEE, MMMM d, yyyy"

;; prints "Sunday, January 2, 2000"

Print the hour of the day, the day of the week, and the day of the year:

print time:get "hour" dt ;; prints 10

print time:get "dayofweek" dt ;; prints 6

print time:get "dayofyear" dt ;; prints 1

Add 3 days to your date/time and print the date/time object to the screen:

set dt time:plus dt 3 "days"

print dt

Compare your date/time to some other date/time:

ifelse time:is-after? dt (time:create "2000-01-01 12:00") [print "yes"][print "no"]

Time Series Tool

NOTE: The time series tool is not currently included in the extension. However, all of the functionality (plus some) has been reproduced in NetLogo code in the time-series.nls file in this repo

which you can download by clicking that link and then right clicking the “raw” button on the upper right of the file and selecting “download linked file”. You might have to remove a ‘.txt’ file exten‑

sion so that the file ends with the ‘.nls’ extension. You can then include that file with the __includes primitive.

Download this example time series file and place in the same directory as your NetLogo model. Here are the first 10 lines of the file:

; meta data at the top of the file

; is skipped when preceded by

; a semi-colon

timestamp,flow,temperature

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///tmp/sbt_6c39b28e/dict/includes.html
file:///tmp/sbt_6c39b28e/dict/includes.html
https://github.com/colinsheppard/Time-Extension/raw/master/examples/time-series-data.csv

2000-01-01 00:00:00,1000,10

2000-01-01 01:00:00,1010,11

2000-01-01 03:00:00,1030,13

2000-01-01 04:00:00,1040,14

2000-01-01 05:00:00,1050,15

…

…

Create a global to store a LogoTimeSeries object. In your setup procedure, load the data from the CSV file:

globals[time-series]

set time-series ts-load "time-series-data.csv"

Create a LogoTime and use it to extract the value from the “flow” column that is nearest in time to that object:

let current-time time:create "2000-01-01 01:20:00"

let current-flow ts-get time-series current-time "flow"

;; By default, the nearest record in the time series is retrieved (in this case 1010),

;; you can alternatively require an exact match or do linear interpolation.

Discrete Event Scheduler

Create a few turtles and schedule them to go forward at tick 10, then schedule one of them to also go forward at tick 5.

create-turtles 5

time:schedule-event turtles ([[] -> fd 1]) 10

time:schedule-event (turtle 1) ([[] -> fd 1]) 5

Execute the discrete event schedule (all events will be executed in order of time):

time:go

;; turtle 1 will go foward at tick 5,

;; then all 5 turtles will go forward at tick 10

back to top

What is it?

This package contains the NetLogo time extension, which provides NetLogo with three kinds of capabilities for models that use discrete-event simulation or represent time explicitly. The pack‑

age provides tools for common date and time operations, discrete event scheduling, and using time-series input data.

Dates and Times

The extension provides tools for representing time explicitly, especially by linking NetLogo’s ticks to a specific time interval. It allows users to do things such as starting a simulation on 1 January

of 2010 and end on 31 December 2015, have each tick represent 6 hours, and check whether the current simulation date is between 1 and 15 March.

This extension is powered by the Java Time Library, which has very sophisticated and comprehensive date/time facilities. A subset of these capabilities have been extended to NetLogo. The

time extension makes it easy to convert string representations of dates and date/times to a LogoTime object which can then be used to do many common time manipulations such as incre‑
menting the time by some amount (e.g. add 3.5 days to 2001-02-22 10:00 to get 2001-02-25 22:00).

Time Series Utilities

Modelers commonly need to use time series data in NetLogo. The time extension no longer provides time series functionality (plus some), but the same functionality is included the time-

series.nls file in this repo which you can download by clicking that link and then right clicking the “raw” button on the upper right of the file and selecting “download linked file” (you might have

to remove a ‘.txt’ file extension so that the file ends with the ‘.nls’ extension). You can then include that file with the __includes primitive. The time-series.nls file includes convenient procedures

for handling time series data. With a single command, you can load an entire time series data set from a text file. The first column in that text file holds dates or datetimes. The remaining col‑

umns can be numeric or string values. You then access the data by time and by column heading, akin to saying “get the flow from May 8, 2008”.

Users can also create and record a time series of events within their model, access that series during simulations, and export it to a file for analysis. For example, a market model could create a

time series object into which is recorded the date and time, trader, price, and size of each trade. The time series utilities let model code get (for example) the mean price over the previous day or

week, and save all the trades to a file at the end of a run.

Discrete Event Scheduling

Note: Formerly this capability was published as the Dynamic Scheduler Extension, but that extension has been merged into the time extension in order to integrate the functionality of both.

The time extension enables a different approach to scheduling actions in NetLogo. Traditionally, a NetLogo modeler puts a series of actions or procedure calls into the “go” procedure, which is

executed once each tick. Sometimes it is more natural or more efficient to instead say “have agent X execute procedure Y at time Z”. This is what discrete event scheduling (also know as

“dynamic scheduling”") enables. Discrete event simulation has a long history and extensive literature, and this extension makes it much easier to use in NetLogo.

When is discrete event scheduling useful? Discrete event scheduling is most useful for models where agents spend a lot of time sitting idle despite knowing when they need to act next.

Sometimes in a NetLogo model, you end up testing a certain condition or set of conditions for every agent on every tick (usually in the form of an “ask”), just waiting for the time to be ripe…. this

can get cumbersome and expensive. In some models, you might know in advance exactly when a particular agent needs to act. Dynamic scheduling cuts out all of those superfluous tests. The

action is performed only when needed, with no condition testing and very little overhead.

For example, if an agent is a state machine and spends most of the time in the state “at rest” and has a predictable schedule that knows that the agent should transition to the state “awake” at

tick 105, then using a dynamic scheduler allows you to avoid code that looks like: “if ticks = 105 [do-something]”, which has to be evaluated every tick!

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///tmp/sbt_6c39b28e/dict/includes.html
file:///tmp/sbt_6c39b28e/dict/includes.html

A second common use of discrete event scheduling is when it is important to keep track of exactly when events occur in continuous time, so the simplifying assumption that all events happen

only at regular ticks is not appropriate. One classic example is queuing models (e.g., how long customers have to stand in line for a bank teller), which use a continuous random number distribu‑
tion (e.g., an exponential distribution) to determine when the next agent enters the queue.

back to top

Installation

The Time extension comes bundled with NetLogo. Simply include extensions [time] at the top of the model and it will be loaded. New versions of the extension are available through the

Netlogo extensions manager as they are released.

Alternatively, download the latest version of the extension (Note that this extension is compiled for NetLogo 6.1 and may not work for earlier versions of NetLogo) Unzip the archive and rename

the directory to “time”. Move the renamed directory to the “extensions” directory inside your NetLogo application folder (i.e. [NETLOGO]/extensions/). Or you can place the time directory under

the same directory holding the NetLogo model in which you want to use this extension.

For more information on NetLogo extensions: http://ccl.northwestern.edu/netlogo/docs/extensions.html

back to top

Examples

See the example models in the time extension’s subfolder “examples” for thorough demonstrations of usage.

Data Types

The time extension introduces some new data types (more detail about these is provided in the behavior section):

LogoTime - A LogoTime object stores a time stamp; it can track a full date and time, or just a date (with no associated time).

LogoEvent - A LogoEvent encapsulates a who, a what, and a when. It allows you to define, for example, that you want turtle 7 to execute the go-forward procedure at tick 10. When schedul‑

ing an event using the time extension you pass the who, what, and when as arguments (e.g. “time:schedule-event (turtle 1) fd 5”).

Discrete Event Schedule - A discrete event schedule is a sorted list of LogoEvents that is maintained by this extension and manages the dispatch (execution) of those events. Users do not

need to manipulate or manage this schedule directly, but it is useful to understand that it stores and executes LogoEvents when the “time:go” or “time:go-until” commands are issued. As the

schedule is executed, the time extension automatically updates the NetLogo ticks to match the current event in the schedule.

The time-series.nls file in this repo provides one more datatype. * LogoTimeSeries - A LogoTimeSeries object stores a table of data indexed by LogoTime. The time series can be read in from a

file or recorded by the code during a simulation. It is currently implemented in NetLogo code using a list of lists.

back to top

Behavior

The time extension has the following notable behavior:

LogoTimes can store DATETIMEs, DATEs, or DAYs - A LogoTime is a flexible data structure that will represent your time data as one of three varieties depending on how you create the

LogoTime object. A LogoTime can be a DATETIME, a DATE, or a DAY:

A DATETIME is a fully specified instant in time, with precision down to a millisecond (e.g. January 2, 2000 at 3:04am and 5.678 seconds).

A DATE is a fully specified day in time but lacks any information about the time of day (e.g. January 2, 2000).

A DAY is a generic date that does not specify a year (e.g. January 2).

The behavior of the time extension primitives depend on which variety of LogoTime you are storing. For example, the difference between two DATETIMES will have millisecond resolution, while

the difference between two DATES or two DAYS will only have resolution to the nearest whole day.

As another example, a DAY representing 01/01 is always considered to be before 12/31. Because there’s no wrapping around for DAYs, they are only useful if your entire model occurs within one

year and doesn’t pass from December to January. If you need to wrap, use a DATE and pick a year for your model, even if there’s no basis in reality for that year. (DAY LogoTime variables are

useful, however, as parameters defining the date when something happens every simulated year. You can, for example, use time extension commands to say that a species’ breeding season

starts on one DAY—15 May—and ends on another—25 June—each year.)

You create LogoTime objects by passing a string - The time:create primitive was designed to both follow the standard used by the Java time library, and to make date time parsing more

convenient by allowing a wider range of delimiters and formats. For example, the following are all valid DATETIME strings:

“2000-01-02T03:04:05.678”

“2000-01-02T3:04:05.678”

“2000-01-02 03:04:05”

“2000-01-02 3:04:05”

“2000-01-02 03:04”

“2000-01-02 3:04”

“2000-01-02 03”

“2000-01-02 3”

“2000/01/02 03:04:05.678”

“2000-1-02 03:04:05.678”

“2000-01-2 03:04:05.678”

“2000-1-2 03:04:05.678”

The following are all valid DATE strings: * “2000-01-02” * “2000-01-2” * “2000-1-02” * “2000/1/02”

The following are all valid DAY strings: * “01-02” * “01-2” * “1-02” * “1/2”

https://raw.githubusercontent.com/NetLogo/NetLogo-Libraries/6.1/extensions/time-2.0beta.zip
file:///tmp/sbt_6c39b28e/extensions.html

Note that if you do not include a time in your string, the time extension will assume you want a DATE. If you want a DATETIME that happens to be at midnight, specify the time as zeros: “2000-

01-02 00:00”.

Time extension recognizes “period types” - In order to make it easy to specify a time period like “2 days” or “4 weeks”, the time extension will accept strings to specify a period type. The

following is a table of the period types and strings that time recognizes (note: any of these period type strings can be pluralized and are case insensitive):

PERIOD TYPE Valid string specifiers

YEAR “year”

MONTH “month”

WEEK “week”

DAY “day”, “dayofmonth”, “dom”

DAYOFYEAR “dayofyear”, “doy”, “julianday”, “jday”

DAYOFWEEK “dayofweek”, “dow”, “weekday”, “wday”

HOUR “hour”

MINUTE “minute”

SECOND “second”

MILLI “milli”

Time extension has millisecond resolution - This is a fundamental feature of the Java Time library and cannot be changed. Milliseconds are represented as fractions of a second, truncated

to the third decimal place to prevent parsing issues with the Java Time library. This truncation can create artifacts; for example if time:plus is used to add a value that is less than one whole

millisecond, it does nothing.

Daylight savings time is ignored - All times are treated as local, or “zoneless”, and daylight savings time (DST) is ignored. It is assumed that most NetLogo users don’t need to convert times

between time zones or be able to follow the rules of DST for any particular locale. Instead, users are much more likely to need the ability to load a time series and perform date and time opera‑

tions without worrying about when DST starts and whether an hour of their time series will get skipped in the spring or repeated in the fall. It should be noted that the Time library definitely

can handle DST for most locales on Earth, but that capability is not extended to NetLogo here and won’t be unless by popular demand.

Leap days are included - While we simplify things by excluding time zones and DST, leap days are kept to allow users to reliably use real-world time series in their NetLogo model. LogoTime

variable type DAY assumes a leap year, so DAY variables can include 2/29. (If you add one day to a DAY with value of 28 February, the result is 29 February, not 1 March.)

LogoTimes are mutable when anchored - If you anchor a LogoTime (using the time:anchor-to-ticks primitive) you end up with a variable whose value changes as the value of Netlogo ticks

changes. If you have an anchored variable called “anchored-time” and you assign it to another variable “set new-time anchored-time”, your new variable will also be mutable and change with

ticks. If what you want is a snapshot of the anchored-time that doesn’t change, then use the time:copy primitive: “set new-time time:copy anchored-time”.

Decimal versus whole number time periods - In this extension, decimal values can be used by the plus and anchor-to-ticks primitives for seconds, minutes, hours, days, and weeks (millisec‑

onds can’t be fractional because they are the base unit of time). These units are treated as durations because they can unambiguously be converted from a decimal number to a whole num‑
ber of milliseconds. But there is ambiguity in how many milliseconds there are in 1 month or 1 year, so month and year increments are treated as periods which are by definition whole number

valued. So if you use the time:plus primitive to add 1 month to the date “2012-02-02”, you will get “2012-03-02”; and if you add another month you get “2012-04-02” even though February

and March have different numbers of days. If you try to use a fractional number of months or years, it will be rounded to the nearest integer and then added. If you want to increment a time

variable by one and a half 365-day years, then just increment by 1.5 * 365 days instead of 1.5 years.

LogoEvents are dispatched in order, and ties go to the first created - If multiple LogoEvents are scheduled for the exact same time, they are dispatched (executed) in the order in which they

were added to the discrete event schedule.

LogoEvents can be created for an agentset - When an agentset is scheduled to perform an anonymous command (before NetLogo 6.0 these were called tasks) at the same time, the individ‑

ual agents execute the procedure in a non-random order, which is different from ask which shuffles the agents. Not shuffling the agents may save some execution time. To shuffle the order,

use the add-shuffled primitive, which will execute the actions in random order with low overhead.

LogoEvents won’t break if an agent dies - If an agent is scheduled to perform an anonymous command in the future but dies before the event is dispatched, the event will be silently skipped.

LogoEvents can be scheduled to occur at a LogoTime - LogoTimes are acceptable alternatives to specifying tick numbers for when events should occur. However, for this to work the dis‑

crete event schedule must be “anchored” to a reference time so it knows a relationship between ticks and time. See time:anchor-schedule* below for an example of anchoring.

back to top

Format

The time extension utilizes rules and standards, provided by the Java 8 time library, to parse and accept valid dates. The extension provides default formats for quickly creating time objects, but

includes an option for specifying a custom format. In addition, the extension adheres to the ISO 8601 standard, following the Java 8 STRICT format and 24 hour clock format. The same formats

are used for both input and output.

Date Format

Date formats are encoded strings with unique characters that represent various units of time and their position (date and time). Each character is meant to be placed in a contiguous group to

indicate its expected location and type. If a user provides a date string that does not follow the parsing format or bounds, then an exception will be thrown. With create primitives, the selected

default format can create a date-time, date, and day object depending on the string provided. The set of default formats are below. The default delimiter between months, days and years is ‘/’,

between hours, minutes and seconds is “:” and between seconds and milliseconds is “.”. Using any other delimiter requires using a custom formatter (see User Defined Formatting).

DateTime Default Formatter

MM/dd/yyyy HH:mm:ss.SSS

For date-time formatters, the format specifies all 7 units (month,day,year,etc) will be available for parsing and generating a date-time object.

Date Default Formatter

MM/dd/yyyy

For date formatters, the month, day, and year need to be specified to obtain a date object.

Day Default Formatter

MM/dd

For day formatters, the month and day need to be specified to obtain a day object. Day objects are based on the year 2000, which contains a leap day, which could lead to miscalculations if

only 28 days are expected in February.

Supported Format Characters

For supported format characters (‘H’,‘m’,etc), there are three main modes for parsing: shorthand, sized, and full. Each mode controls the number of acceptable charcters for parsing digits.

Shorthand For all units, except the millisecond and year fields, “shorthand” formats use a single unique character meant to accept 1 or 2 digits for the corresponding unit. The short-hand case

is a lenient option for values that can fluctuate values between 1 or 2 digits. An example:

M/d

Sized For year and millisecond, the number of characters for a specific unit of time determines the number of acceptable numbers. For example, a format of “MM/dd/yyyy HH:mm:ss.S”

assumes that that the input/output has tenths of seconds while “MM/dd/yyyy HH:mm:ss.SSS” assumes that the input/output has miliseconds.

MM/dd/yyyy HH:mm:ss.SSS

MM/dd/yyyy HH:mm:ss.S

Full For all units of time, the maximum number of representable formatting characters can be used to provide a verbose and accurrate representation of the time objects. If the string does not

follow the format, an exception will be thrown. Example:

MM/dd/yyyy HH:mm:ss.SSS

Month Day Year Hour Minute Second Millisecond

MM or M dd or d yyyy or yy HH or H mm or m ss or s SSS or SS or S

NOTE: generally ‘yyyy’ (or ‘uuuu’) should be used for years and not ‘YYYY’ which is a “week based year.” This means that a date at the very end of one year, e.g. 12/31/2000 might be given the

year 2001 if ‘YYYY’ is used, because it is counted as part of the first week of 2001.

Date-time Bounds

Since not all dates are representable within the time extension, a strict formatting is enforced to minimize the effects of invalid input. Dates are bounded by the Gregorian calendar while the time

is bounded with their respective unit of time.

Month Day Year Hour Minute Second Millisecond

1 - 12 1 - 31 or 30 or 29 or 28 1000-9999 0-23 0-59 0-59 0 - 999

User Defined Formatting

The time extension supports user-defined formatters for brevity and control. User defined formatters allow for reordering format characters for units of time and using alternative delimiters from

the defaults.

M:yyyy:d

MM/d/yyyy HH:mm

back to top

Primitives

Date/Time Utilities

time:create

time:create time-string

Reports a LogoTime created by parsing the time-string argument. A LogoTime is a custom data type included with this extension, used to store time in the form of a DATETIME, a DATE, or a

DAY. All other primitives associated with this extension take one or more LogoTimes as as an argument. See the “Behavior” section above for more information on the behavior of LogoTime

objects. The time:create primitive raises an error if time-string does not represent a real date or time, e.g., if the day exceeds the number of days in the month or the month is not between 1

and 12. Hours must have values 0-23, and minutes and seconds must be 0-59. Seconds with milliseconds must be between 0.000 and 59.999.

;; Create a datetime, a date, and a day

let t-datetime time:create "2000-01-02 03:04:05.678"

let t-date time:create "2000/01/02"

let t-day time:create "01-02"

time:create-with-format

time:create-with-format time-string format-string

Like time:create , but parses the time-string argument using the format-string argument as the format specifier.

;; Create a datetime, a date, and a day using American convention for dates: Month/Day/Year

let t-datetime time:create-with-format "01-02-2000 03:04:05.678" "MM-dd-yyyy HH:mm:ss.SSS"

let t-date time:create-with-format "01/02/2000" "MM/dd/yyyy"

let t-day time:create-with-format "01-02" "MM-dd"

See the following link for a full description of the available format options:

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

time:show

time:show logotime string-format

Reports a string containing the logotime formatted according the string-format argument.

let t-datetime time:create "2000-01-02 03:04:05.678"

print time:show t-datetime "EEEE, MMMM d, yyyy"

;; prints "Sunday, January 2, 2000"

print time:show t-datetime "yyyy-MM-dd HH:mm"

;; prints "2000-01-02 03:04"

See the following link for a full description of the available format options:

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Note In the case for DATE and DAY variables, time:get returns default values for unsupported values. Day has a default year of 2000 to calculate for leap years.

let t-date (time:create "2000-01-01")

let t-day (time:create "01-01")

print time:show t-date "HH"

print time:show t-day "HH"

;; print 00

print time:show t-date "mm"

print time:show t-day "mm"

;; print 00

print time:show t-date "ss"

print time:show t-day "ss"

;; print 00

print time:show t-date "SSS"

print time:show t-day "SSS"

;; print 000

print time:show t-day "yyyy"

;; print 2000

time:get

time:get period-type-string logotime

Retrieves the numeric value from the logotime argument corresponding to the period-type-string argument. For DATETIME variables, all period types are valid; for DATEs, only period types of a

day or higher are valid; for DAYs, the only valid period types are “day” and “month”. For accessing seconds, seconds are not rounded to the nearest integer, but truncated. When time:get is used

with a sub-day period type (“hour”, “minute”) and a logotime that is a DATE or DAY instead of a DATETIME, it returns zero. Getting the year of a DAY variable returns the default of 2000.

let t-datetime (time:create "2000-02-02 03:04:05.678")

print time:get "year" t-datetime

;;prints "2000"

print time:get "month" t-datetime

;;prints "1"

print time:get "day" t-datetime

;;prints "2"

print time:get "dayofyear" t-datetime

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

;;prints "33"

print time:get "hour" t-datetime

;;prints "3"

print time:get "second" t-datetime

;;prints "5"

print time:get "milli" t-datetime

;;prints "678"

Note In the case for Day and Date time formats, time:get returns default values for unsupported values. Day has a default year of 2000 to calculate for leap years.

let t-date (time:create "2000-01-01")

let t-day (time:create "01-01")

print time:get "hour" t-date

print time:get "hour" t-day

;; print 0

 print time:get "minute" t-date

 print time:get "minute" t-day

;; print 0

print time:get "second" t-date

print time:get "second" t-day

;; print 0

print time:get "milli" t-date

print time:get "milli" t-day

;; print 0

print time:get "year" t-day

;; print 2000

time:plus

time:plus logotime number period-type-string

Reports a LogoTime resulting from the addition of some time period to the logotime argument. The time period to be added is specified by the number and period-type-string arguments. Valid

period types are YEAR, MONTH, WEEK, DAY, DAYOFYEAR, HOUR, MINUTE, SECOND, and MILLI. To subtract time, use a negative value of number. When applying additions to LogoTimes, addi‑
tion is applied through converting the format to datetime, adding the values, and reconverting LogoTime to its respective format. This can lead to incorrectly applying time updates and lost

information.

let t-datetime (time:create "2000-01-02 03:04:05.678")

;; Add some period to the datetime

print time:plus t-datetime 10 "milli"

;; prints "{{time:logotime 2000-01-02 03:04:06.688}}"

print time:plus t-datetime 1.0 "seconds"

;; prints "{{time:logotime 2000-01-02 03:04:06.678}}"

print time:plus t-datetime 1.0 "minutes"

;; prints "{{time:logotime 2000-01-02 03:05:05.678}}"

print time:plus t-datetime (60.0 * 24) "minutes"

;; prints "{{time:logotime 2000-01-03 03:04:05.678}}"

print time:plus t-datetime 1 "week"

;; prints "{{time:logotime 2000-01-09 03:04:05.678}}"

print time:plus t-datetime 1.0 "weeks"

;; prints "{{time:logotime 2000-01-09 03:04:05.678}}"

print time:plus t-datetime 1.0 "months"

;; note that decimal months or years are rounded to the nearest whole number

;; prints "{{time:logotime 2000-02-02 03:04:05.678}}"

print time:plus t-datetime 1.0 "years"

;; prints "{{time:logotime 2001-01-02 03:04:05.678}}"

Addition with Decimals

Week, Day, DayOfYear, Hour, Minute, and Second all support decimal addition so you can add half a day, a quarter of a second, or another subvalue. You cannot add fractions of milliseconds

because LogoTime variables do not have sub-millisecond resolution. You can add fractions of days (or hours, minutes, etc.) to LogoTime variables of type DATE and DAY, but the result will be

truncated to an integer day. This causes some information to be lost. For example:

print time:plus (time:create "2000-01-01 00:00:00.000") 2.3 "day" => "2000-01-03 07:11:59.999"

print time:plus (time:create "2000-01-01") 2.3 "day" => "2000-01-03"

print time:plus (time:create "2000-01-04 00:00:00.000") -2.3 "day" => "2000-01-01 2000-01-01 16:48:00.001"

print time:plus (time:create "2000-01-04") -2.3 "day" => "2000-01-01"

Year and Month both round the provided number to the nearest integer. There is no decimial addition support for year and month.

Addition with Negative Decimal Numbers

Year, Month, Week, Day, DayOfYear, Hour, Minute, Second, and Millisecond all support subtraction through the use of negative numbers. Subtracting with whole numbers works as expected,

but when subtracting with decimals the results may produce unexpected behavior. When subtracting with DateTime, DateTime objects maintain accurate times without truncation or rounding.

With DATE and DAY variables, when decimals are subtracted two conversions are applied. First the DATE/DAY is converted to a DATETIME starting at midnight (00:00:00), tthen the subraction

iis made, and the resulting DATETIME is converted back the original DATE or DAY type by setting the hours, minutes, etc. to zero. One example is with subtracting an hour from a DATE.

Subtracting one hour from a DATE variable equal to 01/02/2000 would generate a date of 01/01/2000 because of the default (00:00:00) conversion and the truncation after applying the

addition. “2000-01-02” (convert) => “2000-01-02 00:00:00.000” (subtract hour) => “2000-01-01 23:00:00.000” (application) => “2000-01-01” (restore type)

How Rounding, Truncating and Converting works

Week, Day, DayOfYear, Hour, Minute, Second, and Millisecond: convert user provided time/unit to milliseconds as a long integer => apply addition => convert to initial format (DateTime, Date, or

Day) => Remove unsupported units (Date, Day)

Year and Month: round user provided time/value to the nearest integer => apply addition => convert to initial foramt => Remove Unsupported units (Day)

Carryover

Week, Day, DayOfYear, Hour, Minute, Second, and Millisecond: All time types allow carrying over values from their subunits. This means that if 24 hours (or 100,000 seconds) are added to a

DATE or DAY, result is the next day. If 23 hours are added to a DATE or DAY, its value will not change thanks to truncation. DATETIME variables can have carryover with decimal addition since

a DATETIME can represent decimal values.

Year and Month numbers are rounded to the nearest integer before being added.

time:is-before?

time:is-after?

time:is-equal?

time:is-between?

time:is-before? logotime1 logotime2

time:is-after? logotime1 logotime2

time:is-equal? logotime1 logotime2

time:is-between? logotime1 logotime2 logotime3

Note: Prior versions of the time extension included these primitives without the “?” at the end. If you have used an older version of the time extension, you will need to update your code

accordingly.

Reports a boolean for the test of whether logotime1 is before/after/equal-to logotime2. The is-between? primitive returns true if logotime1 is between logotime2 and logotime3. All LogoTime

arguments must be of the same variety (DATETIME, DATE, or DAY).

print time:is-before? (time:create "2000-01-02") (time:create "2000-01-03")

;;prints "true"

print time:is-before? (time:create "2000-01-03") (time:create "2000-01-02")

;;prints "false"

print time:is-after? (time:create "2000-01-03") (time:create "2000-01-02")

;;prints "true"

print time:is-equal? (time:create "2000-01-02") (time:create "2000-01-02")

;;prints "true"

print time:is-equal? (time:create "2000-01-02") (time:create "2000-01-03")

;;prints "false"

print time:is-between? (time:create "2000-03-08") (time:create "1999-12-02") (time:create "2000-05-03")

;;prints "true"

time:difference-between

time:difference-between logotime1 logotime2 period-type-string

Reports the amount of time between logotime1 and logotime2 in units of period-type-string. Note that if the period type is YEAR or MONTH, then the reported value will be a whole number

based soley on the month and year components of the LogoTimes. If logotime2 is smaller (earlier than) logotime1, the reported value will be negative.

This primitive is useful for recording the elapsed time between model events because (unlike time:get) it reports the total number of time units, including fractions of units. For example, if start-

time is a LogoTime variable for the time a simulation starts and end-time is when the simulation stops, then use show time:difference-between start-time end-time “days” to see how many days

were simulated.

** Note **

For period type of “MONTH”, difference-between reports the difference in the month number (1-12) of logotime1 and logotime2, not the total number of months between the two dates, even if

the two times are DATETIME or DATE values. This difference is calculated as the number of times the day number (1-31) of logotime1 occurs between the two dates. For example, if logotime1 is

2000-01-02 then difference-between reports 0 months for logotime2 = 2000-02-01, 1 month for 2000-02-02, and -1 month for logotime2 = 1999-12-01. However, the value reported is never

greater than 11 or less than -11; it reverts to zero when logotime2 reaches one year from logotime1 and then is 1 when logotime2 is 13 months after logotime1, etc.

For “YEAR”, difference-between reports the number [integer] of years there are between two logotime instances. The difference is calculated through matching the day and month while truncat‑

ing values around that date. This should apply for leap years, as well. For example, if logotime1 is 2000-01-02 then time:difference-between reports 0 years for logotime2 = 2001-01-01, 1 year

for 2000-01-02, and 5 years for 2005-01-02. The total number of months between two dates can therefore be calculated as 12 times the value of time:difference-between in years plus the

value of time:difference-between in months.

print time:difference-between (time:create "2000-01-02 00:00") (time:create "2000-02-02 00:00") "days"

;;prints "31"

print time:difference-between (time:create "2000-01-02") (time:create "2001-02-02") "days"

;;prints "397"

print time:difference-between (time:create "01-02") (time:create "01-01") "hours"

;;prints "-24"

print time:difference-between (time:create "2000-01-02") (time:create "2000-02-15") "months"

;;prints "1"

time:anchor-to-ticks

time:anchor-to-ticks logotime number period-type

Reports a new LogoTime object which is “anchored” to the native time tracking mechanism in NetLogo (i.e the value of ticks). Once anchored, this LogoTime object will always hold the value of

the current time as tracked by ticks. Any of the three varieties of LogoTime can be achored to the tick. The time value of the logotime argument is assumed to be the time at tick zero. The num‑
ber and period-type arguments describe the time represented by one tick (e.g. a tick can be worth 1 day or 2 hours or 90 seconds, etc.)

Note: time:anchor-to-ticks is a one-way coupling. Changes to the value of ticks (e.g. when using the tick or tick-advance commands) will automatically update the anchored LogoTime, but

changing the value of the LogoTime variable will not update the value of ticks; in fact it is a bad idea for anything other than ticks to change an anchored variable. However, see the discrete

event scheduling capability and the time:anchor-schedule command to influence the value of ticks through the use of LogoTimes.

set tick-datetime time:anchor-to-ticks (time:create "2000-01-02 03:04:05.678") 1 "hour"

set tick-date time:anchor-to-ticks (time:create "2000-01-02") 2 "days"

set tick-day time:anchor-to-ticks (time:create "01-02") 3 "months"

reset-ticks

tick

print (word "tick " ticks) ;; prints "tick 1"

print (word "tick-datetime " tick-datetime) ;; prints "tick-dateime {{time:logotime 2000-01-02 04:04:05.678}}"

print (word "tick-date " tick-date) ;; prints "tick-date {{time:logotime 2000-01-04}}"

print (word "tick-day " tick-day) ;; prints "tick-day {{time:logotime 04-02}}"

tick

print (word "tick " ticks) ;; prints "tick 2"

print (word "tick-datetime " tick-datetime) ;; prints "tick-dateime {{time:logotime 2000-01-02 05:04:05.678}}"

print (word "tick-date " tick-date) ;; prints "tick-date {{time:logotime 2000-01-06}}""

print (word "tick-day " tick-day) ;; prints "tick-day {{time:logotime 07-02}}""

back to top

time:copy

time:copy logotime

Returns a new LogoTime object that holds the same date/time as the logotime argument. The copy will not be anchored regardless of the argument, making this the recommended way to store

a snapshot of an anchored LogoTime.

set tick-date time:anchor-to-ticks (time:create "2000-01-02") 2 "days"

reset-ticks

tick

print (word "tick " ticks) ;; prints "tick 1"

print (word "tick-date " tick-date) ;; prints "tick-date {{time:logotime 2000-01-04}}"

set store-date time:copy tick-date

tick

print (word "tick " ticks) ;; prints "tick 1"

print (word "tick-date " tick-date) ;; prints "tick-date {{time:logotime 2000-01-06}}"

print (word "store-date " store-date) ;; prints "store-date {{time:logotime 2000-01-04}}"

Time Series Tool

NOTE: The time series tool is not currently included in the extension. However, all of the functionality (plus some) has been reproduced in NetLogo code. It is in the time-series.nls file in this

repo which you can download by clicking that link and then right clicking the “raw” button on the upper right of the file and selecting “download linked file” (you might have to remove a ‘.txt’ file

extension so that the file ends with the ‘.nls’ extension). You can then include that file with the __includes primitive. Since it is not part of the extension, these “primitives” don’t have the “time:”

prefix. Also, the NetLogo file must have the csv extension for the time-series.nls functionality to work.

ts-create

ts-create column-name-list

Reports a new, empty LogoTimeSeries. The number of data columns and their names are defined by the number and values of column-name-list parameter, which must be a list of strings. The

first column, which contains dates or times, is created automatically. The words “ALL” and “LOGOTIME” (in any combination of lower- or upper-case) cannot be used as column names because

they have special meanings in the ts-get and ts-get-range primitives.

let turtle-move-times (ts-create ["turtle-show" "new-xcor" "new-ycor"])

ts-add-row NOTE: This is the only time-series functionality in time-series.nls that is not backwards compatible with the old time extension. Since time-series.nls implements time series with

native NetLogo lists, they are immutable. So, ts-add-row returns a new timeseries, it does not mutate the old one. This means that variables holding the time series must be re-assigned.

ts-add-row logotimeseries row-list

Returns a new LogoTimeSeries with row-list added to logotimeseries. This primitive is how data are added to a LogoTimeSeries. The row-list should be a list containing a LogoTime as the first

element and the rest of the data corresponding to the number of columns in the LogoTimeSeries object. Columns are either numeric or string valued.

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///tmp/sbt_6c39b28e/dict/includes.html
file:///tmp/sbt_6c39b28e/dict/includes.html

;; A turtle records the time and destination each time it moves

;; model-time is a DATETIME variable anchored to ticks.

set turtle-move-times ts-add-row turtle-move-times (sentence model-time who xcor ycor)

ts-get

ts-get logotimeseries logotime column-name

Reports the value from the column-name column of the logotimeseries in the row matching logotime. If there is not an exact match with logotime, the row with the nearest date/time will be used.

If there are multiple rows with the same logotime, only one will be returned. For LogoTimeSeries containing multiple rows with the same logotime value, using ts-get-range to return a list of all

times within a range is recommended instead of ts-get. If “ALL” or “all” is specified as the column name, then the entire row, including the logotime, is returned as a list.

print ts-get ts (time:create "2000-01-01 10:00:00") "flow"

;; prints the value from the flow column in the row containing a time stamp of 2000-01-01 10:00:00

ts-get-interp

ts-get-interp logotimeseries logotime column-name

Behaves like ts-get, except that if there is not an exact match with the logotime, then the value returned is a linear interpolation between the two values with date/times nearest (just before and

just after) logotime. This command will throw an exception if the values in the column are strings instead of numeric.

print ts-get-interp ts (time:create "2000-01-01 10:30:00") "flow"

ts-get-exact

ts-get-exact logotimeseries logotime column-name

Behaves like ts-get, except that if there is not an exact match with the date/time stamp, then an exception is thrown. If there are multiple rows with the same logotime, only one will be returned.

In such a case, usinig ts-get-range to return a list of all times within a range is recommended instead.

print ts-get-exact ts (time:create "2000-01-01 10:30:00") "flow"

ts-get-range

ts-get-range logotimeseries logotime1 logotime2 column-name

Reports a list of all of the values from the column-name column of the logotimeseries in the rows between logotime1 and logotime2 (inclusively). If “ALL” or “all” is specified as the column name,

then a list of lists is reported, with one sub-list for each column in logotimeseries, including the date/time column. If “LOGOTIME” or “logotime” is specified as the column name, then the

date/time column is returned.

If in the event logotime1 is after logotime2, ts-get-range will reverse their values, so it does not matter which of these inputs is smaller.

print ts-get-range time-series time:create "2000-01-02 12:30:00" time:create "2000-01-03 00:30:00" "all"

ts-has-repeat-times? ts-has-repeat-times? logotimeseries

Reports whether there are any repeated times in the logotimeseries (i.e. two rows with the same time). This can be helpful for determining if it is appropriate to use ts-get or ts-get-range.

ts-has-repeat-of-time? ts-has-repeat-of-time? logotimeries logotime

Reports whether logotime appears more than once in logotimeseries.

ts-load

ts-load filepath

Loads time series data from a text input file (comma or tab separated) and reports a new LogoTimeSeries object that contains the data.

let ts ts-load "time-series-data.csv"

Each input file and LogoTimeSeries object can contain one or more variables, which are accessed by the column names provided on the first line of the file. The first line of the file must there‑
fore start with the date/time column name, followed by the names of the variables (other columns) in the file. Do not use “all” or “ALL,” or “logotime” or "LOGOTIME” for a column name as thse

are reserved keywords (see ts-get and ts-get-range).

The first column of the file must be timestamps that can be parsed by this extension (see the behavior section for acceptable string formats). Finally, if the timestamps do not appear in chrono‑
logical order in the text file, they will be automatically sorted into order when loaded.

Comment lines can appear at the start of input file, but nowhere else in it. Comment lines must start with a semicolon.

The following is an example of hourly river flow and water temperature data that is formatted correctly:

; Flow and temperature data for Big Muddy River

timestamp,flow,temperature

2000-01-01 00:00:00,1000,10

2000-01-01 01:00:00,1010,11

2000-01-01 03:00:00,1030,13

back to top

ts-load-with-format

ts-load filepath format-string

Identical to ts-load except that the first column is parsed based on the format-string specifier.

let ts ts-load "time-series-data-custom-date-format.csv" "dd-MM-yyyy HH:mm:ss"

See Behavior and Format above concerning format-string options.

ts-write

ts-write logotimeseries filepath

Writes the time series data to a text file in CSV (comma-separated) format.

ts-write ts "time-series-output.csv"

The column names will be written as the header line, for example:

timestamp,flow,temperature

2000-01-01 00:00:00,1000,10

2000-01-01 01:00:00,1010,11

2000-01-01 03:00:00,1030,13

back to top

Discrete Event Scheduler

time:anchor-schedule

time:anchor-schedule logotime number period-type

Anchors the discrete event schedule to the native time tracking mechanism in NetLogo (i.e the value of ticks). Once anchored, LogoTimes can be used for discrete event scheduling (e.g. sched‑
ule agent 3 to perform some anonymous command on June 10, 2013). The value of the logotime argument is assumed to be the time at tick zero. The number and period-type arguments

describe the length of one tick (e.g. a tick can represent 1 day, 2 hours, 90 seconds, etc.)

time:anchor-schedule time:create "2013-05-30" 1 "hour"

time:schedule-event

time:schedule-event agent anonymous-command tick-or-time

time:schedule-event agentset anonymous-command tick-or-time

time:schedule-event “observer” anonymous-command tick-or-time

Add an event to the discrete event schedule. The order in which events are added to the schedule is not important; they will be dispatched in order of the times specified as the last argument of

this command. An agent, an agentset, or the string “observer” can be passed as the first argument along with an anonymous command as the second. The anonymous command is executed by

the agent(s) or the observer at tick-or-time (either a number indicating the tick or a LogoTime), which is a time greater than or equal to the present moment (>= ticks).*.

If tick-or-time is a LogoTime, then the discrete event schedule must be anchored (see time:anchor-schedule). If tick-or-time is in the past (less than the current tick/time), a run-time error is

raised. (The is-after? primitive can be used to defend against this error: add an event to the schedule only if its scheduled time is after the current time.)

Once an event has been added to the discrete event schedule, there is no way to remove or cancel it.

time:schedule-event turtles [[] -> go-forward] 1.0

time:schedule-event turtles [[] -> fd 1] 1.0

time:schedule-event "observer" [[] -> print "hello world"] 1.0

time:schedule-event-shuffled

time:schedule-event-shuffled agentset anonymous-command tick-or-time

Add an event to the discrete event schedule and shuffle the agentset during execution. This is identical to time:schedule-event but the individuals in the agentset execute the action in random‑
ized order.

time:schedule-event-shuffled turtles [[] -> go-forward] 1.0

time:schedule-repeating-event

time:schedule-repeating-event-with-period

time:schedule-repeating-event agent anonymous-command tick-or-time interval-number

time:schedule-repeating-event agentset anonymous-command tick-or-time-number interval-number

time:schedule-repeating-event “observer” anonymous-command tick-or-time interval-number

time:schedule-repeating-event-with-period agent anonymous-command tick-or-time period-duration period-type-string

time:schedule-repeating-event-with-period agentset anonymous-command tick-or-time-number period-duration period-type-string

time:schedule-repeating-event-with-period “observer” anonymous-command tick-or-time period-duration period-type-string

Add a repeating event to the discrete event schedule. This primitive behaves almost identically to time:schedule-event except that after the event is dispatched it is immediately rescheduled

interval-number ticks into the future using the same agent (or agentset) and anonymous-command. If the schedule is anchored (see time:anchor-schedule), then time:schedule-repeating-

event-with-period can be used to expressed the repeat interval as a period (e.g. 1 “day” or 2.5 “hours”). Warning: repeating events can cause an infinite loop to occur if you execute the sched‑

ule with time:go. To avoid infinite loops, use time:go-until.

time:schedule-repeating-event turtles [[] -> go-forward] 2.5 1.0

time:schedule-repeating-event-with-period turtles [[] -> go-forward] 2.5 1.0 "hours"

time:schedule-repeating-event-shuffled

time:schedule-repeating-event-shuffled-with-period

time:schedule-repeating-event-shuffled agentset anonymous-command tick-or-time-number interval-number

time:schedule-repeating-event-shuffled-with-period agentset anonymous-command tick-or-time-number interval-number

Add a repeating event to the discrete event schedule and shuffle the agentset during execution. This is identical to time:schedule-repeating-event but the individuals in the agentset execute the

action in randomized order. If the schedule is anchored (see time:anchor-schedule), then time:schedule-repeating-event-shuffled-with-period can be used to expressed the repeat interval as a

period (e.g. 1 “day” or 2.5 “hours”). Warning: repeating events can cause an infinite loop to occur if you execute the schedule with time:go. To avoid infinite loops, use time:go-until.

time:schedule-repeating-event-shuffled turtles [[] -> go-forward] 2.5 1.0

time:schedule-repeating-event-shuffled-with-period turtles [[] -> go-forward] 2.5 1.0 "month"

time:clear-schedule

time:clear-schedule

Clear all events from the discrete event schedule.

time:clear-schedule

time:go

time:go

Dispatch (execute) all of the events in the discrete event schedule. When each event is executed, NetLogo’s tick counter (and any LogoTime variables anchored to ticks) is updated to that

event’s time. Note that this command will continue to dispatch events until the discrete event schedule is empty. If repeating events are in the discrete event schedule or if procedures in the

schedule end up scheduling new events, it’s possible for this to become an infinite loop.

time:go

time:go-until

time:go-until halt-tick-or-time

Dispatch all of the events in the discrete event schedule that are scheduled for times up until halt-tick-or-time. If the temporal extent of your model is known in advance, this variant of time:go is

the recommended way to dispatch your model. This primitive can also be used to execute all the events scheduled before the next whole tick, which is useful if other model actions take place

on whole ticks.

time:go-until 100.0

;; Execute events up to tick 100

time:go-until time:plus t-datetime 1.0 "hour"

;; Execute events within the next hour; t-datetime is the current time.

time:show-schedule

time:show-schedule

Reports all of the events in the schedule as a single string in tab-separated format with three columns: tick,semi-colon-separated-list-of-agents,anonymous-command.

print time:show-schedule

time:size-of-schedule

time:size-of-schedule

Reports the number of events in the discrete event schedule.

if time:size-of-schedule > 0[

 time:go

]

back to top

Building with SBT

Using SBT, create a package that will generate the time.jar. For example:

sbt package

If compilation succeeds, time.jar will be created. See Installation for instructions on where to put your compiled extension.

Authors

Colin Sheppard, Steve Railsback and Jacob Kelter

Feedback? Bugs? Feature Requests?

Please visit the github issue tracker to submit comments, bug reports, or feature requests. I’m also more than willing to accept pull requests.

Credits

This extension is inspired by the Ecoswarm Time Manager Library. Allison Campbell helped benchmark discrete event scheduling versus static scheduling. The extension was funded in part by

the Swarm Development Group.

Terms of Use

The NetLogo dynamic scheduler extension is in the public domain. To the extent possible under law, Colin Sheppard and Steve Railsback have waived all copyright and related or neighboring

rights.

back to top

Primitives

Looking for the primitive reference for the Time extension? You can find it here.

https://github.com/colinsheppard/Time-Extension/issues?state=open
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
file:///tmp/sbt_6c39b28e/time/index.html

Vid

Concepts

Video Source

The vid extension has a built-in concept of a video source. At the moment, the only video sources available are movies in the directory the model lives in and cameras attached to the com‑
puter. The vid extension opens a new video source with the vid:<source>-open and vid:<source>-select . These primitives change the source to the selected source. If a source is already

open, it closes it before opening a new one.

Source Lifecycle

Movie sources are “stopped” after being created by vid:movie-select or vid:movie-open . Camera sources start off as “playing” after being created by vid:camera-select or vid:camera-

open . If a source is in status “stopped” it can be started with vid:start . Conversely, if the source is “playing” it can be stopped with vid:stop . When a source is “stopped”, each call to

vid:capture-image will return the same image.

Video Recorder

The vid extension also has the concept of a recording, a series of frames which can be sewn into an “mp4” movie. The recorder status can be queried using vid:recorder-status . The

recorder status is “inactive” until started with vid:start-recorder , which sets it to “recording”. While the recorder is “recording” the vid:record-view , vid:record-interface , and

vid:record-source can be used to save frames to the recording. You can choose to save the recording while recording using vid:save-recording which saves the movie to the specified file

and reset the recording status to “inactive”. If you would prefer to throw away the recorded frames without saving, use vid:reset-recorder .

Known Issues

When running the extension on macOS and using vid:camera-open or vid:camera-select and then starting a different program (like Zoom) and using the same camera will crash NetLogo. If

you start the other program first and then start NetLogo things should work better.

Primitives

Looking for the primitive reference for the Vid extension? You can find it here.

vid:camera-names vid:camera-open vid:camera-select vid:movie-select vid:movie-open vid:movie-open-remote vid:close vid:start vid:stop vid:status vid:capture-

image vid:set-time vid:show-player vid:hide-player vid:record-view vid:record-interface vid:record-source vid:recorder-status vid:reset-recorder vid:start-

recorder vid:save-recording

vid:camera-names

vid:camera-names

Provides a list of all available cameras.

Example:

vid:camera-names => []

vid:camera-names => ["Mac Camera"]

vid:camera-names => ["Logitech Camera"]

vid:camera-open

vid:camera-open

Opens the named camera as a video source. If no name is provided, opens the first camera that would be listed by camera-names .

Example:

vid:camera-open ; opens first camera

(vid:camera-open "Logitech Camera")

Errors:

Message "vid: no cameras found" : no cameras are available.

Message "vid: camera "\<name\>" not found" : if the named camera is not available.

vid:camera-select

file:///tmp/sbt_6c39b28e/vid/index.html

vid:camera-select

Prompts the user to select a camera as video source. This command does not error if the user cancels. Use vid:status to see if a user selected a camera.

Example:

vid:camera-select

Errors:

Message “vid: no cameras found”: no cameras are available.

vid:movie-select

vid:movie-select

Prompts the user to select a movie to use as a video source. The formats supported are those supported by JavaFX2. This command does not error if the user cancels. Use vid:status

to see if the user selected a movie.

Example:

vid:movie-select

Errors:

Message "vid: format not supported" : the user selected a movie with an unsupported format.

vid:movie-open

vid:movie-open filename

Opens a video from the file system. If the provided path is not absolute the extension searches for the given path relative to the current model directory. If the provided path is absolute

the extension opens the file.

Example:

vid:movie-open "foo.mp4" ; Opens foo.mp4 in the directory containing the model

vid:movie-open user-file ; Opens a dialog for the user to select a movie

vid:movie-open "/tmp/foo.mp4" ; Opens a movie from the "/tmp" directory

Errors:

Message "vid: no movie found" : the movie could not be found.

Message "vid: format not supported" : the user selected a movie with an unsupported format.

vid:movie-open-remote

vid:movie-open-remote url

Opens a remote video from a website or ftp server.

Example:

vid:movie-open-remote "http://example.org/foo.mp4"

Errors:

Message "vid: no movie found" : The specified URL could not be loaded or errored while loading.

Message "vid: format not supported" : The file type of the remote movie is not supported.

Message "vid: protocol not supported" : The movie was at an unsupported URL protocol. Supported protocols are ftp and http .

vid:close

vid:close

Closes the currently selected video source. Has no effect if there is no active video source.

Example:

vid:close

vid:start

vid:start

Starts the selected video source. A video source must have been selected before calling vid:start .

Example:

vid:start

https://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes

Errors:

Message "vid: no selected source" : There is no currently selected video source. Select a source with vid:movie-open , vid:movie-select , vid:camera-open , or vid:camera-

select .

vid:stop

vid:stop

Stops the currently running video source.

Example:

vid:stop

vid:status

vid:status

Reports the current status of an active video. Note that after calling vid:movie-open or vid:movie-select the status will be set to “stopped”, while after calling vid:camera-open or

vid:camera-select the status will be “playing”.

Example:

vid:status ; => "inactive"

vid:movie-open "foobar.mp4"

vid:status ; => "stopped"

vid:movie-start

vid:status ; => "playing"

vid:capture-image

vid:capture-image width height

Captures an image from the currently selected active source.

If width and height are not specified, the image is captured at the current source resolution.

Example:

extensions [vid bitmap]

to capture

 ; capture an image if a video source is open,

 ; have the user select a camera if no video source found

 carefully [

 ; when camera open, take an image

 let image vid:capture-image ; returns image suitable for use with bitmap extension

 bitmap:copy-to-drawing image 0 0

] [

 if error-message = "Extension exception: vid: no selected source" [

 vid:camera-select

 vid:start

 let image vid:capture-image

 bitmap:copy-to-drawing image 0 0

]

]

end

If you want to capture images at a different resolution, simply replace vid:capture-image with, e.g., (vid:capture-image 640 480) .

Errors:

Message "vid: no selected source" : There is no currently selected video source. Select a source with vid:movie-open , vid:movie-select , vid:camera-open , or vid:camera-

select .

Message "vid: invalid dimensions" : The selected dimensions are invalid (one of the dimensions is zero or negative).

vid:set-time

vid:set-time seconds

Sets the time of the current video source to *seconds* . This has no effect when the current video source is a camera.

Example:

vid:set-time 100

Errors:

Message "vid: no selected source" : There is no currently selected video source. Select a source with vid:movie-open , vid:movie-select , vid:camera-open , or vid:camera-

select .

Message "vid: invalid time" : The currently active video does not contain the specified second. The second may be negative, or greater than the length of the video.

vid:show-player

vid:show-player width height

Shows a player in a separate window. If there is no video source, the window will be an empty black frame. If there is an active video source, it will be displayed in the window with the

specified width and height. If there is a playing video source, it will be displayed in the window at its specified width and height. If width and height are omitted, the video will be displayed

in its native resolution.

Example with native resolution:

vid:show-player

Example with custom resolution:

(vid:show-player 640 480)

Errors:

Message "vid: invalid dimensions" : The selected dimensions are invalid (one of the dimensions is zero or negative).

vid:hide-player

vid:hide-player

Hides the player if open. Does nothing if there is no player window.

Example:

vid:hide-player

vid:record-view

vid:record-view

Records the current image shown in the NetLogo view to the active recording.

Example:

vid:record-view

Errors:

Message "vid: recorder not started" : The recorder has not been started. Start the recorder with vid:start-recorder .

vid:record-interface

vid:record-interface

Records the NetLogo interface view to the active recording.

Example:

vid:record-interface

Errors:

Message "vid: recorder not started" : The recorder has not been started. Start the recorder with vid:start-recorder .

Message "vid: export interface not supported" : The calling NetLogo version does not support interface exports. This will occur when running NetLogo headlessly.

vid:record-source

vid:record-source

Records a frame to the active recording from the currently active source.

Example:

vid:record-source

Errors:

Message "vid: recorder not started" : The recorder has not been started. Start the recorder with vid:start-recorder .

Message "vid: no selected source" : There is no currently selected video source. Select a source with vid:movie-open , vid:movie-select , vid:camera-open , or vid:camera-

select .

vid:recorder-status

vid:recorder-status

Reports the current status of the recorder. Initially and after the recorder is saved (via vid:save-recording) or reset (via vid:reset-recorder) the recorder status is “inactive”. After call‑

ing vid:start-recorder the status will be “recording”.

Example:

vid:recorder-status ; => "inactive"

vid:start-recorder

vid:recorder-status ; => "recording"

vid:reset-recorder

vid:recorder-status ; => "inactive"

vid:reset-recorder

vid:reset-recorder

Stops the current recording, discards any recorded frames without saving them, and forgets the currently set recording resolution.

vid:start-recorder

vid:start-recorder

Starts the recorder. If the recorder is already running this will cause an error to be raised. If desired, a recording width and height can be supplied. If width and height are not supplied,

they will be determined from the first frame recorded.

Example:

vid:start-recorder

(vid:start-recorder 640 480)

Errors:

Message "vid: recorder already started" : The recorder has already been started. The existing recording should be saved or reset before starting the recording.

Message "vid: invalid dimensions" : The selected dimensions are invalid (one of the dimensions is zero or negative).

vid:save-recording

vid:save-recording filename

Saves the recording to the specified path. If the recorder is not running this will cause an error to be raised. Note that at present the recording will always be saved in the “mp4” format. If

the supplied filename does not end in “.mp4”, the “.mp4” suffix will be added. Note that vid:save-recording will overwrite existing files of the same name. vid:save-recording will

error if the recorder has not been started or if the file cannot be written since the containing directory does not exist.

Example:

vid:save-recording "foo.mp4" ; Saves to foo.mp4 in the directory containing the model

vid:save-recording user-new-file ; Opens a dialog for the user to select a save path

vid:save-recording "/tmp/foo.mp4" ; Saves the recording to the "/tmp" directory

Errors:

Message "vid: recorder not started" : The recorder has not been started. Start the recorder with vid:start-recorder .

Message "vid: no such directory" : The directory containing the specified save file does not exist.

Message "vid: no frames recorded" : You tried to save a recording with no frames recorded. Check that you are recording properly or use vid:reset-recording to to change the

recording format without saving.

View2.5D

The View2.5D extension offers visualization for Patch and Turtle reporters, in real time, in a simulation’s context.

How to Use

The view2.5d extension is pre-installed in NetLogo.

To use the view2.5d extension in your model, add a line to the top of your Code tab:

extensions [view2.5d]

If your model already uses other extensions, then it already has an extensions line in it, so just add view2.5d to the list.

For more information on using NetLogo extensions, see the Extensions Guide

Incorporating Into Models

open a window using either the view2.5d:patch-view or view2.5d:turtle-view commands (it can be a good idea to put these in your ‘SETUP’ procedure or a separate button).

update your window’s view using one of the update commands (put these in your ‘GO’ procedure).

See the View2.5d Code Examples in the NetLogo models library.

Feedback

Send comments, bugs, or other feedback to CCL Feedback.

Primitives

Looking for the primitive reference for the View2.5D extension? You can find it here.

view2.5d:patch-view view2.5d:decorate-patch-view view2.5d:undecorate-patch-view view2.5d:turtle-view view2.5d:update-all-patch-views view2.5d:update-patch-view

view2.5d:update-turtle-view view2.5d:get-z-scale view2.5d:set-z-scale view2.5d:set-turtle-stem-thickness view2.5d:set-turtle-stem-color view2.5d:show-links-xy-

plane view2.5d:show-links-xyz view2.5d:get-observer-angles view2.5d:set-observer-angles view2.5d:get-observer-xy-focus view2.5d:set-observer-xy-focus view2.5d:get-

observer-distance view2.5d:set-observer-distance view2.5d:remove-patch-view view2.5d:remove-turtle-view view2.5d:remove-all-patch-views view2.5d:remove-all-turtle-

views view2.5d:count-windows

view2.5d:patch-view

view2.5d:patch-view Title Reporter

This command must be called from the Observer context. (Attempting to call from another context causes an error) The Title is a string, which will be used to label the new Window and to

call for subsequent updates and modifications. Specification of the Reporter uses the NetLogo anonymous procedure syntax, from the Observer perspective.

Example:

view2.5d:patch-view "Test" [[the-patch] -> [pxcor] of the-patch]

view2.5d:decorate-patch-view

view2.5d:decorate-patch-view Title

This command must be called from the Observer context. (Attempting to call from another context causes an error) The Title is a string, the label of an existing Patch View Window. Effect:

draws the turtles of the model at their current location, on top of the Patch view display

NOTE: only has an effect in the “structures” patch view (in the others, the patch value is inclined based on neighbors & gradient)

NOTE: for negative patch values, the turtle shapes are drawn below (orbit underneath to see them)

Example:

view2.5d:decorate-patch-view "Test"

view2.5d:undecorate-patch-view

view2.5d:undecorate-patch-view Title

This command must be called from the Observer context. (Attempting to call from another context causes an error)

file:///tmp/sbt_6c39b28e/extensions.html
mailto:ccl-feedback@ccl.northwestern.edu
file:///tmp/sbt_6c39b28e/view2.5d/index.html

The Title is a string, the label of an existing Patch View Window. Effect: STOPS drawing the turtles of the model at their current location, on top of the Patch view display

Example:

view2.5d:undecorate-patch-view "Test"

view2.5d:turtle-view

view2.5d:turtle-view Title Agents Reporter

This command must be called from the Observer context. (Attempting to call from another context causes an error) The Title is a string, which will be used to label the new Window and to

call for subsequent updates. The turtle-set is any selector for turtles. Reporter is an anonymous reporter that should take a turtle as input, and report some number from it.

Example:

view2.5d:turtle-view "Test" turtles with [color = red] [the-turtle -> [energy] of the-turtle]

; This would create a new 2.5d window, plotting the ENERGY value of all turtles that are red.

view2.5d:update-all-patch-views

view2.5d:update-all-patch-views

This command must be called from the Observer context. Updates all existing patch-view windows according to the latest values.

view2.5d:update-patch-view

view2.5d:update-patch-view Title

This command must be called from the Observer context. Updates only the patch-view window with the specified title (if any).

view2.5d:update-turtle-view

view2.5d:update-turtle-view Title Agents

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). The turtle-set selector must be supplied to refresh the set

of turtles.

view2.5d:get-z-scale

view2.5d:get-z-scale title

This reporter must be called from the Observer context. Returns the current z-scale of the turtle-view or patch-view window with the specified title (if any).

view2.5d:set-z-scale

view2.5d:set-z-scale Title new-z-scale

This command must be called from the Observer context. Updates only the turtle-view or patch-view window with the specified title (if any). The view is now displayed with the new z-

scale.

view2.5d:set-turtle-stem-thickness

view2.5d:set-turtle-stem-thickness Title thickness

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). Turtles are now drawn with “pins” or “stems” that have the

specified thickness (instead of the hairline default).

view2.5d:set-turtle-stem-color

view2.5d:set-turtle-stem-color Title colorReporter

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). colorReporter is an anonymous reporter that should take a

turtle as input, and report some number representing a color from it. Turtles are now drawn with “pins” or “stems” that have the specified color (instead of the grey default).

Example:

;; setup view with 2 turtles

crt 1 [set color green setxy 2 3]

crt 1 [set color red setxy 5 4]

view2.5d:turtle-view "Test" turtles [the-turtle -> [xcor] of the-turtle]

view2.5d:set-observer-distance "Test" 40

view2.5d:set-z-scale "Test" 2

view2.5d:set-observer-angles "Test" 25 30

;; increase the stem thickness

view2.5d:set-turtle-stem-thickness "Test" .2

;; change the stem color to match the turtle-color

view2.5d:set-turtle-stem-color "Test" [the-turtle -> [color] of the-turtle]

; now make the stems orange

view2.5d:set-turtle-stem-color "Test" [orange]

view2.5d:show-links-xy-plane

view2.5d:show-links-xy-plane Title

This command must be called from the Observer context. Updates only the turtle-view or patch-view window with the specified title (if any). Links are drawn in the xy-plane (instead of

the turtle to turtle default). This option can be selected using the Link Options xy-plane radio Button in the 3D view.

view2.5d:show-links-xyz

view2.5d:show-links-xyz Title

This command must be called from the Observer context. Updates only the turtle-view or patch-view window with the specified title (if any). Links are drawn from turtle to turtle (this is

the default way links are displayed). This option can be selected using the Link Options xyz radio Button in the 3D view.

view2.5d:get-observer-angles

view2.5d:get-observer-angles Title

This reporter must be called from the Observer context. Returns a list reflecting the observer’s angular perspective { heading pitch } (the place on an imaginary sphere at the zoom dis‑

tance is updated to obey heading & pitch given)

view2.5d:set-observer-angles

view2.5d:set-observer-angles Title heading pitch

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). Sets the observer’s angular perspective (the place on an

imaginary sphere at the zoom distance is updated to obey heading & pitch given)

view2.5d:get-observer-xy-focus

view2.5d:get-observer-xy-focus Title

This reporter must be called from the Observer context. Returns a list reflecting the x and y coordinates the observer is “looking at” in the patch plane.

view2.5d:set-observer-xy-focus

view2.5d:set-observer-xy-focus Title number ycor

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). Sets the x and y coordinates the observer that is “looking

at” in the patch plane.

view2.5d:get-observer-distance

view2.5d:get-observer-distance Title

This reporter must be called from the Observer context. Returns the observer’s distance from its “focus point”

view2.5d:set-observer-distance

view2.5d:set-observer-distance Title new-distance

This command must be called from the Observer context. Updates only the turtle-view window with the specified title (if any). Sets the observer’s distance from its “focus point”

view2.5d:remove-patch-view

view2.5d:remove-patch-view Title

This command closes and removes the specified patch view programmatically (equivalent to closing the window manually).

view2.5d:remove-turtle-view

view2.5d:remove-turtle-view Title

This command closes and removes the specified turtle view programmatically (equivalent to closing the window manually).

view2.5d:remove-all-patch-views

view2.5d:remove-all-patch-views

This command closes and removes all patch views programmatically (equivalent to closing the windows manually).

view2.5d:remove-all-turtle-views

view2.5d:remove-all-turtle-views

This command closes and removes all turtle views programmatically (equivalent to closing the windows manually).

view2.5d:count-windows

view2.5d:count-windows

This reporter returns the number of turtle and patch views that are currently active.

FAQ (Frequently Asked Questions)

Feedback from users is very valuable to us in designing and improving NetLogo. We’d like to hear from you. (See Contacting Us.)

General

Why is it called NetLogo?

The “Logo” part is because NetLogo is a dialect of the Logo language.

“Net” is meant to evoke the decentralized, interconnected nature of the phenomena you can model with NetLogo, including network phenomena. It also refers to HubNet, the multiuser participa‑

tory simulation environment included in NetLogo.

How do I cite NetLogo or HubNet in a publication?

If you use or refer to NetLogo, HubNet or a model from the NetLogo models library, we ask that you cite it as follows:

NetLogo itself: Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

HubNet: Wilensky, U. & Stroup, W., 1999. HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html. Center for Connected Learning and Computer-Based Modeling, Northwestern University.

Evanston, IL.

How do I cite a model from the Models Library in a publication?

The correct citation is included in the “Credits and References” section of each model’s Info tab.

Where and when was NetLogo created?

NetLogo was first created in 1999 by Uri Wilensky at the Center for Connected Learning and Computer-Based Modeling, then at Tufts University in the Boston area. NetLogo grew out of

StarLogoT, which was authored by Wilensky in 1997. In 2000, the CCL moved to Northwestern University, in the Chicago area. NetLogo 1.0 came out in 2002, 2.0 in 2003, 3.0 in 2005, 4.0 in

2007, 4.1 in 2009, and 5.0 in 2012.

What programming language was NetLogo written in?

NetLogo is written mostly in Scala, with some parts in Java. (Scala code compiles to Java byte code and is fully interoperable with Java and other JVM languages.)

What’s the relationship between StarLogo and NetLogo?

The original StarLogo began at the MIT Media Lab in 1989 and ran on the Connection Machine. Later versions were developed for Macintosh computers: MacStarLogo (1994, MIT) and

StarLogoT (1997, Tufts).

Today there are two StarLogo descendants under active development: NetLogo (from the CCL at Northwestern University) and StarLogo TNG (from MIT). NetLogo is the most widely used

agent-based modeling environment in both education and research. StarLogo TNG is distinguished by its programming interface based on colored blocks.

Under what license is NetLogo released? Is the source code available?

NetLogo is free, open source software under the GPL (GNU General Public License), version 2, or (at your option) any later version.

Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at netlogo-commercial-admin@ccl.northwestern.edu.

The source code is on GitHub, here. Development discussion is on the netlogo-devel group.

The User Manual is published under a Creative Commons Attribution-ShareAlike license (CC BY-SA 3.0).

Source code for all of the extensions bundled with NetLogo is on GitHub, here. Most of the extensions are in the public domain (CC0 notice). Other extensions are released under open source

licenses. See each extension’s README for details.

The Code Examples in the Models Library are in the public domain (CC0 notice).

The rest of the models in the Models Library are provided under a variety of licenses. Some are public domain and some are open source, but most are under the Creative Commons Attribution-

ShareAlike license (CC BY-NC-SA), which is not an open source license, though the models are free for noncommercial distribution and use.

See each model’s Info tab to check its particular license.

The models are in a public Git repository here.

Do you offer any workshops or other training opportunities for NetLogo?

We offer workshops from time to time. If a workshop has been scheduled, we will announce it on the NetLogo Forum and the NetLogo Users Group.

file:///tmp/sbt_6c39b28e/contact.html
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
http://www.gnu.org/licenses/gpl-2.0.html
https://github.com/NetLogo/NetLogo
https://groups.google.com/group/netlogo-devel
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/
https://creativecommons.org/about/cc0
https://creativecommons.org/about/cc0
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/NetLogo/models
https://forum.netlogo.org/
http://groups.google.com/d/forum/netlogo-users

Are there any NetLogo textbooks?

The CCL has published a textbook (written by the author of NetLogo) that gives an introduction to agent-based modeling methods using NetLogo. It goes step by step with coding examples

how to design, build, revise, and analyze models. And it presents some advanced techniques.

See www.intro-to-abm.com for more information on that textbook.

See the Textbooks section of our Resources page.

We at the CCL have hoped to write several more NetLogo textbooks. These could be aimed at different audiences, such as: middle school, high school, undergraduate course in modeling or

complexity, practical guide for interested adults.

Unfortunately, we have not yet been able to find the time to make these happen. If anyone from the user community would like to collaborate on such a venture, please let us know. We would

welcome it.

Is NetLogo available in other languages besides English?

So far, the NetLogo user interface has been localized in English, Spanish, Chinese, Portuguese, Russian, and Japanese. All six languages are included in the standard download.

There is a BehaviorSpace Guide en Español.

We are seeking volunteers to complete and improve these localizations and to translate the NetLogo software and manual into as many other languages as possible. If you’re able to help in this

endeavor, please contact us.

Is NetLogo compiled or interpreted?

Short answer: some of both.

Long answer: NetLogo does include a compiler that generates Java byte code. However, this compiler does not yet support the entire language, so some parts of user code remain interpreted.

Note that our compiler generates Java byte code, and Java virtual machines have “just-in-time” compilers that in turn compile Java byte code all the way to native code, so much user code is

ultimately translated to native code.

Has anyone built a model of <x>?

Try looking at the NetLogo Models Library, the NetLogo Modeling Commons, our Community Models page, and our list of references to NetLogo in outside works.

You might also ask the question on the NetLogo Forum](https://forum.netlogo.org/) and the NetLogo Users Group and/or search past messages on the group.

Are NetLogo models runs scientifically reproducible?

Yes. NetLogo’s pseudorandom number generator and agent scheduling algorithms are deterministic, and NetLogo always uses Java’s “strict math” library, which gives bit-for-bit identical results

regardless of platform. But keep the following cautions in mind:

If your model uses random numbers, then in order to get reproducible behavior, you must use the random-seed command to set the random seed in advance, so that your model will receive

the exact same sequence of random numbers every time. Remember that agentsets are always in random order, so anything you do with agentsets uses random numbers.

If your model uses the every or wait commands in such a way that affects the outcome of the model, then you may get different results on different computers, or even on the same

computer, since the model may run at a different speed.

In order to reproduce model runs exactly, you must be using the exact same version of NetLogo. The details of the agent scheduling mechanism and the random number generator may

change between NetLogo versions, and other changes (bugfixes in the engine, language changes, and so forth) may also affect the behavior of your model. (Then again, they may not.)

We have expended every effort to make NetLogo model runs fully reproducible, but of course this can never truly be an iron-clad guarantee, due not only to the possibility of random

hardware failure, but also the possibility of human error in the design of: your model, NetLogo, your Java VM, your hardware, and so on.

Will NetLogo and NetLogo 3D remain separate?

For now, yes. NetLogo 3D is included with NetLogo, but it is still a separate application.

Ideally a single unified application would support both 2D and 3D modeling. We would design the 3D world support so it doesn’t get in the way when you are building 2D models. Models built in

NetLogo 3D might require changes in order to run in the hypothetical unified application.

Can I run NetLogo on my phone or tablet?

There is a version of NetLogo called Turtle Universe which runs on phones and tablets. You can download it here.

However the full NetLogo desktop application can run on neither iOS, nor Android, nor Windows RT because they do not support running Java applications such as NetLogo.

We are working on an alternate implementation of NetLogo on a JavaScript and HTML5 base, instead of Java. It will work on a variety of tablets and phones. We don’t know yet when it will be

ready, and we expect that for a long time it will only support a subset of the features in desktop NetLogo. The many person-years of development effort that have gone into the Java version

can’t cheaply or easily be replicated on another platform.

For technical details on this new project, go here.

Downloading

http://www.intro-to-abm.com/
http://ccl.northwestern.edu/netlogo/resources.shtml
file:///tmp/sbt_6c39b28e/behaviorspace-spanish.html
file:///tmp/sbt_6c39b28e/contact.html
http://ccl.northwestern.edu/netlogo/models/
http://modelingcommons.org/
http://ccl.northwestern.edu/netlogo/models/community/
http://ccl.northwestern.edu/netlogo/references.shtml
https://forum.netlogo.org/
http://groups.google.com/d/forum/netlogo-users
https://turtlesim.com/products/turtle-universe
https://github.com/NetLogo/NetLogo/wiki/Tortoise

Can I have multiple versions of NetLogo installed at the same time?

Yes. When you install NetLogo, the folder that is created contains has the version number in its name, so multiple versions can coexist.

On Windows systems, whichever version you installed last will be the version that opens when you double click a model file in Windows Explorer. On Macs, you can control what version opens

via “Get Info” in the Finder.

I’m on a UNIX system and I can’t untar the download. Why?

Some of the files in the tarball have long pathnames, too long for the standard tar format. You must use the GNU version of tar instead (or another program which understands the GNU tar

extensions). On some systems, the GNU version of tar is available under the name “gnutar”. You can find out if you are already using the GNU version by typing tar --version and seeing if

the output says “tar (GNU tar)”.

How do I install NetLogo unattended?

It depends on which platform you are using.

Linux: Untar NetLogo into the appropriate place.

Mac: Copy the NetLogo directory from the disk image into the Applications folder.

Windows: The installer is an MSI which can be run using one of the following commands (these may require admin privileges):

msiexec.exe /i C:\Path\to\NetLogo.msi ALLUSERS=1 ADDLOCAL=Shortcuts :: To install with desktop shortcuts

msiexec.exe /i C:\Path\to\NetLogo.msi ALLUSERS=1 ADDLOCAL=BaseInstall :: To install without desktop shortcuts

We also maintain an advanced installation wiki page which may have additional tips and tricks. We encourage users who have problems with unattended installation or ideas on how it could be

improved to email feedback@ccl.northwestern.edu.

Running

Can I run NetLogo from a CD, a network drive, or a USB drive?

Yes. NetLogo runs fine from any file system, including read-only file systems.

Why is NetLogo so much slower when I unplug my Windows laptop?

Your computer is switching to power saving mode when unplugged. It’s normal for this to reduce speed a little, but unfortunately there is a bug in Java that drastically slows down Swing applica‑

tions, including NetLogo.

One workaround is to change the power settings on your computer so it doesn’t go into power saving mode when you unplug it. (If you do this, your battery won’t last as long.)

Another workaround is to run NetLogo with an option recommended by Oracle, by editing the NetLogo 7.0.2.vmoptions file, found in the NetLogo directory (under Program Files on your hard

drive, unless you installed NetLogo in a different location). Add on a new line:

-Dsun.java2d.ddoffscreen=false

You can see the details of the Java bug and vote for Oracle to fix it here.

Why does NetLogo bundle Java?

Since Mac OS X Lion, Apple have encouraged Mac application developers to bundle Java. NetLogo bundles Java because it allows us to deliver a consistent, convenient experience to our

users. Bundling Java allows us to test for compatibility once and avoid any bugs caused by version mismatches or Java configuration incompatibilities.

If users are interested in using Java on their system instead of the version of Java bundled with NetLogo, they can configure NetLogo to use a different Java runtime. Please note that this

change is done at your own risk. We are unable to offer support for problems caused by running NetLogo with an alternate Java Runtime. To change the Java runtime used by NetLogo, open

the NetLogo.cfg file and modify the app.runtime property to the path of your preferred Java Runtime.

How come NetLogo won’t start up on my Linux machine?

We bundle Bellsoft’s OpenJDK-based Java runtime when using NetLogo on Linux. If you would like to change the version of linux used, you can modify the .cfg files to point to a different ver‑

sion of Java (see Where are the NetLogo Configuration Files? for more information).

In theory, any Java 11 or later runtime will run NetLogo. In practice, some Java implementations aren’t high enough quality. Recent versions of OpenJDK should work; older ones may not. GNU

libgcj does not work.

Ubuntu users should consult https://help.ubuntu.com/community/Java.

When I try to install NetLogo on Windows, I see “Windows protected your PC”

Windows attempts to protect users from downloading malicious software by maintaining a list of “good” and “malicious” software. The first users to install any NetLogo release will see this

warning. Later users may or may not see this warning. Before going any further, ensure you are protected. The CCL can only vouch for NetLogo downloads hosted on the CCL Website. NetLogo

https://github.com/NetLogo/NetLogo/wiki/Advanced-Installation
mailto:feedback@ccl.northwestern.edu?subject=Unattended%20Installation
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id
https://help.ubuntu.com/community/Java

can be freely downloaded from the official NetLogo download page. If you obtain NetLogo from anywhere else, you install it at your own risk!

You can continue past the Windows prompt by taking the following steps:

In the “Windows protected your PC” prompt, click “More Info”, the prompt will change

In the changed prompt, click “Run Anyway” and continue with installation as normal

Note in order to see the “More Info” or “Run Anyway” options, you will need to run the installer as an administrator. If you do not see those options, right-click and choose “Run as administrator”

and/or change your user account to an administrator account before installing.

We at the CCL are working on solving this problem and hope to free our users of the added installation difficulty soon!

When I try to start NetLogo on Windows I get an error “The JVM could not be started”. Help!

A nearly certain fix is to use a text editor to edit the NetLogo.cfg file, changing 1024m to a smaller number, like 512m. This should permit NetLogo to start, although the lower heap size limit may

affect your ability to run models with many agents. See How big can my model be? for information on model size and how to edit the cfg file.

If running with the lower heap size limit is unacceptable, read on.

Some Windows systems have trouble allocating large amounts of contiguous virtual memory. Upgrading to a newer version of Windows may help.

Running Windows in 64-bit mode instead of 32-bit mode may also help. Double check that Windows is actually running in 64-bit mode; see Microsoft’s FAQ page on 64-bit Windows.

NetLogo won’t start on Mac OS Sierra (or later)

Some users have reported problems opening NetLogo 6 on Mac OS Sierra and later (We don’t yet know if this is an issue with NetLogo 7). We’ve been unable to determine a root cause for this

problem, but we’re continuing to investigate. We’re looking for assistance from you if you run into this problem. It would be extremely helpful if you could run the following command in the

“Terminal” application and send the output in an email to bugs@ccl.northwestern.edu.

xattr -pl com.apple.quarantine /Applications/NetLogo\ 7.0.2/NetLogo\ 7.0.2.app

running it should give you a single line of output (something like com.apple.quarantine: 01e1;58ac6af2;Firefox;F2E0B1E2-D203-4B05-8DF9-ABA58B52EFEA , but yours will have different num‑
bers, letters, and words). Please copy and paste this string into the email you send us.

There is also a partial workaround! Running the following command in the Terminal will enable users to run NetLogo without turning Gatekeeper completely off. The command is:

sudo xattr -dr com.apple.quarantine /Applications/NetLogo\ 7.0.2/NetLogo\ 7.0.2.app

Note that if you plan to run NetLogo 3D or HubNet Client you may also need to re-run that command once for each of those applications. If the workaround was not effective for you, please

send us an email and let us know.

NetLogo won’t start on Windows or crashes suddenly on Mac OS Sierra

Some users on Mac OS with discrete graphics cards experience sudden crashes of NetLogo when switching between integrated and discrete graphics. It’s possible to prevent these crashes by

disabling automatic graphics switching in System Preferences.

Some Windows users may also be unable to open NetLogo due to graphics card settings or drivers. If you are unable to open NetLogo on Windows, you might be able to fix this by updating or

reinstalling your graphics driver and/or disabling any graphics card utilities. Because NetLogo might be unable to start for a number of reasons, we encourage you to contact us if these steps

aren’t effective in resolving the problem.

How can I speed up the launching of NetLogo on a remote server that is behind a proxy?

In a few cases involving a remote server that is behind a proxy, NetLogo users have observed startup times of several minutes. So far all of these cases have been on Linux systems.

This happens when NetLogo makes a request over the network to update information about extensions and their latest versions and there is a problem getting the response. We offer the follow‑
ing workaround.

Turn off the request to update the extensions information by setting the java preference netlogo.libraries.disabled=true by editing the NetLogo configuration file. Add the following line to the

section with java-options (order doesn’t matter)

java-options=-Dnetlogo.libraries.disabled=true

If you want to allow the updates again, you can set the value to false, or remove that preference. (see Where are the NetLogo Configuration Files? for more information)

Can I run NetLogo from the command line, without the GUI?

Yes. The easiest way is to set up your model run or runs as a BehaviorSpace experiment. No additional programming is required. See Running from the command line.

Another option is to use our Controlling API. Some light Java programming is required. See the Controlling API Guide for details and sample code.

Does NetLogo take advantage of multiple processors?

Only when using BehaviorSpace. BehaviorSpace does parallel runs, one per processor. See Run options: parallel runs.

For a single model run, only one processor is used.

http://ccl.northwestern.edu/netlogo/download.shtml
https://windows.microsoft.com/en-US/windows-vista/32-bit-and-64-bit-Windows-frequently-asked-questions
mailto:bugs@ccl.northwestern.edu?subject=Sierra%20NetLogo%206%20Bug
mailto:bugs@ccl.northwestern.edu?subject=Sierra%20NetLogo%206%20Bug%20Workaround
https://support.apple.com/en-us/HT202043
mailto:bugs@ccl.northwestern.edu?subject=NetLogo%206%20Launch%20Problem%20in%20Windows
https://github.com/NetLogo/NetLogo/wiki/Controlling-API

We are seeking funding to make it possible to split a single model run across multiple processors or multiple computers.

Can I distribute NetLogo model runs across a cluster or grid of computers?

Many of the same comments in the previous answer apply. It is not possible to split a single model run across multiple computers, but you can have each machine in a cluster doing one or more

separate, independent model runs, using either BehaviorSpace or our Controlling API. We don’t have automated support for splitting the runs across clusters, so you’ll need to arrange that

yourself.

Various users are already using NetLogo on clusters, with a variety of hardware and software. You can seek them out on the NetLogo Forum and the NetLogo Users Group.

Is there any way to recover lost work if NetLogo crashes or freezes?

Yes. NetLogo auto-saves files as you are working on them. The path to the auto-save file depends on whether or not the NetLogo model has been saved.

For NetLogo models which have been saved, a hidden file with the name “.filename.tmp.nlogo” will be created in the same directory as the NetLogo model.

For unsaved NetLogo models, autosave files can be found in your OS-specific java temporary directory. The files are named according to the following format: autosave_yyyy-MM-

dd.HH_mm_ss.nlogo where the time and date are the time and date the model was opened. The exact path will depend on your operating system:

On Mac OS, the temporary directory is /var/folders/68/<30-character-alphanumeric-sequence>/T/ . The 30-character-alphanumeric-sequence is unique to each machine.

On Windows the logs can be found in C:\Users\<user>\AppData\Local\Temp , where <user> is the logged in user.

On most non-Mac Unix-like systems the temp directory is /tmp .

Why is HubNet Discovery Not Working?

HubNet discovery provides the ability for HubNet clients running on the same local network as the HubNet server to automatically display the IP address and current activity of the server. This

uses IPv4 multicast over a local area network - it won’t identify HubNet servers on the internet or on different networks. Some networks also do not support multicast traffic and it will simply not

work on those networks. For HubNet Discovery to work, the server must be broadcasting to the same network that the client is polling for messages. Often, both the client and server are only

connected to a single network and there is no need for further configuration.

Since NetLogo 6.0.3, we have tools in place to allow clients and/or servers connected to multiple networks to select the network on which they will broadcast/listen. When running a HubNet

server, this is done by selecting the appropriate “broadcast network” via selection dropdown when starting a HubNet server. This preference will be remembered until NetLogo is restarted, so if

you end up needing to broadcast on a different network, restart NetLogo. HubNet clients also see a similar dropdown when selecting which activity to join. Unlike HubNet server, clients may

change the network on which they listen at any time. HubNet discovery will only work when both client and server are listening/broadcasting on the same network, so some trial and error may

be required to figure out a working configuration. Generally speaking, the shared network is the one on which the client and the server have the most similar IP address prefixes. For instance, if

the server selects to broadcast on a network where it has IP address 192.168.0.101, a client should prefer listening on a network where it has an IP like 192.167.0.203 over a network where it has

an IP like 10.5.0.101. Even when the same network is selected, it is possible that that network may not support IPv4 multicast, in which case discovery will not work and clients must enter IP

addresses manually.

Note that the change made in 6.0.3 simply enable selection of the network on which clients and servers broadcast/listen on. The HubNet server still listens on all network connections, so all

listed IP addresses given in the server broadcast network selection dropdown are potentially valid for a HubNet client (even a client on a different network) to connect to. Similarly HubNet

clients may connect to any HubNet server reachable from their computer.

Usage

When I move the speed slider all the way to the right, why does my model seem to stop?

The only way NetLogo can make your model run faster is by updating the view less frequently. As you move the speed slider to the right, view updates become less and less frequent. Since

view updates take time, that means more speed.

However, fewer updates also means that the updates come farther apart. When several seconds pass between updates, it may seem like your model has stopped. It hasn’t. It’s running at full

speed. Watch the tick counter! (If your model uses it. If it doesn’t, watch something else, like a plot.)

To get a feel for what’s going on, try moving the slider to the right gradually rather than suddenly. If you find the updates too infrequent at the rightmost position, just don’t push the slider that

far.

Can I use the mouse to “paint” in the view?

NetLogo does not have a built-in set of painting tools for painting in the view. But with only a few lines of code, you can add painting capability to your model. To see how it’s done, look at

Mouse Example, in the Code Examples section of the Models Library. The same techniques can be used to let the user interact with your model using the mouse in other ways, too.

Another possibility is to create an image in another program and import it using the import items on the File menu or the import-* primitives.

How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?

We have tested NetLogo with models that use hundreds of megabytes of RAM and they work fine. We have reports from NetLogo users that they have run models that required up to 50 giga‑
bytes of RAM to use millions of patches and tens of thousands of agents, and they worked as desired with the proper Java settings. Theoretically the only limit is the RAM available on your sys‑

tem, but you might hit some limits that are inherent in the underlying Java runtime or the operating system (either designed-in limits, or bugs).

The NetLogo engine has no fixed limits on model size. By default NetLogo sets Java to use up to half of your available system memory. If your model exceeds that memory limit, you’ll get an

OutOfMemoryError dialog.

If you are using BehaviorSpace, note that doing runs in parallel will multiply your RAM usage accordingly. Similarly, using LevelSpace with many child models increases RAM usage greatly.

If you want to increase the memory limit Java uses, you can do so using the NetLogo app configuration files.

https://forum.netlogo.org/
http://groups.google.com/d/forum/netlogo-users

Locate the section of the file that looks like the following:

[JavaOptions]

there may be one or more lines, leave them unchanged

java-options=-XX:MaxRAMPercentage=50

there may be one or more lines, leave them unchanged

You can change the percentage number from 50 to whatever you want. Save the file and restart NetLogo for the setting to take effect. If you need to set an exact amount of memory (as

opposed to a percentage), you can also comment out the java-options=-XX:MaxRAMPercentage=50 line with a # at the start and add a new line with java-options=-Xmx####m . Replace the

####m with whatever amount of memory you like; using 4096m would limit NetLogo to 4096 megabytes of memory, or 4 gigabytes.

Where are the NetLogo Configuration Files?

Each platform contains configuration files (with the extension “.cfg”) containing JVM settings. There is one configuration file for each sub-application (NetLogo, NetLogo 3D, HubNet Client,

etc.). Windows also has a configuration file for the NetLogo_Console app; on macOS and Linux the configuration file for NetLogo_Console is just the NetLogo.cfg file. Although the file location

varies by platform, the process for changing it is the same.

Platform specific notes follow:

Windows: The file will typically be in C:\Program Files\NetLogo 7.0.2\app , unless you are running 32 bit NetLogo on a 64 bit Windows, then it will be in C:\Program Files (x86)\NetLogo

7.0.2\app .

Mac OS X: The file for NetLogo will be located at: /Applications/NetLogo 7.0.2/NetLogo 7.0.2.app/Contents/app/NetLogo 7.0.2.cfg For NetLogo 3D and the other applications, you will

find the file in the corresponding location for each application package. You can reach the configuration file by control-clicking the application in the Finder and choosing “Show Package

Contents” from the popup menu.

Please note that depending on your version of Mac OS X, changing the configuration file may break application signing. If this happens, follow Apple’s directions on this page to temporarily

allow apps from “Anywhere”, run NetLogo once, then restore the setting to “Mac App Store and Identified Developers”.

Linux: The configuration files will be located in the lib/app directory of your NetLogo installation.

By default, Mac builds of NetLogo bundle a 64-bit JVM. Windows and Linux will bundle a 32-bit or 64-bit JVM, depending on which version you have downloaded. It is recommended that you

install 64-bit NetLogo on all 64-bit operating systems for best performance.

Can I use GIS data in NetLogo?

Yes, many users are using GIS data with NetLogo. The most complete way to do that is with the GIS extension. See the GIS Extension Guide.

A simpler way is to use import-pcolors , but that only works for importing maps that are images, not maps in other formats.

It is also possible to write NetLogo code that reads GIS data using our file I/O primitives such as file-open . For example, see the Grand Canyon model in the Earth Science section of Sample

Models.

My model runs slowly. How can I speed it up?

Here’s some ways to make it run faster without changing the structure of the code:

Use tick-based view updates, not continuous updates.

Decrease the frequency of view updates by pushing the speed slider to the right, or turn updates off using the checkbox.

If your model is using all available RAM on your computer, then installing more RAM should help. If your hard drive makes a lot of noise while your model is running, you probably need more

RAM.

Use turtle size 1, 1.5, or 2, as the 2D renderings for these sizes are cached by NetLogo. (This only affects graphics speed in the 2D view, not computation speed.)

In many cases, though, if you want your model to run faster, you may need to make some changes to the code. Usually the most obvious opportunity for speedup is that you’re doing too many

computations that involve all the turtles or all the patches. Often this can be reduced by reworking the model so that it does less computation per time step. The members of the NetLogo Users

Groupand participants in the NetLogo Forum may be able to help with this.

You wil find useful advice in the article Improving Execution Speed of Models Implemented in NetLogo.

The profiler extension is useful for identifying which parts of your code are taking the most time.

Unless you are running the exact same strings over and over, using run and runresult are much slower than running code directly; you should avoid using these primitives on fresh strings in

performance-critical code.

Can I have more than one model open at a time?

One instance of NetLogo can only have one model open at a time. (Unfortunately, it is unlikely that this will change in a future version, due to the engineering difficulties involved.)

You can have multiple models open by opening multiple instances of NetLogo, though. On Windows and Linux, simply start the application again. On a Mac, you’ll need to duplicate the applica‑
tion (not the whole folder, just the application itself) in the Finder, then open the copy. (The copy takes up only a very small amount of additional disk space.)

Can I change the choices in a chooser on the fly?

No.

Can I divide the code for my model up into several files?

On an experimental basis, this is available using the __includes keyword.

https://support.apple.com/en-us/HT202491
file:///tmp/sbt_6c39b28e/gis.html
http://groups.google.com/d/forum/netlogo-users
http://groups.google.com/d/forum/netlogo-users
https://forum.netlogo.org/
https://www.jasss.org/20/1/3.html
file:///tmp/sbt_6c39b28e/profiler.html

Programming

How does the NetLogo language differ from other Logos?

This is answered in detail at the end of the Programming Guide.

How come my model from an earlier NetLogo doesn’t work right?

See the Transition Guide for help.

How do I take the negative of a number?

Any of these ways:

(- x)

-1 * x

0 - x

With the first way, the parentheses are required.

My turtle moved forward 1, but it’s still on the same patch. Why?

If you have disabled wrapping at the world edges in your model, then the turtle might be at a world edge and unable to move any further. You can test for this using can-move? .

Assuming the turtle isn’t hitting a world edge, moving forward 1 is only guaranteed to take a turtle to a new patch if the turtle’s heading is a multiple of 90 (that is, exactly north, south, east, or

west).

It’s because the turtle might not be standing in the center of a patch. It might be near the corner of a patch. For example, suppose your turtle is close to the southwest corner of a patch and is

facing northeast. The length of the patch diagonal is 1.414… (the square root of two), so fd 1 will leave the turtle near the northeast corner of the same patch.

If you don’t want to have to think about these issues, one possibility is to write your model in such a way that your turtles always come to rest on patch centers. See next question.

How do I keep my turtles on patch centers?

A turtle is on a patch center when its xcor and ycor are integers.

You can move a turtle to the center of its current patch with either of these two equivalent commands:

move-to patch-here

setxy pxcor pycor

But you’ll never need to do that if you never allow turtles off of patch centers in the first place.

The sprout command creates turtles on patch centers. For example:

ask n-of 50 patches [sprout 1 [face one-of neighbors4]]

Another way for a turtle to start on a patch center is with a command such as this line of turtle code, which moves it to the center of a random patch:

move-to one-of patches

Once a turtle is on a patch center, as long as its heading always stays an exact multiple of 90 (that is to say, due north, east, south, or west), and as it long as it moves forward or back by integer

amounts, it will always land on patch centers.

See Random Grid Walk Example, in the Code Examples section of the Models Library, to see these code snippets in use.

patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?

See the answer two answers up. It’s the same issue.

This might not be the meaning of “ahead” you were expecting. With patch-ahead , you must specify the distance ahead that you want to look. If you want to know the next patch a turtle would

cross into if it moved forward continuously, it is possible to find that out. See Next Patch Example, in the Code Examples section of the Models Library.

How do I give my turtles “vision”?

You can use in-radius to let a turtle see a circular area around it.

Several primitives let the turtle “look” at specific points. The patch-ahead primitive is useful for letting a turtle see what is directly in front of it. If you want the turtle to look in another direction

besides straight ahead, try patch-left-and-ahead and patch-right-and-ahead .

file:///tmp/sbt_6c39b28e/programming.html
file:///tmp/sbt_6c39b28e/transition.html

If you want the turtle to have a full “cone” of vision, use the in-cone primitive.

You can also find out the next patch a turtle would cross into if it moved forward continuously. See Next Patch Example, in the Code Examples section of the Models Library.

Can agents sense what’s in the drawing layer?

No. If you want to make marks that agents can sense, use patch colors.

I’m getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?

See the “Math” section of the Programming Guide for a discussion of this issue.

The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to be
included?

It really doesn’t matter. Even if 1 were a possible result, it would only come up approximately 1 in 2^64 tries, which means you’d be waiting hundreds of years before it ever came up exactly 1.

Nonetheless, if you are convinced that it really must be possible to get 1, you can use precision to round your answer to a certain number of decimal places. For example:

print precision (random-float 1) 10

0.2745173723

(If you use this method, note that 0 and 1 are only half as likely to come up as other answers. To see why this is so, consider the case where you only keep one digit after the decimal point.

Results between 0 and 0.5 get rounded to 0, but results between 0.5 and 1.5 get rounded to 1; the latter range is twice as large. If you want 0, 0.1, 0.2, …, 0.9, and 1 to all be equally likely, an

alternative is to write random 11 / 10 ; this gives all 11 answers with equal probability.)

Why is the number value in my monitor widget changing even though nothing is happening in my model?

This is caused by a combination of a few things:

1. NetLogo’s use of floating point numbers, which can produce small accuracy issues. See Floating point accuracy in the NetLogo programming guide.

2. Agentsets such as turtles are always returned in a random order.

3. Monitors re-run their reporter calculation constantly, even when you are not running any model code with a forever button or through the command center.

So the monitor constantly re-runs its mean [xcor] of turtles reporter, but the turtles agentset gives the turtles in a random order, and so the floating-point inaccuracies for mean will accu‑

mulate in a slightly different way each time due to the order differences. The end result is you see very slightly different numbers flashing through the monitor widget while nothing is happening.

You see the same problem doing sum [xcor] of turtles , variance [xcor] of turtles , or standard-deviation [xcor] of turtles - anytime you’re reducing a bunch of floating point

numbers from an agentset into a single value. You can also see the problem running your reporter code directly in the command center repeatedly, without a monitor widget at all.

The fixes are straightforward:

Sort your numbers before you calculate: mean sort [xcor] of turtles , sum sort [xcor] of turtles , variance sort [xcor] of turtles . If the numbers are in the same order you’ll

still have small floating-point inaccuracies, but they’ll be the the same every time so you won’t see the values change. This is probably the best solution, but it can be slow if you have a really

large agentset.

Change the Decimal places setting of your monitors to a number where you don’t notice the changing values. Since the differences in results should be small, this is usually possible.

How can I keep two turtles from occupying the same patch?

See One Turtle Per Patch Example, in the Code Examples section of the Models Library.

How can I find out if a turtle is dead?

When a turtle dies, it turns into nobody . nobody is a special value used in NetLogo used to indicate the absence of a turtle or patch. So for example:

if turtle 0 != nobody [...]

You could also use is-turtle? :

if is-turtle? turtle 0 [...]

Does NetLogo have arrays?

Nearly all models should just use lists for this.

The usual motivation for using arrays in other programming languages is that they provide fast random access (item) and mutation (replace-item). But NetLogo’s lists, even though they are

immutable, now provide near constant time performance on these operations.

Lists in earlier versions of NetLogo (4.1 and 4.0) were simple singly-linked lists and therefore these operations took linear time. The data structure underlying NetLogo’s lists now is the

immutable Vector class from the Scala collections library. It uses 32-wide hash array mapped tries, as implemented by Tiark Rompf, based in part on work by Phil Bagwell and Rich Hickey.

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

If you are certain you want to use raw, mutable JVM arrays in your model, they are provided by the array extension. See the Arrays & Tables section of the User Manual.

Does NetLogo have hash tables or associative arrays?

Yes, using the table extension. See the Arrays & Tables section of the User Manual.

How can I use different patch “neighborhoods” (circular, Von Neumann, Moore, etc.)?

The in-radius primitives lets you access circular neighborhoods of any radius.

The neighbors primitive gives you a Moore neighborhood of radius 1, and the neighbors4 primitive gives you a Von Neumann neighborhood of radius 1.

For Moore or Von Neumann neighborhoods of a larger radius, see Moore & Von Neumann Example in the Code Examples section of the Models Library.

How can I convert an agentset to a list of agents, or vice versa?

If you want the list in a particular order, use the sort or sort-by primitives. The Lists section of the Programming Guide explains how to do this. See also Ask Ordering Example, in the Code

Examples section of the Models Library.

If you want the list in a random order, here’s how:

[self] of <agentset>

Because all operations on agentsets are in random order, the resulting list is in random order.

To convert a list of agents to an agentset, use the turtle-set , patch-set , or link-set primitives.

How do I stop foreach?

To stop a foreach from executing you need to define a separate procedure that contains only the foreach, for example:

to test

 foreach [1 2 3] [i ->

 if i = 2 [stop]

 print i

]

end

This code will only print the number 1. The stop returns from the current procedure so nothing after the foreach will be executed either. (If the procedure is a reporter procedure, use report

instead of stop .)

I’m trying to make a list. Why do I keep getting the error “Expected a literal value”?

If a list contains only literal values, you can write it down just by putting square brackets around it, like [1 2 3] .

If you want your list to contain items that may vary at runtime, the list cannot be written down directly. Instead, you build it using the list primitive.

BehaviorSpace

You can find details about using BehaviorSpace at BehaviorSpace Guide and BehaviorSpace Guide en Español

Why are the rows in my BehaviorSpace table results out of order?

This is normal when doing multiple runs in parallel. For a discussion of the issue, see the section on parallel runs in the Table Output section of the BehaviorSpace Guide.

How do I measure runs every n ticks?

Use mod in your experiment’s Run Metrics when text box, e.g.:

ticks mod 10 = 0

to measure the run after every 10 ticks.

I’m varying a global variable I declared in the Code tab, but it doesn’t work. Why?

It’s probably because your setup commands or setup procedure are using clear-all , causing the values set by BehaviorSpace to be cleared.

One possible workaround is to change your experiment’s setup commands to preserve the value of the variable, e.g.:

file:///tmp/sbt_6c39b28e/behaviorspace.html
file:///tmp/sbt_6c39b28e/behaviorspace-spanish.html

let old-var1 var1

setup

set var1 old-var1

This works because even clear-all doesn’t clear the values of local variables made with let

Another possible workaround is to change your model’s setup procedure to use more specific clearing commands to clear only what you want cleared.

NetLogo 3D

Does NetLogo work with my stereoscopic device?

NetLogo supports fullscreen exclusive mode. If that is all your device needs then, possibly yes. However, it can be tricky to get it working. We don’t have any such devices so it is difficult for us

to make the process easier. If your device needs something else, for example, quadbuffers enabled, the answer is probably no.

Extensions

I’m writing an extension. Why does the compiler say it can’t find org.nlogo.api?

You need to add NetLogo.jar to your classpath when compiling. NetLogo.jar is included with NetLogo.

NetLogo Dictionary

Alphabetical: A B C D E F G H I J L M N O P R S T U VW X Y ->

Categories: Turtle - Patch - Links - Agentset - Color - Anonymous Procedures - Control/Logic - World

Perspective - Input/Output - File - List - String - Math - Plotting - System - HubNet

Special: Variables - Keywords - Constants

Categories

This is an approximate grouping. Remember that a turtle-related primitive might still be used by patches or the observer, and vice versa. To see which agents (turtles, patches, links, observer)

can actually run a primitive, consult its dictionary entry.

Turtle-related

back (bk) <breeds>-at <breeds>-here <breeds>-on can-move? clear-turtles (ct) create-<breeds> create-ordered-<breeds> create-ordered-turtles (cro) create-turtles

(crt) die distance distancexy downhill downhill4 dx dy face facexy forward (fd) hatch hatch-<breeds> hide-turtle (ht) home inspect is-<breed>? is-turtle? jump

layout-circle left (lt) move-to myself nobody no-turtles of other patch-ahead patch-at patch-at-heading-and-distance patch-here patch-left-and-ahead patch-

right-and-ahead pen-down (pd) pen-erase (pe) pen-up (pu) random-xcor random-ycor right (rt) self set-default-shape __set-line-thickness setxy shapes show-turtle

(st) sprout sprout-<breeds> stamp stamp-erase stop-inspecting subject subtract-headings tie towards towardsxy turtle turtle-set turtles turtles-at turtles-here

turtles-on turtles-own untie uphill uphill4

Patch-related

clear-patches (cp) diffuse diffuse4 distance distancexy import-pcolors import-pcolors-rgb inspect is-patch? myself neighbors neighbors4 nobody no-patches of

other patch patch-at patch-ahead patch-at-heading-and-distance patch-here patch-left-and-ahead patch-right-and-ahead patch-set patches patches-own random-pxcor

random-pycor self sprout sprout-<breeds> stop-inspecting subject turtles-here

Link-related

both-ends clear-links create-<breed>-from create-<breeds>-from create-<breed>-to create-<breeds>-to create-<breed>-with create-<breeds>-with create-link-from cre‑

ate-links-from create-link-to create-links-to create-link-with create-links-with die directed-link-breed hide-link in-<breed>-neighbor? in-<breed>-neighbors in-

<breed>-from in-link-neighbor? in-link-neighbors in-link-from inspect is-directed-link? is-link? is-link-set? is-<link-breed>? is-undirected-link? layout-radial

layout-spring layout-tutte <breed>-neighbor? <breed>-neighbors <breed>-with link-heading link-length link-neighbor? link links links-own <link-breeds>-own link-

neighbors link-with my-<breeds> my-in-<breeds> my-in-links my-links my-out-<breeds> my-out-links no-links other-end out-<breed>-neighbor? out-<breed>-neighbors

out-<breed>-to out-link-neighbor? out-link-neighbors out-link-to show-link stop-inspecting tie undirected-link-breed untie

Agentset

all? any? ask ask-concurrent at-points <breeds>-at <breeds>-here <breeds>-on count in-cone in-radius is-agent? is-agentset? is-patch-set? is-turtle-set? link-

set max-n-of max-one-of member? min-n-of min-one-of n-of neighbors neighbors4 no-links no-patches no-turtles of one-of other patch-set patches sort sort-by

sort-on turtle-set turtles turtles-at turtles-here turtles-on up-to-n-of who-are-not with with-max with-min

Color

approximate-hsb approximate-rgb base-colors color extract-hsb extract-rgb hsb import-pcolors import-pcolors-rgb pcolor rgb scale-color shade-of? wrap-color

Control flow and logic

and ask ask-concurrent carefully end error error-message every if ifelse ifelse-value let loop not or repeat report run runresult ; (semicolon) set stop

startup to to-report wait while with-local-randomness without-interruption xor

Anonymous Procedures

-> (anonymous procedure) filter foreach is-anonymous-command? is-anonymous-reporter? map n-values reduce run runresult sort-by

World

clear-all (ca) clear-drawing (cd) clear-globals clear-patches (cp) clear-ticks clear-turtles (ct) display import-drawing import-pcolors import-pcolors-rgb no-dis‑

play max-pxcor max-pycor min-pxcor min-pycor patch-size reset-ticks resize-world set-patch-size stop-inspecting-dead-agents tick tick-advance ticks world-width

world-height

Perspective

follow follow-me reset-perspective (rp) ride ride-me subject watch watch-me

HubNet

hubnet-broadcast hubnet-broadcast-clear-output hubnet-broadcast-message hubnet-clear-override hubnet-clear-overrides hubnet-clients-list hubnet-enter-message? hub‑

net-exit-message? hubnet-kick-all-clients hubnet-kick-client hubnet-fetch-message hubnet-message hubnet-message-source hubnet-message-tag hubnet-message-waiting?

hubnet-reset hubnet-reset-perspective hubnet-send hubnet-send-clear-output hubnet-send-follow hubnet-send-message hubnet-send-override hubnet-send-watch

Input/output

beep clear-output date-and-time export-view export-interface export-output export-plot export-all-plots export-world import-drawing import-pcolors import-pcol‑

ors-rgb import-world mouse-down? mouse-inside? mouse-xcor mouse-ycor output-print output-show output-type output-write print read-from-string reset-timer set-

current-directory show timer type user-directory user-file user-new-file user-input user-message user-one-of user-yes-or-no? write

File

file-at-end? file-close file-close-all file-delete file-exists? file-flush file-open file-print file-read file-read-characters file-read-line file-show file-

type file-write home-directory user-directory user-file user-new-file

List

but-first but-last empty? filter first foreach fput histogram insert-item is-list? item last length list lput map max member? min modes n-of n-values of

position one-of range reduce remove remove-duplicates remove-item replace-item reverse sentence shuffle sort sort-by sort-on sublist up-to-n-of

String

Operators (<, >, =, !=, <=, >=) but-first but-last empty? first insert-item is-string? item last length member? position remove remove-item read-from-string

replace-item reverse substring word

Mathematical

Arithmetic Operators (+, *, -, /, ^, <, >, =, !=, <=, >=) abs acos asin atan ceiling cos e exp floor int is-number? ln log max mean median min mod modes new-

seed pi precision random random-exponential random-float random-gamma random-normal random-poisson random-seed remainder round sin sqrt standard-deviation sub‑

tract-headings sum tan variance

Plotting

autoplot? autoplotx? autoploty? auto-plot-off auto-plot-x-off auto-plot-y-off auto-plot-on auto-plot-x-on auto-plot-y-on clear-all-plots clear-plot create-tempo‑

rary-plot-pen export-plot export-all-plots histogram plot plot-name plot-pen-exists? plot-pen-down plot-pen-reset plot-pen-up plot-x-max plot-x-min plot-y-max

plot-y-min plotxy set-current-plot set-current-plot-pen set-histogram-num-bars set-plot-background-color set-plot-pen-color set-plot-pen-interval set-plot-pen-

mode set-plot-x-range set-plot-y-range setup-plots update-plots

BehaviorSpace

behaviorspace-experiment-name behaviorspace-run-number

System

netlogo-version netlogo-web?

Built-In Variables

Turtles

breed color heading hidden? label label-color pen-mode pen-size shape size who xcor ycor

Patches

pcolor plabel plabel-color pxcor pycor

Links

breed color end1 end2 hidden? label label-color shape thickness tie-mode

Keywords

breed directed-link-breed end extensions globals __includes links-own patches-own to to-report turtles-own undirected-link-breed

Constants

Mathematical Constants

e = 2.718281828459045

pi = 3.141592653589793

Boolean Constants

false

true

Color Constants

black = 0

gray = 5

white = 9.9

red = 15

orange = 25

brown = 35

yellow = 45

green = 55

lime = 65

turquoise = 75

cyan = 85

sky = 95

blue = 105

violet = 115

magenta = 125

pink = 135

See the Colors section of the Programming Guide for more details.

A

abs Since 1.0

abs number

Reports the absolute value of number.

show abs -7

=> 7

show abs 5

=> 5

acos Since 1.3

acos number

Reports the arc cosine (inverse cosine) of the given number. The input must be in the range -1 to 1. The result is in degrees, and lies in the range 0 to 180.

all? Since 4.0

all? agentset [reporter]

Reports true if all of the agents in the agentset report true for the given reporter. Otherwise reports false as soon as a counterexample is found.

If the agentset is empty, reports true.

The reporter must report a boolean value for every agent (either true or false), otherwise an error occurs.

if all? turtles [color = red]

 [show "every turtle is red!"]

See also any? .

and Since 1.0

boolean1 and boolean2

Reports true if both boolean1 and boolean2 are true. Otherwise reports false.

Note that if boolean1 is false, then boolean2 will not be run (since it can't affect the result). See the programming guide for more information on logical operator precedence.

if (pxcor > 0) and (pycor > 0)

 [set pcolor blue] ;; the upper-right quadrant of

 ;; patches turn blue

any? Since 2.0

any? agentset

Reports true if the given agentset is non-empty, false otherwise.

Equivalent to "count agentset > 0", but more efficient (and arguably more readable).

if any? turtles with [color = red]

 [show "at least one turtle is red!"]

Note: nobody is not an agentset. You only get nobody back in situations where you were expecting a single agent, not a whole agentset. If any? gets nobody as input, an error results.

See also all? , nobody .

approximate-hsb Since 4.0

approximate-hsb hue saturation brightness

Reports a number in the range 0 to 140, not including 140 itself, that represents the given color, specified in the HSB spectrum, in NetLogo's color space.

The first value (hue) should be in the range of 0 to 360, the second and third (saturation and brightness) in the range between 0 and 100.

The color reported may be only an approximation, since the NetLogo color space does not include all possible colors.

show approximate-hsb 0 0 0

=> 0 ;; (black)

show approximate-hsb 180 57.143 76.863

=> 85 ;; (cyan)

See also extract-hsb , approximate-rgb , extract-rgb .

approximate-rgb Since 4.0

approximate-rgb red green blue

Reports a number in the range 0 to 140, not including 140 itself, that represents the given color, specified in the RGB spectrum, in NetLogo's color space.

All three inputs should be in the range 0 to 255.

The color reported may be only an approximation, since the NetLogo color space does not include all possible colors.

show approximate-rgb 0 0 0

=> 0 ;; black

show approximate-rgb 0 255 255

=> 85.2 ;; cyan

See also extract-rgb , approximate-hsb , and extract-hsb .

Arithmetic Operators

+ Since 1.0

* Since 1.0

- Since 1.0

/ Since 1.0

^ Since 1.0

< Since 1.0

> Since 1.0

= Since 1.0

!= Since 1.0

<= Since 1.0

>= Since 1.0

All of these operators take two inputs, and all act as "infix operators" (going between the two inputs, as in standard mathematical use). NetLogo correctly supports order of operations for

infix operators.

The operators work as follows: + is addition, * is multiplication, - is subtraction, / is division, ^ is exponentiation, < is less than, > is greater than, = is equal to, != is not equal to, <= is less

than or equal, >= is greater than or equal.

Note that the subtraction operator (-) always takes two inputs unless you put parentheses around it, in which case it can take one input. For example, to take the negative of x, write (- x),

with the parentheses.

All of the comparison operators also work on strings.

All of the comparison operators work on agents. Turtles are compared by who number. Patches are compared top to bottom left to right, so patch 0 10 is less than patch 0 9 and patch 9 0

is less than patch 10 0. Links are ordered by end points and in case of a tie by breed. So link 0 9 is before link 1 10 as the end1 is smaller, and link 0 8 is less than link 0 9. If there are multi‑

ple breeds of links unbreeded links will come before breeded links of the same end points and breeded links will be sorted in the order they are declared in the Code tab.

Agentsets can be tested for equality or inequality. Two agentsets are equal if they are the same type (turtle or patch or link) and contain the same agents.

If you are not sure how NetLogo will interpret your code, you should add parentheses.

show 5 * 6 + 6 / 3

=> 32

show 5 * (6 + 6) / 3

=> 20

Many extension objects may be tested for equality and inequality using = and !=. For instance, the array, matrix, and table objects returned by their respective extensions may be com‑
pared for equality / inequality. Extension objects may not be tested using <, >, <=, or >=.

asin Since 1.3

asin number

Reports the arc sine (inverse sine) of the given number. The input must be in the range -1 to 1. The result is in degrees, and lies in the range -90 to 90.

ask Since 1.0

ask agentset [commands]

ask agent [commands]

The specified agent or agentset runs the given commands. Because agentset members are always read in a random order, when ask is used with an agentset each agent will take its turn

in a random order. See Agentsets for more information.

ask turtles [fd 1]

 ;; all turtles move forward one step

ask patches [set pcolor red]

 ;; all patches turn red

ask turtle 4 [rt 90]

 ;; only the turtle with id 4 turns right

Note: only the observer can ask all turtles or all patches. This prevents you from inadvertently having all turtles ask all turtles or all patches ask all patches, which is a common mistake to

make if you're not careful about which agents will run the code you are writing.

Note: Only the agents that are in the agentset at the time the ask begins run the commands.

ask-concurrent Since 4.0

ask-concurrent agentset [commands]

This primitive exists only for backwards compatibility. We don't recommend using it new models.

The agents in the given agentset run the given commands, using a turn-taking mechanism to produce simulated concurrency. See the Ask-Concurrent section of the Programming Guide

for details on how this works.

Note: Only the agents that are in the agentset at the time the ask begins run the commands.

See also without-interruption .

at-points Since 1.0

agentset at-points [[x1 y1] [x2 y2] ...]

Reports a subset of the given agentset that includes only the agents on the patches at the given coordinates (relative to this agent). The coordinates are specified as a list of two-item

lists, where the two items are the x and y offsets.

If the caller is the observer, then the points are measured relative to the origin, in other words, the points are taken as absolute patch coordinates.

If the caller is a turtle, the points are measured relative to the turtle's exact location, and not from the center of the patch under the turtle.

ask turtles at-points [[2 4] [1 2] [10 15]]

 [fd 1] ;; only the turtles on the patches at the

 ;; coordinates (2,4), (1,2) and (10,15),

 ;; relative to the caller, move

atan Since 1.0

atan x y

Converts x and y offsets to a turtle heading in degrees (from 0 to 360).

Note that this version of atan is designed to conform to the geometry of the NetLogo world, where a heading of 0 is straight up, 90 is to the right, and so on clockwise around the circle.

(Normally in geometry an angle of 0 is right, 90 is up, and so on, counterclockwise around the circle, and atan would be defined accordingly.)

When y is 0: if x is positive, it reports 90; if x is negative, it reports 270; if x is zero, you get an error.

show atan 1 -1

=> 135

show atan -1 1

=> 315

crt 1 [set heading 30 fd 1 print atan xcor ycor]

=> 30

In the final example, note that the result of atan equals the turtle's heading.

If you ever need to convert a turtle heading (obtained with atan or otherwise) to a normal mathematical angle, the following should be helpful:

to-report heading-to-angle [h]

 report (90 - h) mod 360

end

autoplot? Since 1.0

autoplotx? Since 7.0

autoploty? Since 7.0

autoplot?

autoplotx?

autoploty?

Reports true if auto-plotting is on for the current plot or plot axis, false otherwise.

auto-plot-off Since 1.0

auto-plot-x-off Since 7.0

auto-plot-y-off Since 7.0

auto-plot-on Since 1.0

auto-plot-x-on Since 7.0

auto-plot-y-on Since 7.0

auto-plot-off

auto-plot-x-off

auto-plot-y-off

auto-plot-on

auto-plot-x-on

auto-plot-y-on

These pairs of commands are used to control the NetLogo feature of auto-plotting in the current plot. Auto-plotting will automatically update the x and y axes of the plot whenever the cur‑

rent pen exceeds these boundaries when adding a new point with plot or plotxy . When using histogram to plot values, only the y axis will automatically update its ranges, the x axis

will be unchanged. Each plot has an auto-plotting settings called Auto scale x-axis? and Auto scale y-axis? in the user interface that determines if the plot will enable auto-plotting when

the model starts. Auto-plotting is useful when wanting to show all plotted values in the current plot, regardless of the current plot ranges.

These commands will produce a runtime error if the current plot has not been set.

See also plot , plotxy , and histogram , and also the Plots section of the Interface Tab guide.

B

back Since 1.0

bk Since 1.0

back number

The turtle moves backward by number steps. (If number is negative, the turtle moves forward.)

Turtles using this primitive can move a maximum of one unit per time increment. So bk 0.5 and bk 1 both take one unit of time, but bk 3 takes three.

If the turtle cannot move backward number steps because it is not permitted by the current topology the turtle will complete as many steps of 1 as it can and stop.

See also forward , jump , can-move? .

base-colors Since 4.0

base-colors

Reports a list of the 14 basic NetLogo hues.

print base-colors

=> [5 15 25 35 45 55 65 75 85 95 105 115 125 135]

ask turtles [set color one-of base-colors]

;; each turtle turns a random base color

ask turtles [set color one-of remove gray base-colors]

;; each turtle turns a random base color except for gray

beep Since 2.1

beep

Emits a beep. Note that the beep sounds immediately, so several beep commands in close succession may produce only one audible sound.

Example:

beep ;; emits one beep

repeat 3 [beep] ;; emits 3 beeps at once,

 ;; so you only hear one sound

repeat 3 [beep wait 0.1] ;; produces 3 beeps in succession,

 ;; separated by 1/10th of a second

When running headless, this command has no effect.

behaviorspace-experiment-name Since 5.2

behaviorspace-experiment-name

Reports the current experiment name in the current experiment.

If no BehaviorSpace experiment is running, reports "".

behaviorspace-run-number Since 4.1.1

behaviorspace-run-number

Reports the current run number in the current BehaviorSpace experiment, starting at 1.

If no BehaviorSpace experiment is running, reports 0.

both-ends Since 4.0

both-ends

Reports the agentset of the 2 nodes connected by this link.

crt 2

ask turtle 0 [create-link-with turtle 1]

ask link 0 1 [

 ask both-ends [set color red] ;; turtles 0 and 1 both turn red

]

breed

breed

This is a built-in turtle and link variable. It holds the agentset of all turtles or links of the same breed as this turtle or link. (For turtles or links that do not have any particular breed, this is

the turtles agentset of all turtles or the links agentset of all links respectively.)

You can set this variable to change a turtle or link's breed. (When a turtle changes breeds, its shape is reset to the default shape for that breed. See set-default-shape .)

See also breed , directed-link-breed , undirected-link-breed

Example:

breed [cats cat]

breed [dogs dog]

;; turtle code:

if breed = cats [show "meow!"]

set breed dogs

show "woof!"

directed-link-breed [roads road]

;; link code

if breed = roads [set color gray]

breed

breed [<breeds> <breed>]

This keyword, like the globals, turtles-own, and patches-own keywords, can only be used at the beginning of the Code tab, before any procedure definitions. It defines a breed. The first

input defines the name of the agentset associated with the breed. The second input defines the name of a single member of the breed.

Any turtle of the given breed:

is part of the agentset named by the breed name

has its breed built-in variable set to that agentset

Most often, the agentset is used in conjunction with ask to give commands to only the turtles of a particular breed.

breed [mice mouse]

breed [frogs frog]

to setup

 clear-all

 create-mice 50

 ask mice [set color white]

 create-frogs 50

 ask frogs [set color green]

 show [breed] of one-of mice ;; prints mice

 show [breed] of one-of frogs ;; prints frogs

end

show mouse 1

;; prints (mouse 1)

show frog 51

;; prints (frog 51)

show turtle 51

;; prints (frog 51)

See also globals , patches-own , turtles-own , <breeds>-own , create-<breeds> , <breeds>-at , <breeds>-here .

but-first Since 1.0

butfirst Since 1.0

bf Since 1.0

but-last Since 1.0

butlast Since 1.0

bl Since 1.0

but-first list

but-first string

but-last list

but-last string

When used on a list, but-first reports all of the list items of list except the first, and but-last reports all of the list items of list except the last.

On strings, but-first and but-last report a shorter string omitting the first or last character of the original string.

;; mylist is [2 4 6 5 8 12]

set mylist but-first mylist

;; mylist is now [4 6 5 8 12]

set mylist but-last mylist

;; mylist is now [4 6 5 8]

show but-first "string"

;; prints "tring"

show but-last "string"

;; prints "strin"

C

can-move? Since 3.1

can-move? distance

Reports true if this turtle can move distance in the direction it is facing without violating the topology; reports false otherwise.

It is equivalent to:

 patch-ahead distance != nobody

carefully Since 2.1

carefully [commands1] [commands2]

Runs commands1. If a runtime error occurs inside commands1, NetLogo won't stop and alert the user that an error occurred. It will suppress the error and run commands2 instead.

The error-message reporter can be used in commands2 to find out what error was suppressed in commands1. See error-message .

carefully [print one-of [1 2 3]] [print error-message]

=> 3

observer> carefully [print one-of []] [print error-message]

=> ONE-OF got an empty list as input.

ceiling Since 1.0

ceiling number

Reports the smallest integer greater than or equal to number.

show ceiling 4.5

=> 5

show ceiling -4.5

=> -4

See also floor , round , precision .

clear-all Since 1.0

ca Since 1.0

clear-all

Combines the effects of clear-globals, clear-ticks, clear-turtles, clear-patches, clear-drawing, clear-all-plots, and clear-output.

clear-all-plots Since 1.0

clear-all-plots

Clears every plot in the model. See clear-plot for more information.

clear-drawing Since 3.0

cd Since 3.0

clear-drawing

Clears all lines and stamps drawn by turtles.

clear-globals Since 5.2

clear-globals

Sets all code-defined global variables (i.e., those defined inside of globals [...]) to 0. Global variables defined by widgets are not affected by this primitive.

clear-links Since 4.0

clear-links

Kills all links.

See also die .

clear-output Since 1.0

clear-output

Clears all text from the model's output area, if it has one. Otherwise does nothing.

clear-patches Since 1.0

cp Since 1.0

clear-patches

Clears the patches by resetting all patch variables to their default initial values, including setting their color to black.

clear-plot

clear-plot

In the current plot only, resets all plot pens, deletes all temporary plot pens, resets the plot to its default values (for x range, y range, etc.), and resets all permanent plot pens to their

default values. The default values for the plot and for the permanent plot pens are set in the plot Edit dialog, which is displayed when you edit the plot. If there are no plot pens after delet‑
ing all temporary pens, that is to say if there are no permanent plot pens, a default plot pen will be created with the following initial settings:

Pen: down

Color: black

Mode: 0 (line mode)

Name: "default"

Interval: 1

See also clear-all-plots .

This command will produce a runtime error if the current plot has not been set.

clear-ticks Since 5.0

clear-ticks

Clears the tick counter.

Does not set the counter to zero. After this command runs, the tick counter has no value. Attempting to access or update it is an error until reset-ticks is called. This is useful if you

want to set the model to a "pre-setup" state with some forever buttons disabled.

See also reset-ticks .

clear-turtles Since 1.0

ct Since 1.0

clear-turtles

Kills all turtles.

Also resets the who numbering, so the next turtle created will be turtle 0.

See also die .

color

color

This is a built-in turtle or link variable. It holds the color of the turtle or link. You can set this variable to make the turtle or link change color. Color can be represented either as a NetLogo

color (a single number), or an RGB color (a list of 3 numbers or 4 numbers with transparency). See details in the Colors section of the Programming Guide.

See also pcolor .

cos Since 1.0

cos number

Reports the cosine of the given angle. Assumes the angle is given in degrees.

show cos 180

=> -1

count Since 1.0

count agentset

Reports the number of agents in the given agentset.

show count turtles

;; prints the total number of turtles

show count patches with [pcolor = red]

;; prints the total number of red patches

create-ordered-turtles Since 4.0

cro Since 4.0

create-ordered-turtles number

create-ordered-turtles number [commands]

create-ordered<breeds> number

create-ordered<breeds> number [commands]

Creates number new turtles. New turtles start at position (0, 0), are created with the 14 primary colors, and have headings from 0 to 360, evenly spaced.

If the create-ordered-<breeds> form is used, the new turtles are created as members of the given breed.

If commands are supplied, the new turtles immediately run them. This is useful for giving the new turtles a different color, heading, or whatever. (The new turtles are created all at once

then run one at a time, in random order.)

If number is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

cro 100 [fd 10] ;; makes an evenly spaced circle

create-<breed>-to

create-<breeds>-to

create-<breed>-from

create-<breeds>-from

create-<breed>-with

create-<breeds>-with

create-link-to Since 4.0

create-links-to Since 4.0

create-link-from Since 4.0

create-links-from Since 4.0

create-link-with Since 4.0

create-links-with Since 4.0

create-<breed>-to turtle

create-<breed>-to turtle [commands]

create-<breed>-from turtle

create-<breed>-from turtle [commands]

create-<breed>-with turtle

create-<breed>-with turtle [commands]

create-<breeds>-to turtleset

create-<breeds>-to turtleset [commands]

create-<breeds>-from turtleset

create-<breeds>-from turtleset [commands]

create-<breeds>-with turtleset

create-<breeds>-with turtleset [commands]

create-link-to turtle

create-link-to turtle [commands]

create-link-from turtle

create-link-from turtle [commands]

create-link-with turtle

create-link-with turtle [commands]

create-links-to turtleset

create-links-to turtleset [commands]

create-links-from turtleset

create-links-from turtleset [commands]

create-links-with turtleset

create-links-with turtleset [commands]

Used for creating breeded and unbreeded links between turtles.

create-link-with creates an undirected link between the caller and agent. create-link-to creates a directed link from the caller to agent. create-link-from creates a directed link

from agent to the caller.

When the plural form of the breed name is used, an agentset is expected instead of an agent and links are created between the caller and all agents in the agentset.

The optional command block is the set of commands each newly formed link runs. (The links are created all at once then run one at a time, in random order.)

A node cannot be linked to itself. Also, you cannot have more than one undirected link of the same breed between the same two nodes, nor can you have more than one directed link of

the same breed going in the same direction between two nodes.

If you try to create a link where one (of the same breed) already exists, nothing happens. If you try to create a link from a turtle to itself you get a runtime error.

to setup

 clear-all

 create-turtles 5

 ;; turtle 1 creates links with all other turtles

 ;; the link between the turtle and itself is ignored

 ask turtle 0 [create-links-with other turtles]

 show count links ;; shows 4

 ;; this does nothing since the link already exists

 ask turtle 0 [create-link-with turtle 1]

 show count links ;; shows 4 since the previous link already existed

 ask turtle 2 [create-link-with turtle 1]

 show count links ;; shows 5

end

directed-link-breed [red-links red-link]

undirected-link-breed [blue-links blue-link]

to setup

 clear-all

 create-turtles 5

 ;; create links in both directions between turtle 0

 ;; and all other turtles

 ask turtle 0 [create-red-links-to other turtles]

 ask turtle 0 [create-red-links-from other turtles]

 show count links ;; shows 8

 ;; now create undirected links between turtle 0 and other turtles

 ask turtle 0 [create-blue-links-with other turtles]

 show count links ;; shows 12

end

create-turtles Since 1.0

crt Since 1.0

create-turtles number

create-turtles number [commands]

create-<breeds> number

create-<breeds> number [commands]

Creates number new turtles at the origin. New turtles have random integer headings and the color is randomly selected from the 14 primary colors.

If the create-<breeds> form is used, the new turtles are created as members of the given breed.

If commands are supplied, the new turtles immediately run them. This is useful for giving the new turtles a different color, heading, or whatever. (The new turtles are created all at once

then run one at a time, in random order.)

If number is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

crt 100 [fd 10] ;; makes a randomly spaced circle

breed [canaries canary]

breed [snakes snake]

to setup

 clear-all

 create-canaries 50 [set color yellow]

 create-snakes 50 [set color green]

end

See also hatch , sprout .

create-temporary-plot-pen Since 1.1

create-temporary-plot-pen string

A new temporary plot pen with the given name is created in the current plot and set to be the current pen.

Few models will want to use this primitive, because all temporary pens disappear when clear-plot or clear-all-plots are called. The normal way to make a pen is to make a permanent pen

in the plot's Edit dialog.

If a pen with that name already exists in the current plot, no new pen is created, and the existing pen is set to the current pen.

The new temporary plot pen has the following initial settings:

Pen: down

Color: black

Mode: 0 (line mode)

Interval: 1

This command will produce a runtime error if the current plot has not been set.

See: clear-plot , clear-all-plots , and set-current-plot-pen .

D

date-and-time Since 3.0

date-and-time

Reports a string containing the current date and time. The format is shown below. All fields are fixed width, so they are always at the same locations in the string. The potential resolution

of the clock is milliseconds. (Whether you get resolution that high in practice may vary from system to system, depending on the capabilities of the underlying Java Virtual Machine.)

show date-and-time

=> "01:19:36.685 PM 19-Sep-2002"

die Since 1.0

die

The turtle or link dies.

if xcor > 20 [die]

;; all turtles with xcor greater than 20 die

ask links with [color = blue] [die]

;; all the blue links will die

A dead agent ceases to exist. The effects of this include:

The agent will not execute any further code. So if you write ask turtles [die print "last words?"] , no last words will be printed, because the turtles are already dead before they

have a chance to print anything.

The agent will disappear from any agentsets it was in, reducing the size of those agentsets by one.

Any variable that was storing the agent will now instead have nobody in it. So for example let x one-of turtles ask x [die] print x prints nobody .

If the dead agent was a turtle, every link connected to it also dies.

If the observer was watching or following the agent, the observer's perspective resets, as if reset-perspective had been run.

See also: clear-turtles clear-links

diffuse Since 1.0

diffuse patch-variable number

Tells each patch to give equal shares of (number * 100) percent of the value of patch-variable to its eight neighboring patches. number should be between 0 and 1. Regardless of topol‑

ogy the sum of patch-variable will be conserved across the world. (If a patch has fewer than eight neighbors, each neighbor still gets an eighth share; the patch keeps any leftover

shares.)

Note that this is an observer command only, even though you might expect it to be a patch command. (The reason is that it acts on all the patches at once -- patch commands act on indi‑

vidual patches.)

diffuse chemical 0.5

;; each patch diffuses 50% of its variable

;; chemical to its neighboring 8 patches. Thus,

;; each patch gets 1/8 of 50% of the chemical

;; from each neighboring patch.)

diffuse4 Since 1.0

diffuse4 patch-variable number

Like diffuse, but only diffuses to the four neighboring patches (to the north, south, east, and west), not to the diagonal neighbors.

diffuse4 chemical 0.5

;; each patch diffuses 50% of its variable

;; chemical to its neighboring 4 patches. Thus,

;; each patch gets 1/4 of 50% of the chemical

;; from each neighboring patch.)

directed-link-breed

directed-link-breed [<link-breeds> <link-breed>]

This keyword, like the globals and breeds keywords, can only be used at the beginning of the Code tab, before any procedure definitions. It defines a directed link breed. Links of a partic‑

ular breed are always all directed or all undirected The first input defines the name of the agentset associated with the link breed. The second input defines the name of a single member

of the breed. Directed links can be created using create-link(s)-to , and create-link(s)-from , but not create-link(s)-with

Any link of the given link breed:

is part of the agentset named by the link breed name

has its built-in variable breed set to that agentset

is directed or undirected as declared by the keyword

Most often, the agentset is used in conjunction with ask to give commands to only the links of a particular breed.

directed-link-breed [streets street]

directed-link-breed [highways highway]

to setup

 clear-all

 crt 2

 ;; create a link from turtle 0 to turtle 1

 ask turtle 0 [create-street-to turtle 1]

 ;; create a link from turtle 1 to turtle 0

 ask turtle 0 [create-highway-from turtle 1]

end

ask turtle 0 [show one-of my-in-links]

;; prints (street 0 1)

ask turtle 0 [show one-of my-out-links]

;; prints (highway 1 0)

See also breed , undirected-link-breed

display Since 1.0

display

Causes the view to be updated immediately. (Exception: if the user is using the speed slider to fast-forward the model, then the update may be skipped.)

Also undoes the effect of the no-display command, so that if view updates were suspended by that command, they will resume.

no-display

ask turtles [jump 10 set color blue set size 5]

display

;; turtles move, change color, and grow, with none of

;; their intermediate states visible to the user, only

;; their final state

Even if no-display was not used, "display" can still be useful, because ordinarily NetLogo is free to skip some view updates, so that fewer total updates take place, so that models run

faster. This command lets you force a view update, so whatever changes have taken place in the world are visible to the user.

ask turtles [set color red]

display

ask turtles [set color blue]

;; turtles turn red, then blue; use of "display" forces

;; red turtles to appear briefly

Note that display and no-display operate independently of the switch in the view control strip that freezes the view.

See also no-display .

distance Since 1.0

distance agent

Reports the distance from this agent to the given turtle or patch.

The distance to or a from a patch is measured from the center of the patch. Turtles and patches use the wrapped distance (around the edges of the world) if wrapping is allowed by the

topology and the wrapped distance is shorter.

ask turtles [show max-one-of turtles [distance myself]]

;; each turtle prints the turtle farthest from itself

distancexy Since 1.0

distancexy x y

Reports the distance from this agent to the point (x, y).

The distance from a patch is measured from the center of the patch. Turtles and patches use the wrapped distance (around the edges of the world) if wrapping is allowed by the topology

and the wrapped distance is shorter.

if (distancexy 0 0) > 10

 [set color green]

;; all turtles more than 10 units from

;; the center of the world turn green.

downhill Since 1.0

downhill4 Since 1.0

downhill patch-variable

downhill4 patch-variable

Moves the turtle to the neighboring patch with the lowest value for patch-variable. If no neighboring patch has a smaller value than the current patch, the turtle stays put. If there are mul‑

tiple patches with the same lowest value, the turtle picks one randomly. Non-numeric values are ignored.

downhill considers the eight neighboring patches; downhill4 only considers the four neighbors.

Equivalent to the following code (assumes variable values are numeric):

 move-to patch-here ;; go to patch center

 let p min-one-of neighbors [patch-variable] ;; or neighbors4

 if [patch-variable] of p < patch-variable [

 face p

 move-to p

]

Note that the turtle always ends up on a patch center and has a heading that is a multiple of 45 (downhill) or 90 (downhill4).

See also uphill , uphill4 .

dx Since 1.0

dy Since 1.0

dx

dy

Reports the x-increment or y-increment (the amount by which the turtle's xcor or ycor would change) if the turtle were to take one step forward in its current heading.

Note: dx is simply the sine of the turtle's heading, and dy is simply the cosine. (If this is the reverse of what you expected, it's because in NetLogo a heading of 0 is north and 90 is east,

which is the reverse of how angles are usually defined in geometry.)

Note: In earlier versions of NetLogo, these primitives were used in many situations where the new patch-ahead primitive is now more appropriate.

E

empty? Since 1.0

empty? list

empty? string

Reports true if the given list or string is empty, false otherwise.

Note: the empty list is written [] . The empty string is written "" .

end

end

Used to conclude a procedure. See to and to-report .

end1 Since 4.0

end1

This is a built-in link variable. It indicates the first endpoint (turtle) of a link. For directed links this will always be the source for undirected links it will always be the turtle with the lower

who number. You cannot set end1.

crt 2

ask turtle 0

[create-link-to turtle 1]

ask links

[show end1] ;; shows turtle 0

end2 Since 4.0

end2

This is a built-in link variable. It indicates the second endpoint (turtle) of a link. For directed links this will always be the destination for undirected links it will always be the turtle with the

higher who number. You cannot set end2.

crt 2

ask turtle 1

[create-link-with turtle 0]

ask links

[show end2] ;; shows turtle 1

error Since 5.0

error value

Causes a runtime error to occur.

The given value is converted to a string (if it isn't one already) and used as the error message.

See also error-message , carefully .

error-message Since 2.1

error-message

Reports a string describing the error that was suppressed by carefully.

This reporter can only be used in the second block of a carefully command.

See also error , carefully .

every Since 1.0

every number [commands]

Runs the given commands only if it's been more than number seconds since the last time this agent ran them in this context. Otherwise, the commands are skipped.

By itself, every doesn't make commands run over and over again. You need to use every inside a loop, or inside a forever button, if you want the commands run over and over again. every

only limits how often the commands run.

Above, "in this context" means during the same ask (or button press or command typed in the Command Center). So it doesn't make sense to write ask turtles [every 0.5 [...]

] , because when the ask finishes the turtles will all discard their timers for the "every". The correct usage is shown below.

every 0.5 [ask turtles [fd 1]]

;; twice a second the turtles will move forward 1

every 2 [set index index + 1]

;; every 2 seconds index is incremented

See also wait .

exp Since 1.0

exp number

Reports the value of e raised to the number power.

Note: This is the same as e ^ number.

export-view Since 3.0

export-interface Since 2.0

export-output Since 1.0

export-plot Since 1.0

export-all-plots Since 1.2.1

export-world Since 1.0

export-view filename

export-interface filename

export-output filename

export-plot plotname filename

export-all-plots filename

export-world filename

export-view writes the current contents of the current view to an external file given by the string filename. The file is saved in PNG (Portable Network Graphics) format, so it is recom‑

mended to supply a filename ending in ".png".

export-interface is similar, but for the whole interface tab.

Note that export-view still works when running NetLogo in headless mode, but export-interface doesn't.

export-output writes the contents of the model's output area to an external file given by the string filename. (If the model does not have a separate output area, the output portion of the

Command Center is used.)

export-plot writes the x and y values of all points plotted by all the plot pens in the plot given by the string plotname to an external file given by the string filename. If a pen is in bar mode

(mode 0) and the y value of the point plotted is greater than 0, the upper-left corner point of the bar will be exported. If the y value is less than 0, then the lower-left corner point of the bar

will be exported.

export-all-plots writes every plot in the current model to an external file given by the string filename. Each plot is identical in format to the output of export-plot.

export-world writes the values of all variables, both built-in and user-defined, including all observer, turtle, and patch variables, the drawing, the contents of the output area if one exists,

the contents of any plots and the state of the random number generator, to an external file given by the string filename. (The result file can be read back into NetLogo with the import-

world primitive.) export-world does not save the state of open files.

export-plot, export-all-plots and export-world save files in in plain-text, "comma-separated values" (.csv) format. CSV files can be read by most popular spreadsheet and database pro‑
grams as well as any text editor.

If you wish to export to a file in a location other than the model's location, you should include the full path to the file you wish to export. (Use the forward-slash "/" as the folder separator.)

Note that the functionality of these primitives is also available directly from NetLogo's File menu.

export-world "fire.csv"

;; exports the state of the model to the file fire.csv

;; located in the NetLogo folder

export-plot "Temperature" "c:/My Documents/plot.csv"

;; exports the plot named

;; "Temperature" to the file plot.csv located in

;; the C:\My Documents folder

export-all-plots "c:/My Documents/plots.csv"

;; exports all plots to the file plots.csv

;; located in the C:\My Documents folder

If the file already exists, it is overwritten. To avoid this you may wish to use some method of generating fresh names. Examples:

export-world user-new-file

export-world (word "results " date-and-time ".csv") ;; Colon characters in the time cause errors on Windows

export-world (word "results " random-float 1.0 ".csv")

extensions

extensions [name ...]

Allows the model to use primitives from the extensions with the given names. See the Extensions guide for more information.

extract-hsb Since 1.0

extract-hsb color

Reports a list of three values, the first (hue) in the range of 0 to 360, the second and third (brightness and saturation) in the range of 0 to 100.

The given color can either be a NetLogo color in the range 0 to 140, not including 140 itself, or an RGB list of three values in the range 0 to 255 representing the levels of red, green, and

blue.

show extract-hsb cyan

=> [180 57.143 76.863]

show extract-hsb red

=> [3.103 80.93 84.314]

show extract-hsb [255 0 0]

=> [0 100 100]

See also approximate-hsb , approximate-rgb , extract-rgb .

extract-rgb Since 1.0

extract-rgb color

Reports a list of three values in the range 0 to 255 representing the levels of red, green, and blue, respectively, of the given NetLogo or RGB(A) color.

show extract-rgb red

=> [215 50 41]

show extract-rgb cyan

=> [84 196 196]

show extract-rgb [31 41 59]

=> [31 41 59]

See also approximate-rgb , approximate-hsb , extract-hsb .

F

face Since 3.0

face agent

Set the caller's heading towards agent.

If wrapping is allowed by the topology and the wrapped distance (around the edges of the world) is shorter, face will use the wrapped path.

If the caller and the agent are at the exact same position, the caller's heading won't change.

facexy Since 3.0

facexy x y

Set the caller's heading towards the point (x,y).

If wrapping is allowed by the topology and the wrapped distance (around the edges of the world) is shorter and wrapping is allowed, facexy will use the wrapped path.

If the caller is on the point (x,y), the caller's heading won't change.

file:///tmp/sbt_6c39b28e/extensions.html

file-at-end? Since 2.0

file-at-end?

Reports true when there are no more characters left to read in from the current file (that was opened previously with file-open). Otherwise, reports false.

file-open "my-file.txt"

print file-at-end?

=> false ;; Can still read in more characters

print file-read-line

=> This is the last line in file

print file-at-end?

=> true ;; We reached the end of the file

See also file-open , file-close-all .

file-close Since 2.0

file-close

Closes a file that has been opened previously with file-open .

Note that this and file-close-all are the only ways to restart to the beginning of an opened file or to switch between file modes.

If no file is open, does nothing.

See also file-close-all , file-open .

file-close-all Since 2.0

file-close-all

Closes all files (if any) that have been opened previously with file-open .

See also file-close , file-open .

file-delete Since 2.0

file-delete string

Deletes the file specified as string

string must be an existing file with writable permission by the user. Also, the file cannot be open. Use the command file-close to close an opened file before deletion.

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in whatever the current directory is. This can be changed using the command set-cur‑

rent-directory . It is defaulted to the model's directory.

file-exists? Since 2.0

file-exists? string

Reports true if string is the name of an existing file on the system. Otherwise it reports false.

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in whatever the current directory is. This can be changed using the command set-cur‑

rent-directory . It defaults to to the model's directory.

file-flush Since 4.0

file-flush

Forces file updates to be written to disk. When you use file-write or other output commands, the values may not be immediately written to disk. This improves the performance of the file

output commands. Closing a file ensures that all output is written to disk.

Sometimes you need to ensure that data is written to disk without closing the file. For example, you could be using a file to communicate with another program on your machine and want

the other program to be able to see the output immediately.

file-open Since 2.0

file-open string

This command will interpret string as a path name to a file and open the file. You may then use the reporters file-read , file-read-line , and file-read-characters to read in from

the file, or file-write , file-print , file-type , or file-show to write out to the file.

Note that you can only open a file for reading or writing but not both. The next file i/o primitive you use after this command dictates which mode the file is opened in. To switch modes,

you need to close the file using file-close .

Also, the file must already exist if opening a file in reading mode.

When opening a file in writing mode, all new data will be appended to the end of the original file. If there is no original file, a new blank file will be created in its place. (You must have write

permission in the file's directory.) (If you don't want to append, but want to replace the file's existing contents, use file-delete to delete it first, perhaps inside a carefully if you're not

sure whether it already exists.)

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in whatever the current directory is. This can be changed using the command set-cur‑

rent-directory . It is defaulted to the model's directory.

file-open "my-file-in.txt"

print file-read-line

=> First line in file ;; File is in reading mode

file-open "C:\\NetLogo\\my-file-out.txt"

;; assuming Windows machine

file-print "Hello World" ;; File is in writing mode

Opening a file does not close previously opened files. You can use file-open to switch back and forth between multiple open files.

See also file-close See also file-close-all .

file-print Since 2.0

file-print value

Prints value to an opened file, followed by a carriage return.

This agent is not printed before the value, unlike file-show .

Note that this command is the file i/o equivalent of print , and file-open needs to be called before this command can be used.

See also file-show , file-type , file-write , and Output (programming guide).

file-read Since 2.0

file-read

This reporter will read in the next constant from the opened file and interpret it as if it had been typed in the Command Center. It reports the resulting value. The result may be a number,

list, string, boolean, or the special value nobody.

Whitespace separates the constants. Each call to file-read will skip past both leading and trailing whitespace.

Note that strings need to have quotes around them. Use the command file-write to have quotes included.

Also note that the file-open command must be called before this reporter can be used, and there must be data remaining in the file. Use the reporter file-at-end? to determine if you

are at the end of the file.

file-open "my-file.data"

print file-read + 5

;; Next value is the number 1

=> 6

print length file-read

;; Next value is the list [1 2 3 4]

=> 4

Note: This primitive is not compatible with NetLogo Web. If you wish to read the contents of a file with the same code and the same behavior in both NetLogo and NetLogo Web, see

fetch:user-file-async.

See also file-open and file-write .

file-read-characters Since 2.0

file-read-characters number

Reports the given number of characters from an opened file as a string. If there are fewer than that many characters left, it will report all of the remaining characters.

Note that it will return every character including newlines and spaces.

Also note that the file-open command must be called before this reporter can be used, and there must be data remaining in the file. Use the reporter file-at-end? to determine if you

are at the end of the file.

file-open "my-file.txt"

print file-read-characters 5

;; Current line in file is "Hello World"

=> Hello

See also file-open .

file-read-line Since 2.0

file-read-line

Reads the next line in the file and reports it as a string. It determines the end of the file by a carriage return, an end of file character or both in a row. It does not return the line terminator

characters.

Also note that the file-open command must be called before this reporter can be used, and there must be data remaining in the file. Use the reporter file-at-end? to determine if you

are at the end of the file.

file-open "my-file.txt"

print file-read-line

=> Hello World

https://github.com/NetLogo/Fetch-Extension#readme

See also file-open .

file-show Since 2.0

file-show value

Prints value to an opened file, preceded by this agent agent, and followed by a carriage return. (This agent is included to help you keep track of what agents are producing which lines of

output.) Also, all strings have their quotes included similar to file-write .

Note that this command is the file i/o equivalent of show , and file-open needs to be called before this command can be used.

See also file-print , file-type , file-write , and Output (programming guide).

file-type Since 2.0

file-type value

Prints value to an opened file, not followed by a carriage return (unlike file-print and file-show). The lack of a carriage return allows you to print several values on the same line.

This agent is not printed before the value. unlike file-show .

Note that this command is the file i/o equivalent of type , and file-open needs to be called before this command can be used.

See also file-print , file-show , file-write , and Output (programming guide).

file-write Since 2.0

file-write value

This command will output value, which can be a number, string, list, boolean, or nobody to an opened file, not followed by a carriage return (unlike file-print and file-show).

This agent is not printed before the value, unlike file-show . Its output also includes quotes around strings and is prepended with a space. It will output the value in such a manner that

file-read will be able to interpret it.

Note that this command is the file i/o equivalent of write , and file-open needs to be called before this command can be used.

file-open "locations.txt"

ask turtles

 [file-write xcor file-write ycor]

See also file-print , file-show , file-type , and Output (programming guide).

filter Since 1.3

filter reporter list

Reports a list containing only those items of list for which the reporter reports true -- in other words, the items satisfying the given condition. reporter may be an anonymous reporter or

the name of a reporter.

show filter is-number? [1 "2" 3]

=> [1 3]

show filter [i -> i < 3] [1 3 2]

=> [1 2]

show filter [s -> first s != "t"] ["hi" "there" "everyone"]

=> ["hi" "everyone"]

See also map , reduce , -> (anonymous procedure) .

first Since 1.0

first list

first string

On a list, reports the first (0th) item in the list.

On a string, reports a one-character string containing only the first character of the original string.

floor Since 1.0

floor number

Reports the largest integer less than or equal to number.

show floor 4.5

=> 4

show floor -4.5

=> -5

See also ceiling , round , precision .

follow Since 3.0

follow turtle

Similar to ride, but, in the 3D view, the observer's vantage point is behind and above turtle.

The observer may only watch or follow a single subject. Calling follow will alter the highlight created by prior calls to watch and watch-me , highlighting the followed turtle instead.

See also follow-me , ride , reset-perspective , watch , subject .

follow-me Since 3.0

follow-me

Asks the observer to follow this turtle.

The observer may only watch or follow a single subject. Calling follow-me will remove the highlight created by prior calls to watch and watch-me , highlighting this turtle instead.

See also follow .

foreach Since 1.3

foreach list command

(foreach list1 ... command)

With a single list, runs the command for each item of list. command may be the name of a command, or an anonymous command created with -> .

foreach [1.1 2.2 2.6] show

=> 1.1

=> 2.2

=> 2.6

foreach [1.1 2.2 2.6] [x -> show (word x " -> " round x)]

=> 1.1 -> 1

=> 2.2 -> 2

=> 2.6 -> 3

With multiple lists, runs command for each group of items from each list. So, they are run once for the first items, once for the second items, and so on. All the lists must be the same

length.

Some examples make this clearer:

(foreach [1 2 3] [2 4 6]

 [[a b] -> show word "the sum is: " (a + b)])

=> "the sum is: 3"

=> "the sum is: 6"

=> "the sum is: 9"

(foreach list (turtle 1) (turtle 2) [3 4]

 [[the-turtle num-steps] -> ask the-turtle [fd num-steps]])

;; turtle 1 moves forward 3 patches

;; turtle 2 moves forward 4 patches

See also map , -> (anonymous procedure) .

forward Since 1.0

fd Since 1.0

forward number

The turtle moves forward by number steps, one step at a time. (If number is negative, the turtle moves backward.)

fd 10 is equivalent to repeat 10 [jump 1] . fd 10.5 is equivalent to repeat 10 [jump 1] jump 0.5 .

If the turtle cannot move forward number steps because it is not permitted by the current topology the turtle will complete as many steps of 1 as it can, then stop.

See also jump , can-move? .

fput Since 1.0

fput item list

Adds item to the beginning of a list and reports the new list.

;; suppose mylist is [5 7 10]

set mylist fput 2 mylist

;; mylist is now [2 5 7 10]

G

globals

globals [var1 ...]

This keyword, like the breed, <breeds>-own, patches-own, and turtles-own keywords, can only be used at the beginning of a program, before any function definitions. It defines new

global variables. Global variables are "global" because they are accessible by all agents and can be used anywhere in a model.

Most often, globals is used to define variables or constants that need to be used in many parts of the program.

H

hatch Since 1.0

hatch number [commands]

hatch-<breeds> number [commands]

This turtle creates number new turtles. Each new turtle inherits of all its variables, including its location, from its parent. (Exceptions: each new turtle will have a new who number, and it

may be of a different breed than its parent if the hatch-<breeds> form is used.)

The new turtles then run commands. You can use the commands to give the new turtles different colors, headings, locations, or whatever. (The new turtles are created all at once, then

run one at a time, in random order.)

If the hatch-<breeds> form is used, the new turtles are created as members of the given breed. Otherwise, the new turtles are the same breed as their parent.

hatch 1 [lt 45 fd 1]

;; this turtle creates one new turtle,

;; and the child turns and moves away

hatch-sheep 1 [set color black]

;; this turtle creates a new turtle

;; of the sheep breed

See also create-turtles , sprout .

heading

heading

This is a built-in turtle variable. It indicates the direction the turtle is facing. This is a number greater than or equal to 0 and less than 360. 0 is north, 90 is east, and so on. You can set this

variable to make a turtle turn.

See also right , left , dx , dy .

Example:

set heading 45 ;; turtle is now facing northeast

set heading heading + 10 ;; same effect as "rt 10"

hidden?

hidden?

This is a built-in turtle or link variable. It holds a boolean (true or false) value indicating whether the turtle or link is currently hidden (i.e., invisible). You can set this variable to make a turtle

or link disappear or reappear.

See also hide-turtle , show-turtle , hide-link , show-link

Example:

set hidden? not hidden?

;; if turtle was showing, it hides, and if it was hiding,

;; it reappears

hide-link Since 4.0

hide-link

The link makes itself invisible.

Note: This command is equivalent to setting the link variable "hidden?" to true.

See also show-link .

hide-turtle Since 1.0

ht Since 1.0

hide-turtle

The turtle makes itself invisible.

Note: This command is equivalent to setting the turtle variable "hidden?" to true.

See also show-turtle .

histogram Since 1.0

histogram list

Histograms the values in the given list

Draws a histogram showing the frequency distribution of the values in the list. The heights of the bars in the histogram represent the numbers of values in each subrange.

Before the histogram is drawn, first any previous points drawn by the current plot pen are removed.

Any non-numeric values in the list are ignored.

The histogram is drawn on the current plot using the current plot pen and pen color. Auto scaling does not affect a histogram's horizontal range, so set-plot-x-range should be used to

control the range, and the pen interval can then be set (either directly with set-plot-pen-interval , or indirectly via set-histogram-num-bars) to control how many bars that range is

split up into.

Be sure that if you want the histogram drawn with bars that the current pen is in bar mode (mode 1).

For histogramming purposes the plot's X range is not considered to include the maximum X value. Values equal to the maximum X will fall outside of the histogram's range.

histogram [color] of turtles

;; draws a histogram showing how many turtles there are

;; of each color

This command will produce a runtime error if either the current plot or the current pen has not been set.

See also set-histogram-num-bars , set-plot-pen-interval , set-plot-x-range .

home Since 1.0

home

This turtle moves to the origin (0,0). Equivalent to setxy 0 0 .

home-directory Since 6.4.1

home-directory

Reports the user's home directory.

hsb Since 1.0

hsb hue saturation brightness

Reports a RGB list when given three numbers describing an HSB color. Hue, saturation, and brightness are integers in the range 0-360, 0-100, 0-100 respectively. Input values will be

clamped to these ranges before converting to RGB. The RGB list contains three integers in the range of 0-255.

See also rgb

hubnet-broadcast Since 1.1

hubnet-broadcast tag-name value

This broadcasts value from NetLogo to the interface element with the name tag-name on the clients.

See the HubNet Authoring Guide for details and instructions.

hubnet-broadcast-clear-output Since 4.1

hubnet-broadcast-clear-output

This clears all messages printed to the text area on every client.

See also: hubnet-broadcast-message , hubnet-send-clear-output

hubnet-broadcast-message Since 4.1

hubnet-broadcast-message value

file:///tmp/sbt_6c39b28e/hubnet-authoring.html

This prints the value in the text area on each client. This is the same functionality as the "Broadcast Message" button in the HubNet Control Center.

See also: hubnet-send-message

hubnet-clear-override Since 4.1

hubnet-clear-overrides Since 4.1

hubnet-clear-override client agent-or-set variable-name

hubnet-clear-overrides client

Remove overrides from the override list on client. hubnet-clear-override removes only the override for the specified variable for the specified agent or agentset. hubnet-clear-over‑

rides removes all overrides from the specified client.

See also: hubnet-send-override

hubnet-clients-list Since 5.0

hubnet-clients-list

Reports a list containing the names of all the clients currently connected to the HubNet server.

hubnet-enter-message? Since 1.2.1

hubnet-enter-message?

Reports true if a new client just entered the simulation. Reports false otherwise. hubnet-message-source will contain the user name of the client that just logged on.

See the HubNet Authoring Guide for details and instructions.

hubnet-exit-message? Since 1.2.1

hubnet-exit-message?

Reports true if a client just exited the simulation. Reports false otherwise. hubnet-message-source will contain the user name of the client that just logged off.

See the HubNet Authoring Guide for details and instructions.

hubnet-fetch-message Since 1.1

hubnet-fetch-message

If there is any new data sent by the clients, this retrieves the next piece of data, so that it can be accessed by hubnet-message , hubnet-message-source , and hubnet-message-tag . This

will cause an error if there is no new data from the clients.

See the HubNet Authoring Guide for details.

hubnet-kick-client Since 5.0

hubnet-kick-client client-name

Kicks the client with the given client-name. This is equivalent to clicking the client name in the HubNet Control Center and pressing the Kick button.

hubnet-kick-all-clients Since 5.0

hubnet-kick-all-clients

Kicks out all currently connected HubNet clients. This is equivalent to selecting all clients in the HubNet Control Center and pressing the Kick button.

hubnet-message Since 1.1

hubnet-message

Reports the message retrieved by hubnet-fetch-message .

See the HubNet Authoring Guide for details.

hubnet-message-source Since 1.1

hubnet-message-source

Reports the name of the client that sent the message retrieved by hubnet-fetch-message .

See the HubNet Authoring Guide for details.

file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html

hubnet-message-tag Since 1.1

hubnet-message-tag

Reports the tag that is associated with the data that was retrieved by hubnet-fetch-message . The tag will be one of the Display Names of the interface elements in the client interface.

See the HubNet Authoring Guide for details.

hubnet-message-waiting? Since 1.1

hubnet-message-waiting?

This looks for a new message sent by the clients. It reports true if there is one, and false if there is not.

See the HubNet Authoring Guide for details.

hubnet-reset Since 1.1

hubnet-reset

Starts up the HubNet system. HubNet must be started to use any of the other hubnet primitives.

See the HubNet Authoring Guide for details.

hubnet-reset-perspective Since 4.1

hubnet-reset-perspective tag-name

Clears watch or follow sent directly to the client. The view perspective will revert to the server perspective.

See also: hubnet-send-watch hubnet-send-follow

hubnet-send Since 1.1

hubnet-send string tag-name value

hubnet-send list-of-strings tag-name value

For a string, this sends value from NetLogo to the tag tag-name on the client that has string for its user name.

For a list-of-strings, this sends value from NetLogo to the tag tag-name on all the clients that have a user name that is in the list-of-strings.

Sending a message to a non-existent client, using hubnet-send , generates a hubnet-exit-message .

See the HubNet Authoring Guide for details.

hubnet-send-clear-output Since 4.1

hubnet-send-clear-output string

hubnet-send-clear-output list-of-strings

This clears all messages printed to the text area on the given client or clients (specified in the string or list-of-strings.

See also: hubnet-send-message , hubnet-broadcast-clear-output

hubnet-send-follow Since 4.1

hubnet-send-follow client-name agent radius

Tells the client associated with client-name to follow agent showing a radius sized Moore neighborhood around the agent.

A client may only watch or follow a single subject. Calling hubnet-send-follow will alter the highlight created by prior calls to hubnet-send-watch , highlighting the followed agent

instead.

See also: hubnet-send-watch , hubnet-reset-perspective

hubnet-send-message Since 4.1

hubnet-send-message string value

This prints value in the text area on the client specified by string .

See also: hubnet-broadcast-message

hubnet-send-override Since 4.1

hubnet-send-override client-name agent-or-set variable-name

[reporter]

file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html
file:///tmp/sbt_6c39b28e/hubnet-authoring.html

Since 6.1

Evaluates reporter for the agent or agentset indicated then sends the values to the client to "override" the value of variable-name only on client-name. This is used to change the appear‑

ance of agents in the client view, hence, only built-in variables that affect the appearance of the agent may be selected. For example, you can override the color variable of a turtle:

ask turtles [hubnet-send-override client-name self "color" [red]]

In this example assume that there is a turtles-own variable client-name which is associated with a logged in client, and all the turtles are blue. This code makes the turtle associated with

each client appear red in his or her own view but not on anyone else's or on the server.

See also: hubnet-clear-overrides

hubnet-send-watch Since 4.1

hubnet-send-watch client-name agent

Tells the client associated with client-name to watch agent.

A client may only watch or follow a single subject. Calling hubnet-send-watch will undo perspective changes caused by prior calls to hubnet-send-follow .

See also: hubnet-send-follow , hubnet-reset-perspective

I

if Since 1.0

if boolean [commands]

If boolean reports true then the commands are run, otherwise the commands are not run if boolean reports false.

If boolean reports a value other than true or false a runtime error will occur.

The boolean may report a different value for different agents when used with a primitive like ask , so some agents may run commands and others don't.

ask turtles [

 if xcor > 0 [set color blue]

 ;; turtles in the right half of the world

 ;; turn blue

]

See also ifelse , ifelse-value .

ifelse Since 1.0

ifelse boolean1 [commands1] [elsecommands]

(ifelse boolean1 [commands1] boolean2 [commands2] ... [elsecommands])

For the first boolean that reports true, runs the commands that follow.

If no boolean reports true, runs elsecommands or does nothing if elsecommands is not given. When using only one boolean you do not need to surround the entire ifelse primitive and its

blocks in parentheses.

If a boolean reports a value other than true or false a runtime error will occur.

ask patches

 [ifelse pxcor > 0

 [set pcolor blue]

 [set pcolor red]]

;; the left half of the world turns red and

;; the right half turns blue

The reporters may report a different value for different agents, so some agents may run different command blocks. When using more than one boolean you must surround the whole ifelse

primitive and its blocks in parentheses. This functionality was added in NetLogo 6.1.

ask patches [

 let choice random 4

 (ifelse

 choice = 0 [

 set pcolor red

 set plabel "r"

]

 choice = 1 [

 set pcolor blue

 set plabel "b"

]

 choice = 2 [

 set pcolor green

 set plabel "g"

]

 ; elsecommands

 [

 set pcolor yellow

 set plabel "y"

])

]

Since 6.1

See also if , ifelse-value .

ifelse-value Since 2.0

ifelse-value boolean1 [reporter1] [elsereporter]

(ifelse-value boolean1 [reporter1] boolean2 [reporter2] ... [elsereporter])

For the first boolean that reports true, runs the reporter that follows and reports that result. When using only one boolean you do not need to surround the entire ifelse-value primitive and

its blocks in parentheses.

If all booleans report false, the result is the value of elsereporter. You may leave out the elsereporter, but if all booleans report false then a runtime error will occur.

If a boolean reports a value other than true or false a runtime error will occur.

This can be used when a conditional is needed in the context of a reporter, where commands (such as ifelse) are not allowed.

ask patches [

 set pcolor ifelse-value (pxcor > 0) [blue] [red]

]

;; the left half of the world turns red and

;; the right half turns blue

show n-values 10 [n -> ifelse-value (n < 5) [0] [1]]

=> [0 0 0 0 0 1 1 1 1 1]

show reduce [[a b] -> ifelse-value (a > b) [a] [b]]

 [1 3 2 5 3 8 3 2 1]

=> 8

When using more than one boolean you must surround the whole ifelse-value primitive and its blocks in parentheses. This functionality was added in NetLogo 6.1.

ask patches [

 let choice random 4

 set pcolor (ifelse-value

 choice = 0 [red]

 choice = 1 [blue]

 choice = 2 [green]

 [yellow])

]

A runtime error can occur if there is no elsereporter.

ask patches [

 let x = 2

 set pcolor (ifelse-value

 x = 0 [red]

 x = 1 [blue]

 ; no final else reporter is given, and x is 2 so there will be a runtime error

)

See also if , ifelse .

import-drawing Since 3.0

import-drawing filename

Reads an image file into the drawing, scaling it to the size of the world, while retaining the original aspect ratio of the image. The image is centered in the drawing. The old drawing is not

cleared first.

Agents cannot sense the drawing, so they cannot interact with or process images imported by import-drawing. If you need agents to sense an image, use import-pcolors or import-

pcolors-rgb .

The following image file formats are supported: BMP, JPG, GIF, and PNG. If the image format supports transparency (alpha), that information will be imported as well.

Note: This primitive is not compatible with NetLogo Web. If you wish to import a drawing with the same code and the same behavior in both NetLogo and NetLogo Web, see import-

a:drawing.

import-pcolors Since 3.0

import-pcolors filename

Reads an image file, scales it to the same dimensions as the patch grid while maintaining the original aspect ratio of the image, and transfers the resulting pixel colors to the patches. The

image is centered in the patch grid. The resulting patch colors may be distorted, since the NetLogo color space does not include all possible colors. (See the Color section of the

Programming Guide.) import-pcolors may be slow for some images, particularly when you have many patches and a large image with many different colors.

Since import-pcolors sets the pcolor of patches, agents can sense the image. This is useful if agents need to analyze, process, or otherwise interact with the image. If you want to simply

display a static backdrop, without color distortion, see import-drawing .

The following image file formats are supported: BMP, JPG, GIF, and PNG. If the image format supports transparency (alpha), then all fully transparent pixels will be ignored. (Partially trans‑

parent pixels will be treated as opaque.)

Note: This primitive is not compatible with NetLogo Web. If you wish to import patch colors with the same code and the same behavior in both NetLogo and NetLogo Web, see import-

a:pcolors.

import-pcolors-rgb Since 4.0

https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme

import-pcolors-rgb filename

Reads an image file, scales it to the same dimensions as the patch grid while maintaining the original aspect ratio of the image, and transfers the resulting pixel colors to the patches. The

image is centered in the patch grid. Unlike import-pcolors the exact colors in the original image are retained. The pcolor variable of all the patches will be an RGB list rather than an

(approximated) NetLogo color.

The following image file formats are supported: BMP, JPG, GIF, and PNG. If the image format supports transparency (alpha), then all fully transparent pixels will be ignored. (Partially trans‑
parent pixels will be treated as opaque.)

Note: This primitive is not compatible with NetLogo Web. If you wish to import patch colors with the same code and the same behavior in both NetLogo and NetLogo Web, see import-

a:pcolors-rgb.

import-world Since 1.0

import-world filename

Reads the values of all variables for a model, both built-in and user-defined, including all observer, turtle, and patch variables, from an external file named by the given string. The file

should be in the format used by the export-world primitive.

Note that the functionality of this primitive is also directly available from NetLogo's File menu.

When using import-world, to avoid errors, perform these steps in the following order:

1. Open the model from which you created the export file.

2. Press the Setup button, to get the model in a state from which it can be run.

3. Import the file.

4. Re-open any files that the model had opened with the file-open command.

5. If you want, press Go button to continue running the model from the point where it left off.

If you wish to import a file from a location other than the model's location, you may include the full path to the file you wish to import. See export-world for an example.

Note: This primitive is not compatible with NetLogo Web. If you wish to import a world with the same code and the same behavior in both NetLogo and NetLogo Web, see import-a:world.

in-cone Since 3.0

agentset in-cone distance angle

This reporter lets you give a turtle a "cone of vision" in front of itself. The cone is defined by the two inputs, the vision distance (radius) and the viewing angle. The viewing angle may

range from 0 to 360 and is centered around the turtle's current heading. (If the angle is 360, then in-cone is equivalent to in-radius.)

in-cone reports an agentset that includes only those agents from the original agentset that fall in the cone. (This can include the agent itself.)

The distance to a patch is measured from the center of the patch.

ask turtles

 [ask patches in-cone 3 60

 [set pcolor red]]

;; each turtle makes a red "splotch" of patches in a 60 degree

;; cone of radius 3 ahead of itself

in-<breed>-neighbor?

in-link-neighbor? Since 4.0

in-<breed>-neighbor? agent

in-link-neighbor? turtle

Reports true if there is a directed link going from turtle to the caller or an undirected link connecting turtle to the caller. You can think of this as "is there a link I can use to get from turtle to

the caller?"

crt 2

ask turtle 0 [

 create-link-to turtle 1

 show in-link-neighbor? turtle 1 ;; prints false

 show out-link-neighbor? turtle 1 ;; prints true

]

ask turtle 1 [

 show in-link-neighbor? turtle 0 ;; prints true

 show out-link-neighbor? turtle 0 ;; prints false

]

in-<breed>-neighbors

in-link-neighbors Since 4.0

in-<breed>-neighbors

in-link-neighbors

https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme

Reports the agentset of all the turtles that have directed links coming from them to the caller as well as all turtles that have an undirected link connecting them with the caller. You can

think of this as "all the turtles that can get to the caller using a link."

crt 4

ask turtle 0 [create-links-to other turtles]

ask turtle 1 [ask in-link-neighbors [set color blue]] ;; turtle 0 turns blue

in-<breed>-from

in-link-from Since 4.0

in-<breed>-from turtle

in-link-from turtle

Reports a directed link from turtle to the caller or an undirected link connecting the two. If no link exists then it reports nobody. If more than one such link exists, reports a random one. You

can think of this as "give me a link that I can use to travel from turtle to the caller."

crt 2

ask turtle 0 [create-link-to turtle 1]

ask turtle 1 [show in-link-from turtle 0] ;; shows link 0 1

ask turtle 0 [show in-link-from turtle 1] ;; shows nobody

See also: out-link-to link-with

__includes Since 4.0

__includes [filename ...]

Causes external NetLogo source files (with the .nls suffix) to be included in this model. Included files may contain breed, variable, and procedure definitions. __includes can only be

used once per file.

The file names must be strings, for example:

__includes ["utils.nls"]

Or, for multiple files:

__includes ["utils1.nls" "utils2.nls"]

in-radius Since 1.0

agentset in-radius number

Reports an agentset that includes only those agents from the original agentset whose distance from the caller is less than or equal to number. (This can include the agent itself.)

The distance to or a from a patch is measured from the center of the patch.

ask turtles

 [ask patches in-radius 3

 [set pcolor red]]

;; each turtle makes a red "splotch" around itself

insert-item Since 6.0.2

insert-item index list value

insert-item index string1 string2

On a list, inserts an item in that list. index is the index where the item will be inserted. The first item has an index of 0. (The 6th item in a list would have an index of 5.)

Likewise for a string, but all characters in a multiple-character string2 are inserted at index.

show insert-item 2 [2 7 4 5] 15

=> [2 7 15 4 5]

show insert-item 2 "cat" "re"

=> "caret"

inspect Since 1.1

inspect agent

Opens an agent monitor for the given agent (turtle or patch or link).

inspect patch 2 4

;; an agent monitor opens for that patch

inspect one-of sheep

;; an agent monitor opens for a random turtle from

;; the "sheep" breed

inspect one-of links

;; an agent monitor opens for a random link

See stop-inspecting and stop-inspecting-dead-agents

int Since 1.0

int number

Reports the integer part of number -- any fractional part is discarded.

show int 4.7

=> 4

show int -3.5

=> -3

is-agent? Since 1.2.1

is-agentset? Since 1.2.1

is-anonymous-command? Since 6.0

is-anonymous-reporter? Since 6.0

is-boolean? Since 1.2.1

is-directed-link? Since 4.0

is-link? Since 4.0

is-link-set? Since 4.0

is-list? Since 1.0

is-number? Since 1.2.1

is-patch? Since 1.2.1

is-patch-set? Since 4.0

is-string? Since 1.0

is-turtle? Since 1.2.1

is-turtle-set? Since 4.0

is-undirected-link? Since 4.0

is-agent? value

is-agentset? value

is-anonymous-command? value

is-anonymous-reporter? value

is-boolean? value

is-<breed>? value

is-<link-breed>? value

is-directed-link? value

is-link? value

is-link-set? value

is-list? value

is-number? value

is-patch? value

is-patch-set? value

is-string? value

is-turtle? value

is-turtle-set? value

is-undirected-link? value

Reports true if value is of the given type, false otherwise.

item Since 1.0

item index list

item index string

On lists, reports the value of the item in the given list with the given index.

On strings, reports the character in the given string at the given index.

Note that the indices begin from 0, not 1. (The first item is item 0, the second item is item 1, and so on.)

If index is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

;; suppose mylist is [2 4 6 8 10]

show item 2 mylist

=> 6

show item 3 "my-shoe"

=> "s"

J

jump Since 1.0

jump number

The turtle moves forward by number units all at once (rather than one step at a time as with the forward command).

If the turtle cannot jump number units because it is not permitted by the current topology the turtle does not move at all.

See also forward , can-move? .

L

label

label

This is a built-in turtle or link variable. It may hold a value of any type. The turtle or link appears in the view with the given value "attached" to it as text. You can set this variable to add,

change, or remove a turtle or link's label.

See also label-color , plabel , plabel-color .

Example:

ask turtles [set label who]

;; all the turtles now are labeled with their

;; who numbers

ask turtles [set label ""]

;; all turtles now are not labeled

label-color

label-color

This is a built-in turtle or link variable. It holds a number greater than or equal to 0 and less than 140. This number determines what color the turtle or link's label appears in (if it has a

label). You can set this variable to change the color of a turtle or link's label.

See also label , plabel , plabel-color .

Example:

ask turtles [set label-color red]

;; all the turtles now have red labels

last Since 1.0

last list

last string

On a list, reports the last item in the list.

On a string, reports a one-character string containing only the last character of the original string.

layout-circle Since 4.0

layout-circle agentset radius

layout-circle list-of-turtles radius

Arranges the given turtles in a circle centered on the patch at the center of the world with the given radius. (If the world has an even size the center of the circle is rounded down to the

nearest patch.) The turtles point outwards.

If the first input is an agentset, the turtles are arranged in random order.

If the first input is a list, the turtles are arranged clockwise in the given order, starting at the top of the circle. (Any non-turtles in the list are ignored.)

;; in random order

layout-circle turtles 10

;; in order by who number

layout-circle sort turtles 10

;; in order by size

layout-circle sort-by [[a b] -> [size] of a < [size] of b] turtles 10

layout-radial Since 4.0

layout-radial turtle-set link-set root-agent

Arranges the turtles in turtle-set connected by links in link-set, in a radial tree layout, centered around the root-agent which is moved to the center of the world view.

Only links in the link-set will be used to determine the layout. If links connect turtles that are not in turtle-set those turtles will remain stationary.

Even if the network does contain cycles, and is not a true tree structure, this layout will still work, although the results will not always be pretty.

to make-a-tree

 set-default-shape turtles "circle"

 crt 6

 ask turtle 0 [

 create-link-with turtle 1

 create-link-with turtle 2

 create-link-with turtle 3

]

 ask turtle 1 [

 create-link-with turtle 4

 create-link-with turtle 5

]

 ; do a radial tree layout, centered on turtle 0

 layout-radial turtles links (turtle 0)

end

layout-spring Since 4.0

layout-spring turtle-set link-set spring-constant spring-length repulsion-constant

Arranges the turtles in turtle-set, as if the links in link-set are springs and the turtles are repelling each other. Turtles that are connected by links in link-set but not included in turtle-set are

treated as anchors and are not moved.

spring-constant is a measure of the "tautness" of the spring. It is the "resistance" to change in their length. spring-constant is the force the spring would exert if it's length were changed

by 1 unit.

spring-length is the "zero-force" length or the natural length of the springs. This is the length which all springs try to achieve either by pushing out their nodes or pulling them in.

repulsion-constant is a measure of repulsion between the nodes. It is the force that 2 nodes at a distance of 1 unit will exert on each other.

The repulsion effect tries to get the nodes as far as possible from each other, in order to avoid crowding and the spring effect tries to keep them at "about" a certain distance from the

nodes they are connected to. The result is the laying out of the whole network in a way which highlights relationships among the nodes and at the same time is crowded less and is vis‑

ually pleasing.

The layout algorithm is based on the Fruchterman-Reingold layout algorithm. More information about this algorithm can be obtained here.

to make-a-triangle

 set-default-shape turtles "circle"

 crt 3

 ask turtle 0

 [

 create-links-with other turtles

]

 ask turtle 1

 [

 create-link-with turtle 2

]

 repeat 30 [layout-spring turtles links 0.2 5 1] ;; lays the nodes in a triangle

end

layout-tutte Since 4.0

layout-tutte turtle-set link-set radius

The turtles that are connected by links in link-set but not included in turtle-set are placed in a circle layout with the given radius. There should be at least 3 agents in this agentset.

The turtles in turtle-set are then laid out in the following manner: Each turtle is placed at centroid (or barycenter) of the polygon formed by its linked neighbors. (The centroid is like a 2-

dimensional average of the coordinates of the neighbors.)

(The purpose of the circle of "anchor agents" is to prevent all the turtles from collapsing down to one point.)

After a few iterations of this, the layout will stabilize.

This layout is named after the mathematician William Thomas Tutte, who proposed it as a method for graph layout.

to make-a-tree

 set-default-shape turtles "circle"

 crt 8

 ask turtle 0 [

 create-link-with turtle 1

 create-link-with turtle 2

 create-link-with turtle 3

]

 ask turtle 1 [

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8444

 create-link-with turtle 4

 create-link-with turtle 5

 create-link-with turtle 6

 create-link-with turtle 7

]

 ; place all the turtles with just one

 ; neighbor on the perimeter of a circle

 ; and then place the remaining turtles inside

 ; this circle, spread between their neighbors.

 repeat 10 [layout-tutte (turtles with [count link-neighbors > 1]) links 8]

end

left Since 1.0

lt Since 1.0

left number

The turtle turns left by number degrees. (If number is negative, it turns right.)

length Since 1.0

length list

length string

Reports the number of items in the given list, or the number of characters in the given string.

let Since 2.1

let variable value

Creates a new local variable and gives it the given value. A local variable is one that exists only within the enclosing block of commands.

If you want to change the value afterwards, use set .

Example:

let prey one-of sheep-here

if prey != nobody

 [ask prey [die]]

You can also create multiple local variables if you put the variable names in a list format. The values for the new variables will be taken from the list given as the second argument. This

can be particular useful when you want to calculate multiple values in a reporter procedure, as you can easily create multiple variables with the results. A runtime error will occur if you do

not give a list of values or the list you provide doesn't have enough values for all the variables.

let [x y z] [10 15 20]

show x ; prints 10

show y ; prints 15

show z ; prints 20

let [a b c] [10] ; causes a runtime error as we need at least 3 values in the list

link Since 4.0

link end1 end2

<breed> end1 end2

Given the who numbers of the endpoints, reports the link connecting the turtles. If there is no such link reports nobody . To refer to breeded links you must use the singular breed form

with the endpoints.

ask link 0 1 [set color green]

;; unbreeded link connecting turtle 0 and turtle 1 will turn green

ask directed-link 0 1 [set color red]

;; directed link connecting turtle 0 and turtle 1 will turn red

See also patch-at .

link-heading Since 4.0

link-heading

Reports the heading in degrees (at least 0, less than 360) from end1 to end2 of the link. Throws a runtime error if the endpoints are at the same location.

ask link 0 1 [print link-heading]

;; prints [[towards other-end] of end1] of link 0 1

See also link-length

link-length Since 4.0

link-length

Reports the distance between the endpoints of the link.

ask link 0 1 [print link-length]

;; prints [[distance other-end] of end1] of link 0 1

See also link-heading

link-set Since 4.0

link-set value

(link-set value1 value2 ...)

Reports an agentset containing all of the links anywhere in any of the inputs. The inputs may be individual links, link agentsets, nobody, or lists (or nested lists) containing any of the

above.

link-set self

link-set [my-links] of nodes with [color = red]

See also turtle-set , patch-set .

link-shapes Since 4.0

link-shapes

Reports a list of strings containing all of the link shapes in the model.

New shapes can be created, or imported from other models, in the Link Shapes Editor.

show link-shapes

=> ["default"]

links Since 4.0

links

Reports the agentset consisting of all links. This is a special agentset that can grow as links are added to the world, see the programming guide for more info.

show count links

;; prints the number of links

links-own

links-own [var1 ...]

<link-breeds>-own [var1 ...]

The links-own keyword, like the globals, breed, <breeds>-own, turtles-own, and patches-own keywords, can only be used at the beginning of a program, before any function definitions.

It defines the variables belonging to each link.

If you specify a breed instead of "links", only links of that breed have the listed variables. (More than one link breed may list the same variable.)

undirected-link-breed [sidewalks sidewalk]

directed-link-breed [streets street]

links-own [traffic] ;; applies to all breeds

sidewalks-own [pedestrians]

streets-own [cars bikes]

list Since 1.0

list value1 value2

(list value1 ...)

Reports a list containing the given items. The items can be of any type, produced by any kind of reporter.

show list (random 10) (random 10)

=> [4 9] ;; or similar list

show (list 5)

=> [5]

show (list (random 10) 1 2 3 (random 10))

=> [4 1 2 3 9] ;; or similar list

ln Since 1.0

file:///tmp/sbt_6c39b28e/shapes.html

ln number

Reports the natural logarithm of number, that is, the logarithm to the base e (2.71828...).

See also e , log .

log Since 1.0

log number base

Reports the logarithm of number in base base.

show log 64 2

=> 6

See also ln .

loop Since 1.0

loop [commands]

Repeats the commands forever, or until the enclosing procedure exits through use of the stop or report commands.

to move-to-world-edge ;; turtle procedure

 loop [

 if not can-move? 1 [stop]

 fd 1

]

end

In this example, stop exits not just the loop, but the entire procedure.

Note: in many circumstances, it is more appropriate to use a forever button to repeat something indefinitely. See Buttons in the Programming Guide.

lput Since 1.0

lput value list

Adds value to the end of a list and reports the new list.

;; suppose mylist is [2 7 10 "Bob"]

set mylist lput 42 mylist

;; mylist now is [2 7 10 "Bob" 42]

M

map Since 1.3

map reporter list

(map reporter list1 ...)

With a single list, the given reporter is run for each item in the list, and a list of the results is collected and reported. reporter may be an anonymous reporter or the name of a reporter.

show map round [1.1 2.2 2.7]

=> [1 2 3]

show map [i -> i * i] [1 2 3]

=> [1 4 9]

With multiple lists, the given reporter is run for each group of items from each list. So, it is run once for the first items, once for the second items, and so on. All the lists must be the same

length.

Some examples make this clearer:

show (map + [1 2 3] [2 4 6])

=> [3 6 9]

show (map [[a b c] -> a + b = c] [1 2 3] [2 4 6] [3 5 9])

=> [true false true]

See also foreach , -> (anonymous procedure) .

max Since 1.0

max list

Reports the maximum number value in the list. It ignores other types of items.

show max [xcor] of turtles

;; prints the x coordinate of the turtle which is

;; farthest right in the world

show max list a b

;; prints the larger of the two variables a and b

show max (list a b c)

;; prints the largest of the three variables a, b, and c

max-n-of Since 4.0

max-n-of number agentset [reporter]

Reports an agentset containing number agents from agentset with the highest values of reporter. The agentset is built by finding all the agents with the highest value of reporter, if there

are not number agents with that value then agents with the second highest value are found, and so on. At the end, if there is a tie that would make the resulting agentset too large, the tie

is broken randomly.

;; assume the world is 11 x 11

show max-n-of 5 patches [pxcor]

;; shows 5 patches with pxcor = max-pxcor

show max-n-of 5 patches with [pycor = 0] [pxcor]

;; shows an agentset containing:

;; (patch 1 0) (patch 2 0) (patch 3 0) (patch 4 0) (patch 5 0)

See also max-one-of , with-max .

max-one-of Since 1.0

max-one-of agentset [reporter]

Reports the agent in the agentset that has the highest value for the given reporter. If there is a tie this command reports one random agent with the highest value. If you want all such

agents, use with-max instead.

 show max-one-of patches [count turtles-here]

;; prints the first patch with the most turtles on it

See also max-n-of , with-max .

max-pxcor Since 3.1

max-pycor Since 3.1

max-pxcor

max-pycor

These reporters give the maximum x-coordinate and maximum y-coordinate, (respectively) for patches, which determines the size of the world.

Unlike in older versions of NetLogo the origin does not have to be at the center of the world. However, the maximum x- and y- coordinates must be greater than or equal to zero.

Note: You can set the size of the world by editing the view or using resize-world .

crt 100 [setxy random-float max-pxcor

 random-float max-pycor]

;; distributes 100 turtles randomly in the

;; first quadrant

See also min-pxcor , min-pycor , world-width , and world-height

mean Since 1.0

mean list

Reports the statistical mean of the numeric items in the given list. Ignores non-numeric items. The mean is the average, i.e., the sum of the items divided by the total number of items.

In NetLogo 6.1.1 and earlier, mean would error when finding non-number values in the given list.

show mean [xcor] of turtles

;; prints the average of all the turtles' x coordinates

See this FAQ question for information on possible issues using mean with agentsets

median Since 1.0

median list

Reports the statistical median of the numeric items of the given list. Ignores non-numeric items. The median is the item that would be in the middle if all the items were arranged in order.

(If two items would be in the middle, the median is the average of the two.)

show median [xcor] of turtles

;; prints the median of all the turtles' x coordinates

member? Since 1.0

member? value list

member? string1 string2

member? agent agentset

For a list, reports true if the given value appears in the given list, otherwise reports false.

For a string, reports true or false depending on whether string1 appears anywhere inside string2 as a substring.

For an agentset, reports true if the given agent is appears in the given agentset, otherwise reports false.

show member? 2 [1 2 3]

=> true

show member? 4 [1 2 3]

=> false

show member? "bat" "abate"

=> true

show member? turtle 0 turtles

=> true

show member? turtle 0 patches

=> false

See also position .

min Since 1.0

min list

Reports the minimum number value in the list. It ignores other types of items.

show min [xcor] of turtles

;; prints the lowest x-coordinate of all the turtles

show min list a b

;; prints the smaller of the two variables a and b

show min (list a b c)

;; prints the smallest of the three variables a, b, and c

min-n-of Since 4.0

min-n-of number agentset [reporter]

Reports an agentset containing number agents from agentset with the lowest values of reporter. The agentset is built by finding all the agents with the lowest value of reporter, if there are

not number agents with that value then the agents with the second lowest value are found, and so on. At the end, if there is a tie that would make the resulting agentset too large, the tie is

broken randomly.

;; assume the world is 11 x 11

show min-n-of 5 patches [pxcor]

;; shows 5 patches with pxcor = min-pxcor

show min-n-of 5 patches with [pycor = 0] [pxcor]

;; shows an agentset containing:

;; (patch -5 0) (patch -4 0) (patch -3 0) (patch -2 0) (patch -1 0)

See also min-one-of , with-min .

min-one-of Since 1.0

min-one-of agentset [reporter]

Reports a random agent in the agentset that reports the lowest value for the given reporter. If there is a tie, this command reports one random agent that meets the condition. If you want

all such agents use with-min instead.

show min-one-of turtles [xcor + ycor]

;; reports the first turtle with the smallest sum of

;; coordinates

See also with-min , min-n-of .

min-pxcor Since 3.1

min-pycor Since 3.1

min-pxcor

min-pycor

These reporters give the minimum x-coordinate and minimum y-coordinate, (respectively) for patches, which determines the size of the world.

Unlike in older versions of NetLogo the origin does not have to be at the center of the world. However, the minimum x- and y- coordinates must be less than or equal to zero.

Note: You can set the size of the world by editing the view or using resize-world .

crt 100 [setxy random-float min-pxcor

 random-float min-pycor]

;; distributes 100 turtles randomly in the

;; third quadrant

See also max-pxcor , max-pycor , world-width , and world-height

mod Since 1.0

number1 mod number2

Reports number1 modulo number2: that is, the residue of number1 (mod number2). mod is is equivalent to the following NetLogo code:

 number1 - (floor (number1 / number2)) * number2

Note that mod is "infix", that is, it comes between its two inputs.

show 62 mod 5

=> 2

show -8 mod 3

=> 1

See also remainder . mod and remainder behave the same for positive numbers, but differently for negative numbers.

modes Since 2.0

modes list

Reports a list of the most common item or items in list.

The input list may contain any NetLogo values.

If the input is an empty list, reports an empty list.

show modes [1 2 2 3 4]

=> [2]

show modes [1 2 2 3 3 4]

=> [2 3]

show modes [[1 2 [3]] [1 2 [3]] [2 3 4]]

=> [[1 2 [3]]]

show modes [pxcor] of turtles

;; shows which columns of patches have the most

;; turtles on them

mouse-down? Since 1.0

mouse-down?

Reports true if the mouse button is down, false otherwise.

Note: If the mouse pointer is outside of the current view , mouse-down? will always report false.

mouse-inside? Since 3.0

mouse-inside?

Reports true if the mouse pointer is inside the world boundaries inside the current view, false otherwise. In the case of an unwrapped world and using follow on an agent, It's possible

for the mouse pointer to be inside the view but not inside the world boundaries.

mouse-xcor Since 1.0

mouse-ycor Since 1.0

mouse-xcor

mouse-ycor

Reports the x or y coordinate of the mouse in the 2D view. The value is in terms of turtle coordinates, so it might not be an integer. If you want patch coordinates, use round mouse-xcor

and round mouse-ycor .

Note: If the mouse is outside of the 2D view, reports the value from the last time it was inside.

;; to make the mouse "draw" in red:

if mouse-down?

 [ask patch mouse-xcor mouse-ycor [set pcolor red]]

move-to Since 4.0

move-to agent

The turtle sets its x and y coordinates to be the same as the given agent's.

(If that agent is a patch, the effect is to move the turtle to the center of that patch.)

move-to turtle 5

;; turtle moves to same point as turtle 5

move-to one-of patches

;; turtle moves to the center of a random patch

move-to max-one-of turtles [size]

;; turtle moves to same point as biggest turtle

Note that the turtle's heading is unaltered. You may want to use the face command first to orient the turtle in the direction of motion.

See also setxy .

my-<breeds>

my-links Since 4.0

my-<breeds>

my-links

Reports an agentset of all links connected to the caller of the corresponding breed, regardless of directedness. Generally, you might consider using my-out-links instead of this primi‑
tive, as it works well for either directed or undirected networks (since it excludes directed, incoming links).

crt 5

ask turtle 0

[

 create-links-with other turtles

 show my-links ;; prints the agentset containing all links

 ;; (since all the links we created were with turtle 0)

]

ask turtle 1

[

 show my-links ;; shows an agentset containing the link 0 1

]

end

If you only want the undirected links connected to a node, you can do my-links with [not is-directed-link? self] .

my-in-<breeds>

my-in-links Since 4.0

my-in-<breeds>

my-in-links

Reports an agentset of all the directed links coming in from other nodes to the caller as well as all undirected links connected to the caller. You can think of this as "all links that you can

use to travel to this node".

crt 5

ask turtle 0

[

 create-links-to other turtles

 show my-in-links ;; shows an empty agentset

]

ask turtle 1

[

 show my-in-links ;; shows an agentset containing the link 0 1

]

my-out-<breeds>

my-out-links Since 4.0

my-out-<breeds>

my-out-links

Reports an agentset of all the directed links going out from the caller to other nodes as well as undirected links connected to the caller. You can think of this as "all links you can use to

travel from this node".

crt 5

ask turtle 0

[

 create-links-to other turtles

 show my-out-links ;; shows agentset containing all the links

]

ask turtle 1

[

 show my-out-links ;; shows an empty agentset

]

myself Since 1.0

myself

"self" and "myself" are very different. "self" is simple; it means "me". "myself" means "the turtle, patch or link who asked me to do what I'm doing right now."

When an agent has been asked to run some code, using myself in that code reports the agent (turtle, patch or link) that did the asking.

myself is most often used in conjunction with of to read or set variables in the asking agent.

myself can be used within blocks of code not just in the ask command, but also hatch, sprout, of, with, all?, with-min, with-max, min-one-of, max-one-of, min-n-of, max-n-of.

ask turtles

 [ask patches in-radius 3

 [set pcolor [color] of myself]]

;; each turtle makes a colored "splotch" around itself

See the "Myself Example" code example for more examples.

See also self .

N

n-of Since 3.1

n-of size agentset

n-of size list

From an agentset, reports an agentset of size size randomly chosen from the input set, with no repeats.

From a list, reports a list of size size randomly chosen from the input set, with no repeats. The items in the result appear in the same order that they appeared in the input list. (If you want

them in random order, use shuffle on the result.)

It is an error for size to be greater than the size of the input.

If size is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

ask n-of 50 patches [set pcolor green]

;; 50 randomly chosen patches turn green

See also one-of and up-to-n-of , a version that does not error with a size greater than the size of the input.

n-values Since 2.0

n-values size reporter

Reports a list of length size containing values computed by repeatedly running the reporter. reporter may be an anonymous reporter or the name of a reporter.

If the reporter accepts inputs, the input will be the number of the item currently being computed, starting from zero.

If size is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

show n-values 5 [1]

=> [1 1 1 1 1]

show n-values 5 [i -> i]

=> [0 1 2 3 4]

show n-values 3 turtle

=> [(turtle 0) (turtle 1) (turtle 2)]

show n-values 5 [x -> x * x]

=> [0 1 4 9 16]

See also reduce , filter , -> (anonymous procedure) , range .

neighbors Since 1.1

neighbors4 Since 1.1

neighbors

neighbors4

Reports an agentset containing the 8 surrounding patches (neighbors) or 4 surrounding patches (neighbors4), if they exist. If the world is wrapping, the neighbors of a patch along the

edge of the world will include the corresponding patches on the opposite edge of the world. If the world is not wrapping, any neighbors outside the boundaries of the world will be

excluded from the set. The neighbor set will never include the target patch itself, even if the world only has one row or one column of patches.

show sum [count turtles-here] of neighbors

 ;; prints the total number of turtles on the eight

 ;; patches around this turtle or patch

show count turtles-on neighbors

 ;; a shorter way to say the same thing

ask neighbors4 [set pcolor red]

 ;; turns the four neighboring patches red

<breed>-neighbors

link-neighbors Since 4.0

<breed>-neighbors

link-neighbors

Reports the agentset of all turtles found at the other end of any links (undirected or directed, incoming or outgoing) connected to this turtle.

crt 3

ask turtle 0

[

 create-links-with other turtles

 ask link-neighbors [set color red] ;; turtles 1 and 2 turn red

]

ask turtle 1

[

 ask link-neighbors [set color blue] ;; turtle 0 turns blue

]

end

<breed>-neighbor?

link-neighbor? Since 4.0

<breed>-neighbor? turtle

link-neighbor? turtle

Reports true if there is a link (either directed or undirected, incoming or outgoing) between turtle and the caller.

crt 2

ask turtle 0

[

 create-link-with turtle 1

 show link-neighbor? turtle 1 ;; prints true

]

ask turtle 1

[

 show link-neighbor? turtle 0 ;; prints true

]

netlogo-version Since 3.0

netlogo-version

Reports a string containing the version number of the NetLogo you are running.

show netlogo-version

=> "7.0.2"

netlogo-web? Since 5.2

netlogo-web?

Reports true if the model is running in NetLogo Web.

new-seed Since 3.0

new-seed

Reports a number suitable for seeding the random number generator.

The numbers reported by new-seed are based on the current date and time in milliseconds and lie in the generator's usable range of seeds, -2147483648 to 2147483647.

new-seed never reports the same number twice in succession, even across parallel BehaviorSpace runs. (This is accomplished by waiting a millisecond if the seed for the current millisec‑
ond was already used.)

See also random-seed .

no-display Since 1.0

no-display

Turns off all updates to the current view until the display command is issued. This does not affect the display of plots. The primitive has two major uses:

One, you can control when the user sees view updates. You might want to change lots of things on the view behind the user's back, so to speak, then make them visible to the user all at

once.

Two, your model will run faster when view updating is off, so if you're in a hurry, this command will let you get results faster. (Note that normally you don't need to use no-display for this,

since you can also use the on/off switch in view control strip to freeze the view.)

Note that display and no-display operate independently of the switch in the view control strip that freezes the view.

See also display .

nobody

nobody

This is a special value which some primitives such as turtle, one-of, max-one-of, etc. report to indicate that no agent was found. Also, when a turtle dies, it becomes equal to nobody.

Note: Empty agentsets are not equal to nobody. If you want to test for an empty agentset, use any? . You only get nobody back in situations where you were expecting a single agent, not

a whole agentset.

set target one-of other turtles-here

if target != nobody

 [ask target [set color red]]

no-links Since 4.0

no-links

Reports an empty link agentset.

no-patches Since 4.0

no-patches

Reports an empty patch agentset.

not Since 1.0

not boolean

Reports true if boolean is false, otherwise reports false.

if not any? turtles [crt 10]

no-turtles Since 4.0

no-turtles

Reports an empty turtle agentset.

O

of Since 4.0

[reporter] of agent

[reporter] of agentset

For an agent, reports the value of the reporter for that agent (turtle or patch).

show [pxcor] of patch 3 5

;; prints 3

show [pxcor] of one-of patches

;; prints the value of a random patch's pxcor variable

show [who * who] of turtle 5

=> 25

show [count turtles in-radius 3] of patch 0 0

;; prints the number of turtles located within a

;; three-patch radius of the origin

For an agentset, reports a list that contains the value of the reporter for each agent in the agentset (in random order).

crt 4

show sort [who] of turtles

=> [0 1 2 3]

show sort [who * who] of turtles

=> [0 1 4 9]

one-of Since 1.0

one-of agentset

one-of list

From an agentset, reports a random agent. If the agentset is empty, reports nobody .

From a list, reports a random list item. It is an error for the list to be empty.

ask one-of patches [set pcolor green]

;; a random patch turns green

ask patches with [any? turtles-here]

 [show one-of turtles-here]

;; for each patch containing turtles, prints one of

;; those turtles

;; suppose mylist is [1 2 3 4 5 6]

show one-of mylist

;; prints a value randomly chosen from the list

See also n-of , up-to-n-of .

or Since 1.0

boolean1 or boolean2

Reports true if boolean1 is true, boolean2 is true, or both are true. Otherwise returns false if both booleans are false.

Note that if boolean1 is true, then boolean2 will not be run (since it can't affect the result). See the programming guide for more information on logical operator precedence.

if (pxcor > 0) or (pycor > 0) [set pcolor red]

;; patches turn red except in lower-left quadrant

other Since 4.0

other agentset

Reports an agentset which is the same as the input agentset but omits this agent.

show count turtles-here

=> 10

show count other turtles-here

=> 9

other-end Since 4.0

other-end

If run by a turtle, reports the turtle at the other end of the asking link.

If run by a link, reports the turtle at the end of the link that isn't the asking turtle.

These definitions are difficult to understand in the abstract, but the following examples should help:

ask turtle 0 [create-link-with turtle 1]

ask turtle 0 [ask link 0 1 [show other-end]] ;; prints turtle 1

ask turtle 1 [ask link 0 1 [show other-end]] ;; prints turtle 0

ask link 0 1 [ask turtle 0 [show other-end]] ;; prints turtle 1

As these examples hopefully make plain, the "other" end is the end that is neither asking nor being asked.

out-<breed>-neighbor?

out-link-neighbor? Since 4.0

out-<breed>-neighbor? turtle

out-link-neighbor? turtle

Reports true if there is a directed link going from the caller to turtle or if there is an undirected link connecting the caller with turtle. You can think of this as "can I get from the caller to tur‑
tle using a link?"

crt 2

ask turtle 0 [

 create-link-to turtle 1

 show in-link-neighbor? turtle 1 ;; prints false

 show out-link-neighbor? turtle 1 ;; prints true

]

ask turtle 1 [

 show in-link-neighbor? turtle 0 ;; prints true

 show out-link-neighbor? turtle 0 ;; prints false

]

out-<breed>-neighbors

out-link-neighbors Since 4.0

out-<breed>-neighbors

out-link-neighbors

Reports the agentset of all the turtles that have directed links from the caller, or undirected links with the caller. You can think of this as "who can I get to from the caller using a link?"

crt 4

ask turtle 0

[

 create-links-to other turtles

 ask out-link-neighbors [set color pink] ;; turtles 1-3 turn pink

]

ask turtle 1

[

 ask out-link-neighbors [set color orange] ;; no turtles change colors

 ;; since turtle 1 only has in-links

]

end

out-<breed>-to

out-link-to Since 4.0

out-<breed>-to turtle

out-link-to turtle

Reports a directed link from the caller to turtle or an undirected link connecting the two. If no link exists then it reports nobody. If more than one such link exists, reports a random one. You

can think of this as "give me a link that I can use to travel from the caller to turtle."

crt 2

ask turtle 0 [

 create-link-to turtle 1

 show out-link-to turtle 1 ;; shows link 0 1

]

ask turtle 1

[

 show out-link-to turtle 0 ;; shows nobody

]

See also: in-link-from link-with

output-print Since 2.1

output-show Since 2.1

output-type Since 2.1

output-write Since 2.1

output-print value

output-show value

output-type value

output-write value

These commands are the same as the print , show , type , and write commands except that value is printed in the model's output area, instead of in the Command Center. (If the

model does not have a separate output area, then the Command Center is used.) See also Output (programming guide).

P

patch Since 1.0

patch xcor ycor

Given the x and y coordinates of a point, reports the patch containing that point. (The coordinates are absolute coordinates; they are not computed relative to this agent, as with patch-at.)

If x and y are integers, the point is the center of a patch. If x or y is not an integer, rounding to the nearest integer is used to determine which patch contains the point.

If wrapping is allowed by the topology, the given coordinates will be wrapped to be within the world. If wrapping is not allowed and the given coordinates are outside the world, reports

nobody.

ask patch 3 -4 [set pcolor green]

;; patch with pxcor of 3 and pycor of -4 turns green

show patch 1.2 3.7

;; prints (patch 1 4); note rounding

show patch 18 19

;; supposing min-pxcor and min-pycor are -17

;; and max-pxcor and max-pycor are 17,

;; in a wrapping topology, prints (patch -17 -16);

;; in a non-wrapping topology, prints nobody

See also patch-at .

patch-ahead Since 2.0

patch-ahead distance

Reports the single patch that is the given distance "ahead" of this turtle, that is, along the turtle's current heading. Reports nobody if the patch does not exist because it is outside the

world.

ask patch-ahead 1 [set pcolor green]

;; turns the patch 1 in front of this turtle

;; green; note that this might be the same patch

;; the turtle is standing on

See also patch-at , patch-left-and-ahead , patch-right-and-ahead , patch-at-heading-and-distance .

patch-at Since 1.0

patch-at dx dy

Reports the patch at (dx, dy) from the caller, that is, the patch containing the point dx east and dy patches north of this agent.

Reports nobody if there is no such patch because that point is beyond a non-wrapping world boundary.

ask patch-at 1 -1 [set pcolor green]

;; if caller is a turtle or patch, turns the

;; patch just southeast of the caller green

See also patch , patch-ahead , patch-left-and-ahead , patch-right-and-ahead , patch-at-heading-and-distance .

patch-at-heading-and-distance Since 2.0

patch-at-heading-and-distance heading distance

patch-at-heading-and-distance reports the single patch that is the given distance from this turtle or patch, along the given absolute heading. (In contrast to patch-left-and-ahead and

patch-right-and-ahead, this turtle's current heading is not taken into account.) Reports nobody if the patch does not exist because it is outside the world.

ask patch-at-heading-and-distance -90 1 [set pcolor green]

;; turns the patch 1 to the west of this patch green

See also patch , patch-at , patch-left-and-ahead , patch-right-and-ahead .

patch-here Since 1.0

patch-here

patch-here reports the patch under the turtle.

Note that this reporter isn't available to a patch because a patch can just say "self".

patch-left-and-ahead Since 2.0

patch-right-and-ahead Since 2.0

patch-left-and-ahead angle distance

patch-right-and-ahead angle distance

Reports the single patch that is the given distance from this turtle, in the direction turned left or right the given angle (in degrees) from the turtle's current heading. Reports nobody if the

patch does not exist because it is outside the world.

(If you want to find a patch in a given absolute heading, rather than one relative to the current turtle's heading, use patch-at-heading-and-distance instead.)

ask patch-right-and-ahead 30 1 [set pcolor green]

;; this turtle "looks" 30 degrees right of its

;; current heading at the patch 1 unit away, and turns

;; that patch green; note that this might be the same

;; patch the turtle is standing on

See also patch , patch-at , patch-at-heading-and-distance .

patch-set Since 4.0

patch-set value1

(patch-set value1 value2 ...)

Reports an agentset containing all of the patches anywhere in any of the inputs. The inputs may be individual patches, patch agentsets, nobody, or lists (or nested lists) containing any of

the above.

patch-set self

patch-set patch-here

(patch-set self neighbors)

(patch-set patch-here neighbors)

(patch-set patch 0 0 patch 1 3 patch 4 -2)

(patch-set patch-at -1 1 patch-at 0 1 patch-at 1 1)

patch-set [patch-here] of turtles

patch-set [neighbors] of turtles

See also turtle-set , link-set .

patch-size Since 4.1

patch-size

Reports the size of the patches in the view in pixels. The size is typically an integer, but may also be a floating point number.

See also set-patch-size .

patches Since 1.0

patches

Reports the agentset consisting of all patches.

patches-own

patches-own [var1 ...]

This keyword, like the globals, breed, <breed>-own, and turtles-own keywords, can only be used at the beginning of a program, before any function definitions. It defines the variables

that all patches can use.

All patches will then have the given variables and be able to use them.

All patch variables can also be directly accessed by any turtle standing on the patch.

See also globals , turtles-own , breed , <breeds>-own .

pcolor

pcolor

This is a built-in patch variable. It holds the color of the patch. You can set this variable to make the patch change color.

All patch variables can be directly accessed by any turtle standing on the patch. Color can be represented either as a NetLogo color (a single number) or an RGB color (a list of 3 num‑

bers). See details in the Colors section of the Programming Guide. If you give an RGBA color with 4 numbers the transparency value will be ignored (except in NetLogo 3D).

See also color .

pen-down Since 1.0

pd Since 1.0

pen-erase Since 3.0

pe Since 3.0

pen-up Since 1.0

pu Since 1.0

pen-down

pen-erase

pen-up

The turtle changes modes between drawing lines, removing lines or neither. The lines will always be displayed on top of the patches and below the turtles. To change the color of the pen

set the color of the turtle using set color .

Note: When a turtle's pen is down, all movement commands cause lines to be drawn, including jump, setxy, and move-to.

Note: These commands are equivalent to setting the turtle variable "pen-mode" to "down" , "up", and "erase".

Note: On Windows drawing and erasing a line might not erase every pixel.

pen-mode

This is a built-in turtle variable. It holds the state of the turtle's pen. You set the variable to draw lines, erase lines or stop either of these actions. Possible values are "up", "down", and

"erase".

pen-size

This is a built-in turtle variable. It holds the width of the line, in pixels, that the turtle will draw (or erase) when the pen is down (or erasing).

plabel

plabel

This is a built-in patch variable. It may hold a value of any type. The patch appears in the view with the given value "attached" to it as text. You can set this variable to add, change, or

remove a patch's label.

All patch variables can be directly accessed by any turtle standing on the patch.

See also plabel-color , label , label-color .

plabel-color

plabel-color

This is a built-in patch variable. It holds a number greater than or equal to 0 and less than 140. This number determines what color the patch's label appears in (if it has a label). You can

set this variable to change the color of a patch's label.

All patch variables can be directly accessed by any turtle standing on the patch.

See also plabel , label , label-color .

plot Since 1.0

plot number

Increments the x-value of the plot pen by plot-pen-interval, then plots a point at the updated x-value and a y-value of number. (The first time the command is used on a plot, the point

plotted has an x-value of 0.)

This command will produce a runtime error if the current plot has not been set.

plot-name Since 1.0

plot-name

Reports the name of the current plot (a string)

This command will produce a runtime error if the current plot has not been set.

plot-pen-exists? Since 4.0

plot-pen-exists? string

Reports true if a plot pen with the given name is defined in the current plot. Otherwise reports false.

This command will produce a runtime error if the current plot has not been set.

plot-pen-down Since 1.0

plot-pen-up Since 1.0

plot-pen-down

plot-pen-up

Puts down (or up) the current plot-pen, so that it draws (or doesn't). (By default, all pens are down initially.)

These commands will produce a runtime error if either the current plot or the current pen has not been set.

plot-pen-reset Since 1.0

plot-pen-reset

Clears everything the current plot pen has drawn, moves it to (0,0), and puts it down. If the pen is a permanent pen, the color, mode, and interval are reset to the default values from the

plot Edit dialog.

This command will produce a runtime error if either the current plot or the current pen has not been set.

plotxy Since 1.0

plotxy number1 number2

Moves the current plot pen to the point with coordinates (number1, number2). If the pen is down, a line, bar, or point will be drawn (depending on the pen's mode).

This command will produce a runtime error if the current plot has not been set.

plot-x-min Since 1.0

plot-x-max Since 1.0

plot-y-min Since 1.0

plot-y-max Since 1.0

plot-x-min

plot-x-max

plot-y-min

plot-y-max

Reports the minimum or maximum value on the x or y axis of the current plot.

These values can be set with the commands set-plot-x-range and set-plot-y-range. (Their default values are set from the plot Edit dialog.)

These commands will produce a runtime error if the current plot has not been set.

position Since 1.0

position item list

position string1 string2

On a list, reports the first position of item in list, or false if it does not appear.

On strings, reports the position of the first appearance string1 as a substring of string2, or false if it does not appear.

Note: The positions are numbered beginning with 0, not with 1.

;; suppose mylist is [2 7 4 7 "Bob"]

show position 7 mylist

=> 1

show position 10 mylist

=> false

show position "in" "string"

=> 3

See also member? .

precision Since 1.0

precision number places

Reports number rounded to places decimal places.

If places is negative, the rounding takes place to the left of the decimal point.

show precision 1.23456789 3

=> 1.235

show precision 3834 -3

=> 4000

See also round , ceiling , floor .

print Since 1.0

print value

Prints value in the Command Center, followed by a carriage return.

This agent is not printed before the value, unlike show .

See also show , type , write , output-print , and Output (programming guide).

pxcor

pycor

pxcor

pycor

These are built-in patch variables. They hold the x and y coordinate of the patch. They are always integers. You cannot set these variables, because patches don't move.

pxcor is greater than or equal to min-pxcor and less than or equal to max-pxcor; similarly for pycor and min-pycor and max-pycor.

All patch variables can be directly accessed by any turtle standing on the patch.

See also xcor , ycor .

R

random Since 1.0

random number

If number is positive, reports a random integer greater than or equal to 0, but strictly less than number.

If number is negative, reports a random integer less than or equal to 0, but strictly greater than number.

If number is zero, the result is always 0 as well.

Note: In versions of NetLogo prior to version 2.0, this primitive reported a floating point number if given a non-integer input. This is no longer the case. If you want a floating point answer,

you must now use random-float instead.

show random 3

;; prints 0, 1, or 2

show random -3

;; prints 0, -1, or -2

show random 3.5

;; prints 0, 1, 2, or 3

See also random-float .

random-float Since 2.0

random-float number

If number is positive, reports a random floating point number greater than or equal to 0 but strictly less than number.

If number is negative, reports a random floating point number less than or equal to 0, but strictly greater than number.

If number is zero, the result is always 0.

show random-float 3

;; prints a number at least 0 but less than 3,

;; for example 2.589444906014774

show random-float 2.5

;; prints a number at least 0 but less than 2.5,

;; for example 1.0897423196760796

random-exponential Since 1.2.1

random-gamma Since 2.0

random-normal Since 1.2.1

random-poisson Since 1.2.1

random-exponential mean

random-gamma alpha lambda

random-normal mean standard-deviation

random-poisson mean

Reports an accordingly distributed random number with the mean and, in the case of the normal distribution, the standard-deviation. (The standard deviation may not be negative.)

random-exponential reports an exponentially distributed random floating point number. It is equivalent to (- mean) * ln random-float 1.0 .

random-gamma reports a gamma-distributed random floating point number as controlled by the floating point alpha and lambda parameters. Both inputs must be greater than zero. (Note:

for results with a given mean and variance, use inputs as follows: alpha = mean * mean / variance; lambda = 1 / (variance / mean).)

random-normal reports a normally distributed random floating point number.

random-poisson reports a Poisson-distributed random integer.

show random-exponential 2

;; prints an exponentially distributed random floating

;; point number with a mean of 2

show random-normal 10.1 5.2

;; prints a normally distributed random floating point

;; number with a mean of 10.1 and a standard deviation

;; of 5.2

show random-poisson 3.4

;; prints a Poisson-distributed random integer with a

;; mean of 3.4

random-pxcor Since 3.1

random-pycor Since 3.1

random-pxcor

random-pycor

Reports a random integer ranging from min-pxcor (or -y) to max-pxcor (or -y) inclusive.

ask turtles [

 ;; move each turtle to the center of a random patch

 setxy random-pxcor random-pycor

]

See also random-xcor , random-ycor .

random-seed Since 1.0

random-seed number

Sets the seed of the pseudo-random number generator to the integer part of number. The seed must be in the range -2147483648 to 2147483647; note that this is smaller than the full

range of integers supported by NetLogo (-9007199254740992 to 9007199254740992).

See the Random Numbers section of the Programming Guide for more details.

random-seed 47822

show random 100

=> 50

show random 100

=> 35

random-seed 47822

show random 100

=> 50

show random 100

=> 35

See also the new-seed reporter that generates proper random seed values.

random-xcor Since 3.1

random-ycor Since 3.1

random-xcor

random-ycor

Reports a random floating point number from the allowable range of turtle coordinates along the given axis, x or y.

Turtle coordinates range from min-pxcor - 0.5 (inclusive) to max-pxcor + 0.5 (exclusive) horizontally; vertically, substitute -y for -x.

ask turtles [

 ;; move each turtle to a random point

 setxy random-xcor random-ycor

]

See also random-pxcor , random-pycor .

range Since 6.0

range stop

(range start stop)

(range start stop step)

Generates a list of numbers, starting at start, ending before stop, counting by step. start defaults to 0 and step defaults to 1.

show range 5

=> [0 1 2 3 4]

show (range 2 5)

=> [2 3 4]

show (range 2 5 0.5)

=> [2 2.5 3 3.5 4 4.5]

show (range 10 0 -1)

=> [10 9 8 7 6 5 4 3 2 1]

See also n-values

read-from-string Since 1.1

read-from-string string

Interprets the given string as if it had been typed in the Command Center, and reports the resulting value. The result may be a number, list, string, or boolean value, or the special value

"nobody".

Useful in conjunction with the user-input primitive for converting the user's input into usable form.

show read-from-string "3" + read-from-string "5"

=> 8

show length read-from-string "[1 2 3]"

=> 3

crt read-from-string user-input "Make how many turtles?"

;; the number of turtles input by the user

;; are created

Note: This primitive is not compatible with NetLogo Web. If you wish to read user input with the same code and the same behavior in both NetLogo and NetLogo Web, see dialog:user-

input.

reduce Since 1.3

reduce reporter list

Reduces a list from left to right using the given reporter, resulting in a single value. This means, for example, that reduce [[a b] -> a + b] [1 2 3 4] is equivalent to (((1 + 2) + 3) +

4). If list has a single item, that item is reported. It is an error to reduce an empty list. reporter may be an anonymous reporter or the name of a reporter.

The first input passed to the reporter is the result so far, and the second input is the next item in the list.

Since it can be difficult to develop an intuition about what reduce does, here are some simple examples which, while not useful in themselves, may give you a better understanding of

this primitive:

show reduce + [1 2 3]

=> 6

show reduce - [1 2 3]

=> -4

show reduce [[result-so-far next-item] -> next-item - result-so-far] [1 2 3]

=> 2

show reduce [[result-so-far ignored-item] -> result-so-far] [1 2 3]

=> 1

show reduce [[ignored next-item] -> next-item] [1 2 3]

=> 3

show reduce sentence [[1 2] [3 [4]] 5]

=> [1 2 3 [4] 5]

show reduce [[result-so-far next-item] -> fput next-item result-so-far] (fput [] [1 2 3 4 5])

=> [5 4 3 2 1]

Here are some more useful examples:

;; find the longest string in a list

to-report longest-string [strings]

 report reduce

 [[longest-so-far next-string] -> ifelse-value (length longest-so-far >= length next-string) [longest-so-far] [next-string]]

 strings

end

show longest-string ["hi" "there" "!"]

=> "there"

;; count the number of occurrences of an item in a list

to-report occurrences [x the-list]

 report reduce

 [[occurrence-count next-item] -> ifelse-value (next-item = x) [occurrence-count + 1] [occurrence-count]] (fput 0 the-list)

end

show occurrences 1 [1 2 1 3 1 2 3 1 1 4 5 1]

=> 6

;; evaluate the polynomial, with given coefficients, at x

to-report evaluate-polynomial [coefficients x]

 report reduce [[value coefficient] -> (x * value) + coefficient] coefficients

end

;; evaluate 3x^2 + 2x + 1 at x = 4

show evaluate-polynomial [3 2 1] 4

=> 57

See also filter , -> (anonymous procedure .

remainder Since 1.2.1

https://github.com/NetLogo/Dialog-Extension#readme
https://github.com/NetLogo/Dialog-Extension#readme

remainder number1 number2

Reports the remainder when number1 is divided by number2. This is equivalent to the following NetLogo code:

 number1 - (int (number1 / number2)) * number2

show remainder 62 5

=> 2

show remainder -8 3

=> -2

See also mod . mod and remainder behave the same for positive numbers, but differently for negative numbers.

remove Since 1.0

remove item list

remove string1 string2

For a list, reports a copy of list with all instances of item removed.

For strings, reports a copy of string2 with all the appearances of string1 as a substring removed.

set mylist [2 7 4 7 "Bob"]

set mylist remove 7 mylist

;; mylist is now [2 4 "Bob"]

show remove "to" "phototonic"

=> "phonic"

remove-duplicates Since 1.0

remove-duplicates list

Reports a copy of list with all duplicate items removed. The first of each item remains in place.

set mylist [2 7 4 7 "Bob" 7]

set mylist remove-duplicates mylist

;; mylist is now [2 7 4 "Bob"]

remove-item Since 2.0

remove-item index list

remove-item index string

For a list, reports a copy of list with the item at the given index removed.

For strings, reports a copy of string with the character at the given index removed.

Note that the indices begin from 0, not 1. (The first item is item 0, the second item is item 1, and so on.)

If index is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

set mylist [2 7 4 7 "Bob"]

set mylist remove-item 2 mylist

;; mylist is now [2 7 7 "Bob"]

show remove-item 2 "string"

=> "sting"

repeat Since 1.0

repeat number [commands]

Runs commands number times.

pd repeat 36 [fd 1 rt 10]

;; the turtle draws a circle

replace-item Since 1.0

replace-item index list value

replace-item index string1 string2

On a list, replaces an item in that list. index is the index of the item to be replaced, starting with 0. (The 6th item in a list would have an index of 5.) Note that "replace-item" is used in con‑
junction with "set" to change a list.

Likewise for a string, but the given character of string1 removed and the contents of string2 spliced in instead.

If index is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

show replace-item 2 [2 7 4 5] 15

=> [2 7 15 5]

show replace-item 1 "cat" "are"

=> "caret"

report Since 1.0

report value

Immediately exits from the current to-report procedure and reports value as the result of that procedure. report and to-report are always used in conjunction with each other. See to-

report for a discussion of how to use them.

reset-perspective Since 3.0

rp Since 3.0

reset-perspective

The observer stops watching, following, or riding any turtles (or patches or links). (If it wasn't watching, following, or riding anybody, nothing happens.) In the 3D view, the observer also

returns to its default position (above the origin, looking straight down). Note: following and riding are valid for turtles only.

See also follow , ride , watch .

reset-ticks Since 4.0

reset-ticks

Resets the tick counter to zero, sets up all plots, then updates all plots (so that the initial state of the world is plotted).

Normally reset-ticks goes at the end of a setup procedure.

See also clear-ticks , tick , ticks , tick-advance , setup-plots , update-plots .

reset-timer Since 1.0

reset-timer

Resets the timer to zero seconds. See also timer .

Note that the timer is different from the tick counter. The timer measures elapsed real time in seconds; the tick counter measures elapsed model time in ticks.

resize-world Since 4.1

resize-world min-pxcor max-pxcor min-pycor max-pycor

Changes the size of the patch grid.

If the given patch grid coordinates are different than the ones in use, all turtles and links die, and the existing patch grid is discarded and new patches created. Otherwise, existing turtles

and links will live if the grid coordinates are unchanged.

Retaining references to old patches or patch sets is inadvisable and may subsequently cause runtime errors or other unexpected behavior.

If any coordinate is fractional, it will be rounded to the nearest integer towards zero (4.5 becomes 4, 10.9 becomes 10, -2.9 becomes -2).

See also set-patch-size .

reverse Since 1.0

reverse list

reverse string

Reports a reversed copy of the given list or string.

show mylist

;; mylist is [2 7 4 "Bob"]

set mylist reverse mylist

;; mylist now is ["Bob" 4 7 2]

show reverse "live"

=> "evil"

rgb Since 1.0

rgb red green blue

Reports a RGB list when given three numbers describing an RGB color. The numbers are clamped to the range 0-255.

See also hsb

ride Since 3.0

ride turtle

Set the perspective to turtle.

Every time turtle moves the observer also moves. Thus, in the 2D View the turtle will stay at the center of the view. In the 3D view it is as if looking through the eyes of the turtle. If the tur‑
tle dies, the perspective resets to the default.

The observer may only watch or follow a single subject. Calling ride will remove the highlight created by prior calls to watch and watch-me , highlighting the ridden turtle instead.

See also reset-perspective , watch , follow , subject .

ride-me Since 3.0

ride-me

Asks the observer to ride this turtle.

The observer may only watch or follow a single subject. Calling ride-me will remove the highlight created by prior calls to watch and watch-me , highlighting this turtle instead.

See also ride .

right Since 1.0

rt Since 1.0

right number

The turtle turns right by number degrees. (If number is negative, it turns left.)

round Since 1.0

round number

Reports the integer nearest to number.

If the decimal portion of number is exactly .5, the number is rounded in the positive direction.

Note that rounding in the positive direction is not always how rounding is done in other software programs. (In particular, it does not match the behavior of StarLogoT, which always

rounded numbers ending in 0.5 to the nearest even integer.) The rationale for this behavior is that it matches how turtle coordinates relate to patch coordinates in NetLogo. For example, if

a turtle's xcor is -4.5, then it is on the boundary between a patch whose pxcor is -4 and a patch whose pxcor is -5, but the turtle must be considered to be in one patch or the other, so the

turtle is considered to be in the patch whose pxcor is -4, because we round towards the positive numbers.

show round 4.2

=> 4

show round 4.5

=> 5

show round -4.5

=> -4

See also precision , ceiling , floor .

run Since 1.3

runresult Since 1.3

run command

(run command input1 ...)

run string

runresult reporter

(runresult reporter input1 ...)

runresult string

The run form expects the name of a command, an anonymous command, or a string containing commands. This agent then runs them.

The runresult form expects the name of a reporter, an anonymous reporter, or a string containing a reporter. This agent runs it and reports the result.

Note that you can't use run to define or redefine procedures. If you care about performance, note that the code must be compiled first which takes time. However, compiled bits of code

are cached by NetLogo and thus using run on the same string over and over is much faster than running different strings. The first run, though, will be many times slower than running

the same code directly, or in an anonymous command.

Anonymous procedures are recommended over strings whenever possible. (An example of when you must use strings is if you accept pieces of code from the user of your model.)

Anonymous procedures may freely read and/or set local variables and procedure inputs. Trying to do the same with strings may or may not work and should not be relied on.

When using anonymous procedures, you can provide them with inputs, if you surround the entire call with parentheses. For example:

(run [[turtle-count step-count] -> crt turtle-count [fd step-count]] 10 5)

;; creates 10 turtles and move them forward 5 steps

show (runresult [[a b] -> a + b] 10 5)

=> 15

;; adds 10 and 5

See also foreach , -> (anonymous procedure) .

S

scale-color Since 1.0

scale-color color number range1 range2

Reports a shade of color proportional to the value of number.

When range1 is less than or equal to range2, then the larger the number, the lighter the shade of color. However, if range2 is less than range1, the color scaling is inverted.

Let min-range be the minimum of range1 and range2. If number is less than or equal to min-range, then the result is the same as if number was equal to min-range. Let max-range be the

maximum of range1 and range2. If number is greater than max-range, then the result is the same as if number was equal to max-range.

Note: for color shade is irrelevant, e.g. green and green + 2 are equivalent, and the same spectrum of colors will be used.

ask turtles [set color scale-color red age 0 50]

;; colors each turtle a shade of red proportional

;; to its value for the age variable

self Since 1.3

self

Reports this turtle, patch, or link.

"self" and "myself" are very different. "self" is simple; it means "me". "myself" means "the agent who asked me to do what I'm doing right now."

Note that it is always redundant to write [foo] of self . This is always equivalent to simply writing foo .

See also myself .

; (semicolon)

; comments

After a semicolon, the rest of the line is ignored. This is useful for adding "comments" to your code -- text that explains the code to human readers. Extra semicolons can be added for vis‑

ual effect.

NetLogo's Edit menu has items that let you comment or uncomment whole sections of code.

sentence Since 1.0

se Since 1.0

sentence value1 value2

(sentence value1 ...)

Makes a list out of the values. If any value is a list, its items are included in the result directly, rather than being included as a sublist. Examples make this clearer:

show sentence 1 2

=> [1 2]

show sentence [1 2] 3

=> [1 2 3]

show sentence 1 [2 3]

=> [1 2 3]

show sentence [1 2] [3 4]

=> [1 2 3 4]

show sentence [[1 2]] [[3 4]]

=> [[1 2] [3 4]]

show (sentence [1 2] 3 [4 5] (3 + 3) 7)

=> [1 2 3 4 5 6 7]

set Since 1.0

set variable value

Sets variable to the given value.

Variable can be any of the following:

A global variable declared using "globals"

The global variable associated with a slider, switch, chooser, or input box.

A variable belonging to this agent

If this agent is a turtle, a variable belonging to the patch under the turtle.

A local variable created by the let command.

An input to the current procedure.

Example:

ask turtles [

 set color red

 set size 2

 set shape "arrow"

]

You can also give a list of variable names as the first argument for set and they will be assigned the values from a list given as the second argument. This can be particular useful when

you want to calculate multiple values in a reporter procedure, as you can easily set multiple variables with the results. A runtime error will occur if the second argument is not a list value

or if there are not enough values in the list for all the variables specified.

ask turtles [

 set [color size shape] [red 2 "arrow"]

 show color ; prints 15

 show size ; prints 2

 show shape ; prints "arrow"

]

ask turtles [

 set [color size shape] [red] ; causes a runtime error as we need at least 3 values in the list

]

set-current-directory Since 2.0

set-current-directory string

Sets the current directory that is used by the primitives file-delete , file-exists? , and file-open .

The current directory is not used if the above commands are given an absolute file path. This is defaulted to the user's home directory for new models, and is changed to the model's

directory when a model is opened.

Note that in Windows file paths the backslash needs to be escaped within a string by using another backslash "C:\\"

The change is temporary and is not saved with the model.

set-current-directory "C:\\NetLogo"

;; Assume it is a Windows Machine

file-open "my-file.txt"

;; Opens file "C:\\NetLogo\\my-file.txt"

set-current-plot Since 1.0

set-current-plot plotname

Sets the current plot to the plot with the given name (a string). Subsequent plotting commands will affect the current plot.

set-current-plot-pen Since 1.0

set-current-plot-pen penname

The current plot's current pen is set to the pen named penname (a string). If no such pen exists in the current plot, a runtime error occurs. If the current plot has not been set, a runtime

error occurs.

set-default-shape Since 1.0

set-default-shape turtles string

set-default-shape links string

set-default-shape breed string

Specifies a default initial shape for all turtles or links, or for a particular breed of turtles or links. When a turtle or link is created, or it changes breeds, it shape is set to the given shape.

This command doesn't affect existing agents, only agents you create afterwards.

The given breed must be either turtles, links, or the name of a breed. The given string must be the name of a currently defined shape.

In new models, the default shape for all turtles is "default".

Note that specifying a default shape does not prevent you from changing an agent's shape later. Agents don't have to be stuck with their breed's default shape.

create-turtles 1 ;; new turtle's shape is "default"

create-cats 1 ;; new turtle's shape is "default"

set-default-shape turtles "circle"

create-turtles 1 ;; new turtle's shape is "circle"

create-cats 1 ;; new turtle's shape is "circle"

set-default-shape cats "cat"

set-default-shape dogs "dog"

create-cats 1 ;; new turtle's shape is "cat"

ask cats [set breed dogs]

 ;; all cats become dogs, and automatically

 ;; change their shape to "dog"

See also shape .

set-histogram-num-bars Since 1.0

set-histogram-num-bars number

Set the current plot pen's plot interval so that, given the current x range for the plot, there would be number number of bars drawn if the histogram command is called.

See also histogram .

This command will produce a runtime error if either the current plot or the current pen has not been set.

__set-line-thickness

__set-line-thickness number

Specifies the thickness of lines and outlined elements in the turtle's shape.

The default value is 0. This always produces lines one pixel thick.

Non-zero values are interpreted as thickness in patches. A thickness of 1, for example, produces lines which appear one patch thick. (It's common to use a smaller value such as 0.5 or

0.2.)

Lines are always at least one pixel thick.

This command is experimental and may change in later releases.

set-patch-size Since 4.1

set-patch-size size

Sets the size of the patches of the view in pixels. The size is typically an integer, but may also be a floating point number.

See also patch-size , resize-world .

set-plot-background-color Since 6.0.2

set-plot-background-color color

Sets the background color of the current plot. The color may be specified as a number or a list. See the Colors section of the programming guide for more details. This change is tempo‑
rary and is not saved with the model. When the plot is cleared, the background color will revert to white.

Note: Plot backgrounds do not support transparency. If a list is used to set the color, the alpha component will be ignored.

This command will produce a runtime error if the current plot has not been set.

set-plot-pen-color Since 1.0

set-plot-pen-color color

Sets the color of the current plot pen to color.

This command will produce a runtime error if either the current plot or the current pen has not been set.

set-plot-pen-interval Since 1.0

set-plot-pen-interval number

Tells the current plot pen to move a distance of number in the x direction during each use of the plot command. (The plot pen interval also affects the behavior of the histogram

command.)

This command will produce a runtime error if either the current plot or the current pen has not been set.

set-plot-pen-mode Since 1.0

set-plot-pen-mode number

Sets the mode the current plot pen draws in to number. The allowed plot pen modes are:

0 (line mode) the plot pen draws a line connecting two points together.

1 (bar mode): the plot pen draws a bar of width plot-pen-interval with the point plotted as the upper (or lower, if you are plotting a negative number) left corner of the bar.

2 (point mode): the plot pen draws a point at the point plotted. Points are not connected.

The default mode for new pens is 0 (line mode).

This command will produce a runtime error if either the current plot or the current pen has not been set.

setup-plots Since 5.0

setup-plots

For each plot, runs that plot's setup commands, including the setup code for any pens in the plot.

reset-ticks has the same effect, so in models that use the tick counter, this primitive is not normally used.

See the Plotting section of the Programming Guide for more details.

See also update-plots .

set-plot-x-range Since 1.0

set-plot-y-range Since 1.0

set-plot-x-range min max

set-plot-y-range min max

Sets the minimum and maximum values of the x or y axis of the current plot.

The change is temporary and is not saved with the model. When the plot is cleared, the ranges will revert to their default values as set in the plot's Edit dialog.

These commands will produce a runtime error if the current plot has not been set.

set-topology Since 7.0

set-topology wraps-in-x? wraps-in-y?

Sets the wrapping behavior of the world, such that X coordinates wrap if the first argument was true and Y coordinates wrap if the second argument was true.

Equivalent to adjusting the "World wraps horizontally" and "World wraps vertically" checkboxes in the "Model Settings" window.

set-topology true true

;; wrapping in both directions (torus)

set-topology true false

;; wrapping only in the X direction (vertical cylinder)

set-topology false true

;; wrapping only in the Y direction (horizontal cylinder)

set-topology false false

;; no wrapping (box)

setxy Since 1.0

setxy x y

The turtle sets its x-coordinate to x and its y-coordinate to y.

Equivalent to set xcor x set ycor y , except it happens in one time step instead of two.

If x or y is outside the world, NetLogo will throw a runtime error, unless wrapping is turned on in the relevant dimensions. For example, with wrapping turned on in both dimensions and the

default world size where min-pxcor = -16 , max-pxcor = 16 , min-pycor = -16 and max-pycor = 16 , asking a turtle to setxy 17 17 will move it to the center of patch (-16, -16).

setxy 0 0

;; turtle moves to the middle of the center patch

setxy random-xcor random-ycor

;; turtle moves to a random point

setxy random-pxcor random-pycor

;; turtle moves to the center of a random patch

See also move-to .

shade-of? Since 1.0

shade-of? color1 color2

Reports true if both colors are shades of one another, false otherwise.

show shade-of? blue red

=> false

show shade-of? blue (blue + 1)

=> true

show shade-of? gray white

=> true

shape

shape

This is a built-in turtle and link variable. It holds a string that is the name of the turtle or link's current shape. You can set this variable to change the shape. New turtles and links have the

shape "default" unless the a different shape has been specified using set-default-shape .

Example:

 ask turtles [set shape "wolf"]

 ;; assumes you have made a "wolf"

 ;; shape in NetLogo's Turtle Shapes Editor

 ask links [set shape "link 1"]

 ;; assumes you have made a "link 1" shape in

 ;; the Link Shapes Editor

See also set-default-shape , shapes .

shapes Since 2.1

shapes

Reports a list of strings containing all of the turtle shapes in the model.

New shapes can be created, or imported from the shapes library or from other models, in the Shapes Editor.

show shapes

=> ["default" "airplane" "arrow" "box" "bug" ...

ask turtles [set shape one-of shapes]

show Since 1.0

show value

Prints value in the Command Center, preceded by this agent, and followed by a carriage return. (This agent is included to help you keep track of what agents are producing which lines of

output.) Also, all strings have their quotes included similar to write .

See also print , type , write , output-show , and Output (programming guide).

show-turtle Since 1.0

st Since 1.0

show-turtle

The turtle becomes visible again.

Note: This command is equivalent to setting the turtle variable "hidden?" to false.

See also hide-turtle .

show-link Since 4.0

show-link

The link becomes visible again.

Note: This command is equivalent to setting the link variable "hidden?" to false.

See also hide-link .

shuffle Since 2.0

shuffle list

Reports a new list containing the same items as the input list, but in randomized order.

show shuffle [1 2 3 4 5]

=> [5 2 4 1 3]

show shuffle [1 2 3 4 5]

=> [1 3 5 2 4]

sin Since 1.0

sin number

Reports the sine of the given angle. Assumes angle is given in degrees.

show sin 270

=> -1

size

size

file:///tmp/sbt_6c39b28e/shapes.html
file:///tmp/sbt_6c39b28e/shapes.html

This is a built-in turtle variable. It holds a number that is the turtle's apparent size. The default size is 1, which means that the turtle is the same size as a patch. You can set this variable to

change a turtle's size.

sort Since 1.0

sort list

sort agentset

Reports a sorted list of numbers, strings, or agents.

If the input contains no numbers, strings, or agents, the result is the empty list.

If the input contains at least one number, the numbers in the list are sorted in ascending order and a new list reported; non-numbers are ignored.

Or, if the input contains at least one string, the strings in the list are sorted in ascending order and a new list reported; non-strings are ignored.

Or, if the input is an agentset or a list containing at least one agent, a sorted list of agents (never an agentset) is reported; non-agents are ignored. Agents are sorted in the same order the

< operator uses. (Patches are sorted with the top left-most patch first and the bottom right-most patch last, turtles are sorted by who number).

show sort [3 1 4 2]

=> [1 2 3 4]

show sort [2 1 "a"]

=> [1 2]

show sort (list "a" "c" "b" (patch 0 0))

=> ["a" "b" "c"]

show sort (list (patch 0 0) (patch 0 1) (patch 1 0))

=> [(patch 0 1) (patch 0 0) (patch 1 0)]

;; label patches with numbers in left-to-right, top-to-bottom order

let n 0

foreach sort patches [the-patch ->

 ask the-patch [

 set plabel n

 set n n + 1

]

]

;; some additional examples to clarify behavior in strange cases

show sort (list patch 0 0 patch 0 1 patch 1 0 turtle 0 turtle 1) ; turtles are always sorted lower than patches

=> [(turtle 0) (turtle 1) (patch 0 1) (patch 0 0) (patch 1 0)]

show sort (list nobody false true) ; booleans and nobody cannot be sorted

=> []

show sort (list [1 2 3] turtles) ; lists and agentsets are not included if they are inside a list passed to sort

=> []

See also sort-by , sort-on .

sort-by Since 1.3

sort-by reporter list

sort-by reporter agentset

If the input is a list, reports a new list containing the same items as the input list, in a sorted order defined by the boolean reporter. reporter may be an anonymous reporter or the name of

a reporter.

The two inputs to reporter are the values being compared. The reporter should report true if the first argument comes strictly before the second in the desired sort order, and false

otherwise.

If the input is an agentset or a list of agents, reports a list (never an agentset) of agents.

If the input is a list, the sort is stable, that is, the order of items considered equal by the reporter is not disturbed. If the input is an agentset, ties are broken randomly.

show sort-by < [3 1 4 2]

=> [1 2 3 4]

show sort-by > [3 1 4 2]

=> [4 3 2 1]

show sort-by [[string1 string2] -> length string1 < length string2] ["Grumpy" "Doc" "Happy"]

=> ["Doc" "Happy" "Grumpy"]

See also sort , sort-on , -> (anonymous procedure) .

sort-on Since 5.0

sort-on [reporter] agentset

Reports a list of agents, sorted according to each agent's value for reporter. Ties are broken randomly.

The values must be all numbers, all strings, or all agents of the same type.

crt 3

show sort-on [who] turtles

=> [(turtle 0) (turtle 1) (turtle 2)]

show sort-on [(- who)] turtles

=> [(turtle 2) (turtle 1) (turtle 0)]

foreach sort-on [size] turtles

 [the-turtle -> ask the-turtle [do-something]]

;; turtles run "do-something" one at a time, in

;; ascending order by size

See also sort , sort-by .

sprout Since 1.0

sprout number [commands]

sprout-<breeds> number [commands]

Creates number new turtles on the current patch. The new turtles have random integer headings and the color is randomly selected from the 14 primary colors. The turtles immediately

run commands. This is useful for giving the new turtles different colors, headings, or whatever. (The new turtles are created all at once then run one at a time, in random order.)

If the sprout-<breeds> form is used, the new turtles are created as members of the given breed.

If number is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

sprout 5

sprout-wolves 10

sprout 1 [set color red]

sprout-sheep 1 [set color black]

See also create-turtles , hatch .

sqrt Since 1.0

sqrt number

Reports the square root of number.

stamp Since 1.0

stamp

This turtle or link leaves an image of its shape in the drawing at its current location.

Note: The shapes made by stamp may not be pixel-for-pixel identical from computer to computer.

stamp-erase Since 3.1

stamp-erase

This turtle or link removes any pixels below it in the drawing inside the bounds of its shape.

Note: The shapes made by stamp-erase may not be pixel-for-pixel identical from computer to computer.

standard-deviation Since 1.0

standard-deviation list

Reports the sample standard deviation of a list of numbers. Ignores other types of items.

(Note that this estimates the standard deviation for a sample, rather than for a whole population, using Bessel's correction.)

show standard-deviation [1 2 3 4 5 6]

=> 1.8708286933869707

show standard-deviation [energy] of turtles

;; prints the standard deviation of the variable "energy"

;; from all the turtles

See this FAQ question for information on possible issues using standard-deviation with agentsets

startup

startup

User-defined procedure which, if it exists, will be called when a model is first loaded in the NetLogo application.

to startup

 setup

end

startup does not run when a model is run headless from the command line, or by parallel BehaviorSpace.

stop Since 1.0

stop

This agent exits immediately from the enclosing procedure, ask, or ask-like construct (e.g. crt, hatch, sprout). Only the enclosing procedure or construct stops, not all execution for the

agent.

if not any? turtles [stop]

;; exits if there are no more turtles

Note: stop can also be used to stop a forever button. See Buttons in the Programming Guide for details.

stop can also be used to stop a BehaviorSpace model run. If the go commands directly call a procedure, then when that procedure calls stop, the run ends.

stop-inspecting Since 5.2

stop-inspecting agent

Closes the agent monitor for the given agent (turtle or patch or link). In the case that no agent monitor is open, stop-inspecting does nothing.

stop-inspecting patch 2 4

;; the agent monitor for that patch closes

ask sheep [stop-inspecting self]

;; close all agent monitors for sheep

ask links [stop-inspecting self]

;; close all agent monitors for links

See inspect and stop-inspecting-dead-agents .

stop-inspecting-dead-agents Since 5.2

stop-inspecting-dead-agents

Closes all agent monitors for dead agents. See inspect and stop-inspecting .

subject Since 3.0

subject

Reports the turtle (or patch or link) that the observer is currently watching, following, or riding. Reports nobody if there is no such turtle (or patch or link). Note: following and riding are

valid for turtles only.

See also watch , follow , ride .

sublist Since 2.1

substring Since 1.0

sublist list position1 position2

substring string position1 position2

Reports just a section of the given list or string, ranging between the first position (inclusive) and the second position (exclusive). To include the last item position2 should equal the length

of the list or string.

If either position is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

Note: The positions are numbered beginning with 0, not with 1.

show sublist [99 88 77 66] 1 3

=> [88 77]

show sublist [99 88 77 66] 1 4

=> [88 77 66]

show sublist [99 88 77 66] 1 5

ERROR: Runtime error: 5 is greater than the length of the input list (4).

show substring "apartment" 1 5

=> "part"

subtract-headings Since 2.1

subtract-headings heading1 heading2

Computes the difference between the given headings, that is, the number of degrees in the smallest angle by which heading2 could be rotated to produce heading1. A positive answer

means a clockwise rotation, a negative answer counterclockwise. The result is always in the range -180 to 180, but is never exactly -180.

Note that simply subtracting the two headings using the - (minus) operator wouldn't work. Just subtracting corresponds to always rotating clockwise from heading2 to heading1; but

sometimes the counterclockwise rotation is shorter. For example, the difference between 5 degrees and 355 degrees is 10 degrees, not -350 degrees.

show subtract-headings 80 60

=> 20

show subtract-headings 60 80

=> -20

show subtract-headings 5 355

=> 10

show subtract-headings 355 5

=> -10

show subtract-headings 180 0

=> 180

show subtract-headings 0 180

=> 180

sum Since 1.0

sum list

Reports the sum of the items in the list.

show sum [energy] of turtles

;; prints the total of the variable "energy"

;; from all the turtles

See this FAQ question for information on possible issues using sum with agentsets

T

tan Since 1.0

tan number

Reports the tangent of the given angle. Assumes the angle is given in degrees.

thickness

thickness

This is a built-in link variable. It holds a number that is the link's apparent size as a fraction of the patch size. The default thickness is 0, which means that regardless of patch-size the

links will always appear 1 pixel wide. You can set this variable to change a link's thickness.

tick Since 4.0

tick

Advances the tick counter by one and updates all plots.

If the tick counter has not been started yet with reset-ticks , an error results.

Normally tick goes at the end of a go procedure.

See also ticks , tick-advance , reset-ticks , clear-ticks , update-plots .

tick-advance Since 4.0

tick-advance number

Advances the tick counter by number. The input may be an integer or a floating point number. (Some models divide ticks more finely than by ones.) The input may not be negative.

When using tick-based view updates, the view is normally updated every 1.0 ticks, so using tick-advance with a number less then 1.0 may not always trigger an update. If you want to

make sure that the view is updated, you can use the display command.

If the tick counter has not been started yet with reset-ticks , an error results.

Does not update plots.

See also tick , ticks , reset-ticks , clear-ticks .

ticks Since 4.0

ticks

Reports the current value of the tick counter. The result is always a number and never negative.

If the tick counter has not been started yet with reset-ticks , an error results.

Most models use the tick command to advance the tick counter, in which case ticks will always report an integer. If the tick-advance command is used, then ticks may report a

floating point number.

See also tick , tick-advance , reset-ticks , clear-ticks .

tie Since 4.0

tie

Ties end1 and end2 of the link together. If the link is a directed link end1 is the root turtle and end2 is the leaf turtle. The movement of the root turtle affects the location and heading of the

leaf turtle. If the link is undirected the tie is reciprocal so both turtles can be considered root turtles and leaf turtles. Movement or change in heading of either turtle affects the location

and heading of the other turtle.

When the root turtle moves, the leaf turtles moves the same distance, in the same direction. The heading of the leaf turtle is not affected. This works with forward, jump, and setting the

xcor or ycor of the root turtle.

When the root turtle turns right or left, the leaf turtle is rotated around the root turtle the same amount. The heading of the leaf turtle is also changed by the same amount.

If the link dies, the tie relation is removed.

crt 2 [fd 3]

;; creates a link and ties turtle 1 to turtle 0

ask turtle 0 [create-link-to turtle 1 [tie]]

See also untie

tie-mode

tie-mode

This is a built-in link variable. It holds a string that is the name of the tie mode the link is currently in. Using the tie and untie commands changes the mode of the link. You can also set

tie-mode to "free" to create a non-rigid joint between two turtles (see the Tie section of the Programming Guide for details). By default links are not tied.

See also: tie , untie

timer Since 1.0

timer

Reports how many seconds have passed since the command reset-timer was last run (or since NetLogo started). The potential resolution of the clock is milliseconds. (Whether you get

resolution that high in practice may vary from system to system, depending on the capabilities of the underlying Java Virtual Machine.)

See also reset-timer .

Note that the timer is different from the tick counter. The timer measures elapsed real time in seconds; the tick counter measures elapsed model time in ticks.

to

to procedure-name

to procedure-name [input1 ...]

Used to begin a command procedure.

to setup

 clear-all

 crt 500

end

to circle [radius]

 crt 100 [fd radius]

end

to-report

to-report procedure-name

to-report procedure-name [input1 ...]

Used to begin a reporter procedure.

The body of the procedure should use report to report a value for the procedure. See report .

to-report average [a b]

 report (a + b) / 2

end

to-report absolute-value [number]

 ifelse number >= 0

 [report number]

 [report (- number)]

end

to-report first-turtle?

 report who = 0 ;; reports true or false

end

towards Since 1.0

towards agent

Reports the heading from this agent to the given agent.

If wrapping is allowed by the topology and the wrapped distance (around the edges of the world) is shorter, towards will use the wrapped path.

Note: asking for the heading from an agent to itself, or an agent on the same location, will cause a runtime error.

set heading towards turtle 1

;; same as "face turtle 1"

See also face .

towardsxy Since 1.0

towardsxy x y

Reports the heading from the turtle or patch towards the point (x,y).

If wrapping is allowed by the topology and the wrapped distance (around the edges of the world) is shorter, towardsxy will use the wrapped path.

Note: asking for the heading to the point the agent is already standing on will cause a runtime error.

See also facexy .

turtle Since 1.0

turtle number

<breed> number

Reports the turtle with the given who number, or nobody if there is no such turtle. For breeded turtles you may also use the single breed form to refer to them.

ask turtle 5 [set color red]

;; turtle with who number 5 turns red

turtle-set Since 4.0

turtle-set value1

(turtle-set value1 value2 ...)

Reports an agentset containing all of the turtles anywhere in any of the inputs. The inputs may be individual turtles, turtle agentsets, nobody, or lists (or nested lists) containing any of the

above.

turtle-set self

(turtle-set self turtles-on neighbors)

(turtle-set turtle 0 turtle 2 turtle 9)

(turtle-set frogs mice)

See also patch-set , link-set .

turtles Since 1.0

turtles

Reports the agentset consisting of all turtles. This is a special agentset that can grow as turtles are added to the world, see the programming guide for more info.

show count turtles

;; prints the number of turtles

turtles-at Since 1.0

turtles-at dx dy

<breeds>-at dx dy

Reports an agentset containing the turtles on the patch (dx, dy) from the caller. (The result may include the caller itself if the caller is a turtle.)

create-turtles 5 [setxy 2 3]

show count [turtles-at 1 1] of patch 1 2

=> 5

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

turtles-here Since 1.0

turtles-here

<breeds>-here

Reports an agentset containing all the turtles on the caller's patch (including the caller itself if it's a turtle).

crt 10

ask turtle 0 [show count turtles-here]

=> 10

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

breed [cats cat]

breed [dogs dog]

create-cats 5

create-dogs 1

ask dogs [show count cats-here]

=> 5

turtles-on Since 2.0

turtles-on turtle or patch

turtles-on turtleset or agentset

<breeds>-on turtle or patch

<breeds>-on turtleset or patchset

Reports an agentset containing all the turtles that are on the given patch or patches, or standing on the same patch as the given turtle or turtles.

ask turtles [

 if not any? turtles-on patch-ahead 1

 [fd 1]

]

ask turtles [

 if not any? turtles-on neighbors [

 die-of-loneliness

]

]

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

turtles-own

turtles-own [var1 ...]

<breeds>-own [var1 ...]

The turtles-own keyword, like the globals, breed, <breeds>-own, and patches-own keywords, can only be used at the beginning of a program, before any function definitions. It defines

the variables belonging to each turtle.

If you specify a breed instead of "turtles", only turtles of that breed have the listed variables. (More than one turtle breed may list the same variable.)

breed [cats cat]

breed [dogs dog]

breed [hamsters hamster]

turtles-own [eyes legs] ;; applies to all breeds

cats-own [fur kittens]

hamsters-own [fur cage]

dogs-own [hair puppies]

See also globals , patches-own , breed , <breeds>-own .

type Since 1.0

type value

Prints value in the Command Center, not followed by a carriage return (unlike print and show). The lack of a carriage return allows you to print several values on the same line.

This agent is not printed before the value. unlike show .

type 3 type " " print 4

=> 3 4

See also print , show , write , output-type , and Output (programming guide).

U

undirected-link-breed

undirected-link-breed [<link-breeds> <link-breed>]

This keyword, like the globals and breeds keywords, can only be used at the beginning of the Code tab, before any procedure definitions. It defines an undirected link breed. Links of a

particular breed are always either all directed or all undirected. The first input defines the name of the agentset associated with the link breed. The second input defines the name of a sin‑
gle member of the breed.

Any link of the given link breed:

is part of the agentset named by the link breed name

has its built-in variable breed set to that agentset

is directed or undirected as declared by the keyword

Most often, the agentset is used in conjunction with ask to give commands to only the links of a particular breed.

undirected-link-breed [streets street]

undirected-link-breed [highways highway]

to setup

 clear-all

 crt 2

 ask turtle 0 [create-street-with turtle 1]

 ask turtle 0 [create-highway-with turtle 1]

end

ask turtle 0 [show sort my-links]

;; prints [(street 0 1) (highway 0 1)]

See also breed , directed-link-breed

untie Since 4.0

untie

Unties end2 from end1 (sets tie-mode to "none") if they were previously tied together. If the link is an undirected link, then it will untie end1 from end2 as well. It does not remove the link

between the two turtles.

See also tie

See the Tie section of the Programming Guide for more details.

up-to-n-of Since 6.1

up-to-n-of size agentset

up-to-n-of size list

From an agentset, reports an agentset of size size randomly chosen from the input set, with no repeats. If the input does not have enough agents to satisfy the size, reports the entire

agentset.

From a list, reports a list of size size randomly chosen from the input set, with no repeats. The items in the result appear in the same order that they appeared in the input list. (If you want

them in random order, use shuffle on the result.) If the input does not have enough items to satisfy the size, reports the entire list.

If size is fractional, it will be rounded down to the nearest integer (4.5 becomes 4, 10.9 becomes 10).

ask up-to-n-of 50 patches [set pcolor green]

;; 50 randomly chosen patches turn green

;; if less than 50 patches exist, they all turn green

See also n-of , one-of .

update-plots Since 5.0

update-plots

For each plot, runs that plot's update commands, including the update code for any pens in the plot.

tick has the same effect, so in models that use the tick counter, this primitive is not normally used. Models that use fractional ticks may need update-plots , since tick-advance does

not update the plots.

See the Plotting section of the Programming Guide for more details.

See also setup-plots .

uphill Since 1.0

uphill4 Since 1.0

uphill patch-variable

uphill4 patch-variable

Moves the turtle to the neighboring patch with the highest value for patch-variable. If no neighboring patch has a higher value than the current patch, the turtle stays put. If there are mul‑

tiple patches with the same highest value, the turtle picks one randomly. Non-numeric values are ignored.

uphill considers the eight neighboring patches; uphill4 only considers the four neighbors.

Equivalent to the following code (assumes variable values are numeric):

Since 7.0

 move-to patch-here ;; go to patch center

 let p max-one-of neighbors [patch-variable] ;; or neighbors4

 if [patch-variable] of p > patch-variable [

 face p

 move-to p

]

Note that the turtle always ends up on a patch center and has a heading that is a multiple of 45 (uphill) or 90 (uphill4).

See also downhill , downhill4 .

user-directory Since 3.1

user-directory

Opens a dialog that allows the user to choose an existing directory on the system.

It reports a string with the absolute path or false if the user cancels.

set-current-directory user-directory

;; Assumes the user will choose a directory

user-file Since 3.1

user-file

Opens a dialog that allows the user to choose an existing file on the system.

It reports a string with the absolute file path or false if the user cancels.

file-open user-file

;; Assumes the user will choose a file

user-new-file Since 3.1

user-new-file

Opens a dialog that allows the user to choose a location and name of a new file to be created. It reports a string with the absolute file path or false if the user cancels.

file-open user-new-file

;; Assumes the user will choose a file

Note that this reporter doesn't actually create the file; normally you would create the file using file-open , as in the example.

If the user chooses an existing file, they will be asked if they wish to replace it or not, but the reporter itself doesn't cause the file to be replaced. To do that you would use file-delete .

Note: This primitive is not compatible with NetLogo Web. If you wish to read the contents of a file with the same code and the same behavior in both NetLogo and NetLogo Web, see

fetch:user-file-async.

user-input Since 1.1

user-input value

(user-input value default-value)

Reports the string that a user types into an entry field in a dialog with title value. You can optionally provide a default-value that the entry field will be preset with when it is displayed.

value may be of any type, but is typically a string.

show user-input "What is your name?"

See the User Interaction Primitives section of the Programming Guide for additional details.

user-message Since 1.1

user-message value

Opens a dialog with value displayed as the message to the user.

value may be of any type, but is typically a string.

user-message (word "There are " count turtles " turtles.")

Note that if a user closes the user-message dialog with the "X" in the corner, the behavior will be the same as if they had clicked "OK".

See the User Interaction Primitives section of the Programming Guide for additional details.

user-one-of Since 3.1

user-one-of value list-of-choices

https://github.com/NetLogo/Fetch-Extension#readme

Opens a dialog with value displayed as the message and list-of-choices displayed as a popup menu for the user to select from.

Reports the item in list-of-choices selected by the user.

value may be of any type, but is typically a string.

if "yes" = user-one-of "Set up the model?" ["yes" "no"]

 [setup]

Note: This primitive is not compatible with NetLogo Web. If you wish to read a chooser value from the user with the same code and the same behavior in both NetLogo and NetLogo Web,

see dialog:user-one-of.

See the User Interaction Primitives section of the Programming Guide for additional details.

user-yes-or-no? Since 2.0

user-yes-or-no? value

Reports true or false based on the user's response to value.

value may be of any type, but is typically a string.

if user-yes-or-no? "Set up the model?"

 [setup]

Note: This primitive is not compatible with NetLogo Web. If you wish to read a true or false value from the user with the same code and the same behavior in both NetLogo and NetLogo

Web, see dialog:user-yes-or-no?.

See the User Interaction Primitives section of the Programming Guide for additional details.

V

variance Since 1.0

variance list

Reports the sample variance of a list of numbers. Ignores other types of items.

(Note that this computes an unbiased estimate of the variance for a sample, rather than for a whole population, using Bessel's correction.)

The sample variance is the sum of the squares of the deviations of the numbers from their mean, divided by one less than the number of numbers in the list.

show variance [2 7 4 3 5]

=> 3.7

See this FAQ question for information on possible issues using variance with agentsets

W

wait Since 1.0

wait number

Wait the given number of seconds. (This needn't be an integer; you can specify fractions of seconds.) Note that you can't expect complete precision; the agent will never wait less than

the given amount, but might wait slightly more.

repeat 10 [fd 1 wait 0.5]

While the agent is waiting, no other agents can do anything. Everything stops until the agent is done.

See also every .

watch Since 3.0

watch agent

Puts a spotlight on agent. In the 3D view the observer will also turn to face the subject.

The observer may only watch or follow a single subject. Calling watch will undo perspective changes caused by prior calls to follow , follow-me , ride , and ride-me .

See also follow , subject , reset-perspective , ride , ride-me , watch-me .

watch-me Since 3.0

watch-me

https://github.com/NetLogo/Dialog-Extension#readme
https://github.com/NetLogo/Dialog-Extension#readme

Asks the observer to watch this agent.

The observer may only watch or follow a single subject. Calling watch will undo perspective changes caused by prior calls to follow , follow-me , ride , and ride-me .

See also follow , subject , reset-perspective , ride , ride-me , watch .

while Since 1.0

while [reporter] [commands]

If reporter reports false, exit the loop. Otherwise run commands and repeat.

The reporter may have different values for different agents, so some agents may run commands a different number of times than other agents.

while [any? other turtles-here]

 [fd 1]

;; turtle moves until it finds a patch that has

;; no other turtles on it

who

who

This is a built-in turtle variable. It holds the turtle's "who number" or ID number, an integer greater than or equal to zero. You cannot set this variable; a turtle's who number never changes.

Who numbers start at 0. A dead turtle's number will not be reassigned to a new turtle until you use the clear-turtles or clear-all commands, at which time who numbering starts

over again at 0.

Example:

show [who] of turtles with [color = red]

;; prints a list of the who numbers of all red turtles

;; in the Command Center, in random order

crt 100

 [ifelse who < 50

 [set color red]

 [set color blue]]

;; turtles 0 through 49 are red, turtles 50

;; through 99 are blue

You can use the turtle reporter to retrieve a turtle with a given who number. See also turtle .

Note that who numbers aren't breed-specific. No two turtles can have the same who number, even if they are different breeds:

clear-turtles

create-frogs 1

create-mice 1

ask turtles [print who]

;; prints (in some random order):

;; (frog 0): 0

;; (mouse 1): 1

Even though we only have one mouse, it is mouse 1 not mouse 0 , because the who number 0 was already taken by the frog.

who-are-not Since 6.3.1

agentset who-are-not agentset

agentset who-are-not agent

Takes an agentset on the left and an agentset or an agent on the right. Reports a new agentset containing all agents from the left-hand agentset that are not in the right-hand agentset (or

are not the right-hand agent).

breed [frogs frog]

breed [mice mouse]

create-frogs 10

create-mice 10

create-turtles 10

; contains all the turtles who are not frogs

ask turtles who-are-not frogs [

 forward 1

]

Another example:

ask turtles [

 ; contains all the turtles this turtle is not linked to

 let targets (other turtles who-are-not link-neighbors)

 if count targets > 0 [

 create-link-with one-of targets

]

]

with Since 1.0

agentset with [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a boolean reporter. Reports a new agentset containing only those agents that reported true -- in

other words, the agents satisfying the given condition.

show count patches with [pcolor = red]

;; prints the number of red patches

<breed>-with

link-with Since 4.0

<breed>-with turtle

link-with turtle

Reports a link between turtle and the caller (directed or undirected, incoming or outgoing). If no link exists then it reports nobody. If more than one such link exists, reports a random one.

crt 2

ask turtle 0 [

 create-link-with turtle 1

 show link-with turtle 1 ;; prints link 0 1

]

See also: in-link-from , out-link-to

with-max Since 2.1

agentset with-max [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a reporter. Reports a new agentset containing all agents reporting the maximum value of the given

reporter.

show count patches with-max [pxcor]

;; prints the number of patches on the right edge

See also max-one-of , max-n-of .

with-min Since 2.1

agentset with-min [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a reporter. Reports a new agentset containing only those agents that have the minimum value of the

given reporter.

show count patches with-min [pycor]

;; prints the number of patches on the bottom edge

See also min-one-of , min-n-of .

with-local-randomness Since 4.0

with-local-randomness [commands]

The commands are run without affecting subsequent random events. This is useful for performing extra operations (such as output) without changing the outcome of a model.

Example:

;; Run #1:

random-seed 50 setup repeat 10 [go]

;; Run #2:

random-seed 50 setup

with-local-randomness [watch one-of turtles]

repeat 10 [go]

Since one-of is used inside with-local-randomness , both runs will be identical.

Specifically how it works is, the state of the random number generator is remembered before the commands run, then restored afterwards. (If you want to run the commands with a fresh

random state instead of the same random state that will be restored later, you can begin the commands with random-seed new-seed .)

The following example demonstrates that the random number generator state is the same both before the commands run and afterwards.

random-seed 10

with-local-randomness [print n-values 10 [random 10]]

;; prints [8 9 8 4 2 4 5 4 7 9]

print n-values 10 [random 10]

;; prints [8 9 8 4 2 4 5 4 7 9]

without-interruption Since 1.1

without-interruption [commands]

This primitive exists only for backwards compatibility. We don't recommend using it in new models.

The agent runs all the commands in the block without allowing other agents using ask-concurrent to "interrupt". That is, other agents are put "on hold" and do not run any commands

until the commands in the block are finished.

Note: This command is only useful in conjunction with ask-concurrent .

See also ask-concurrent .

word Since 1.0

word value1 value2

(word value1 ...)

Concatenates the inputs together and reports the result as a string.

show word "tur" "tle"

=> "turtle"

word "a" 6

=> "a6"

set directory "c:\\foo\\fish\\"

show word directory "bar.txt"

=> "c:\foo\fish\bar.txt"

show word [1 54 8] "fishy"

=> "[1 54 8]fishy"

show (word 3)

=> "3"

show (word "a" "b" "c" 1 23)

=> "abc123"

world-width Since 3.1

world-height Since 3.1

world-width

world-height

These reporters give the total width and height of the NetLogo world.

The width equals max-pxcor - min-pxcor + 1 and the height equals max-pycor - min-pycor + 1.

See also max-pxcor , max-pycor , min-pxcor , and min-pycor

wrap-color Since 1.0

wrap-color number

wrap-color checks whether number is in the NetLogo color range of 0 to 140 (not including 140 itself). If it is not, wrap-color "wraps" the numeric input to the 0 to 140 range.

The wrapping is done by repeatedly adding or subtracting 140 from the given number until it is in the 0 to 140 range. (This is the same wrapping that is done automatically if you assign an

out-of-range number to the color turtle variable or pcolor patch variable.)

show wrap-color 150

=> 10

show wrap-color -10

=> 130

write Since 2.0

write value

This command will output value, which can be a number, string, list, boolean, or nobody to the Command Center, not followed by a carriage return (unlike print and show).

This agent is not printed before the value, unlike show . Its output also includes quotes around strings and is prepended with a space.

write "hello world"

=> "hello world"

See also print , show , type , output-write , and Output (programming guide).

X

xcor

xcor

This is a built-in turtle variable. It holds the current x coordinate of the turtle. You can set this variable to change the turtle's location.

This variable is always greater than or equal to (min-pxcor - 0.5) and strictly less than (max-pxcor + 0.5).

See also setxy , ycor , pxcor , pycor ,

xor Since 1.0

boolean1 xor boolean2

Reports true if either boolean1 or boolean2 is true, but not when both are true. Otherwise returns false. See the programming guide for more information on logical operator precedence.

if (pxcor > 0) xor (pycor > 0)

 [set pcolor blue]

;; upper-left and lower-right quadrants turn blue

Y

ycor

ycor

This is a built-in turtle variable. It holds the current y coordinate of the turtle. You can set this variable to change the turtle's location.

This variable is always greater than or equal to (min-pycor - 0.5) and strictly less than (max-pycor + 0.5).

See also setxy , xcor , pxcor , pycor ,

->

-> Since 6.0

[[args] -> commands]

[[args] -> reporter]

Creates and reports an anonymous procedure - a command or reporter - depending on the input. Within commands or reporter the listed args may be used just as you would use let or

procedure variables. The variable names in args have the same restrictions as variable names of commands and reporters. In addition, they must not match the name of any let or proce‑

dure variable in their procedure.

Anonymous procedures are commonly used with the primitives foreach , map , reduce , filter , sort-by , and n-values . See those entries for example usage.

See the Anonymous Procedures section of the Programming Guide for details.

	The NetLogo 7.0.2 User Manual
	Table of Contents
	What is NetLogo?
	Features

	Copyright and License Information
	How to reference
	Acknowledgments
	NetLogo license
	Commercial licenses
	NetLogo User Manual license
	Open source
	Third party licenses
	Scala
	MersenneTwisterFast
	Colt
	Config
	Apache Commons Codec (TM)
	Flexmark
	JHotDraw
	JOGL
	Matrix3D
	ASM
	PicoContainer
	Parboiled
	RSyntaxTextArea
	JCodec
	Java-Objective-C Bridge
	Webcam-capture
	Guava
	Gephi
	JSSC
	Apache Commons CSV
	JTS Topology Suite
	Apache Commons HTTPClient
	Apache Commons Logging
	ng-units
	Tinfour
	json-simple
	hid4java
	JAMA
	Gson

	What's new?
	Version 7.0.2 (October 2025)
	Major bugs fixed

	Version 7.0.1 (October 2025)
	Bundled software to open multiple instances of NetLogo on Mac
	Interface changes
	Changes to NetLogo Web export
	Major bugs fixed
	Minor bugs fixed

	Version 7.0.0 (September 2025)
	Changes in NetLogo Functionality
	Changes to the NetLogo GUI
	Changes to the NetLogo File format
	Changes in Primitive Functionality
	Changes for Customizability
	Features and Enhancements
	Language Changes
	Bug Fixes and Minor Changes
	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	New 3D Sample Models
	New Code Examples
	Sample Model Changes

	Version 6.4.0 (November 2023)
	BehaviorSpace New Features
	Language Changes
	Bug Fixes and Changes
	BehaviorSpace Bug fixes and changes

	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	Sample Model Changes

	Version 6.3.0 (September 2022)
	Bug Fixes and Changes
	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Changes
	Curricular Models Changes:
	Newly Verified Models

	Version 6.2.2 (December 2021)
	Fixes and Changes

	Version 6.2.1 (October 2021)
	Features and Changes
	Documentation Updates
	Bugfixes
	Models Library Changes
	New Sample Models:
	New Curricula Models:
	New Code Examples:
	Sample Models
	Code Examples

	Version 6.2.0 (December 2020)
	Features
	Bugfixes
	Logging Improvements
	NetLogo 3D Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Updates:

	Alternative Visualization Updates:
	Curricular Model Updates:
	Code Examples Updates:
	HubNet Activities Updates:
	IABM Model Updates:

	Version 6.1.1 (September 2019)
	Bugfixes
	Features
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.1.0 (May 2019)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.0.4 (June 2018)
	Feature Changes
	Bugfixes
	Documentation Changes
	Model Changes
	New Curricular Models
	Revised Sample Models
	Revised Code Examples
	Revised Curricular Models
	Revised Alternative Visualizations

	Version 6.0.3 (March 2018)
	Feature Changes
	Documentation Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models
	New HubNet Activities:
	Revised Code Examples:
	Revised Curricular Models:
	Revised Sample Models:
	Revised IABM Models:
	† - Models Updated to Correctly Reference the HIV Model

	Version 6.0.2 (August 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	Revised Sample Models:
	Revised Curricular Models:
	Revised HubNet Activities:
	Revised Code Examples:

	Version 6.0.1 (March 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Models
	New Sample Model
	New Curricular Model
	Revised Sample Models
	Revised Curricular Models

	Version 6.0 (December 2016)
	Feature Changes
	Bugfixes
	Language Changes
	Extension Changes
	Operating System Support
	Documentation Changes
	Internationalization Changes
	Models
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Promoted Models (improved and no longer “unverified”):
	Revised Sample Models:
	Revised HubNet Activities:
	Revised Curricular Models:
	Revised IABM models:
	Revised Code Examples:
	Demoted model:

	Version 5.3.1 (February 2016)
	Feature Changes
	Extension Changes
	Bugfixes

	Version 5.3 (December 2015)
	Feature Changes
	Extension Changes

	Version 5.2.1 (September 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.2.0 (April 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.1.0 (July 2014)
	Version 5.0.4 (March 2013)
	Version 5.0 (February 2012)
	Version 4.1.3 (April 2011)
	Version 4.1 (December 2009)
	Version 4.0 (September 2007)
	Version 3.1 (April 2006)
	Version 3.0 (September 2005)
	Version 2.1 (December 2004)
	Version 2.0.2 (August 2004)
	Version 2.0 (December 2003)
	Version 1.3 (June 2003)
	Version 1.2 (March 2003)
	Version 1.1 (July 2002)
	Version 1.0 (April 2002)

	System Requirements
	Application Requirements
	Windows
	Mac OS X
	Linux

	3D Requirements
	32-bit or 64-bit?

	Contact Us
	Web site
	Feedback, questions, etc.
	Reporting bugs
	Open source

	Sample Model: Party
	At a Party
	Challenge
	Thinking with models
	What’s next?

	Tutorial #1: Models
	Sample Model: Wolf Sheep Predation
	Controlling the Model: Buttons
	Controlling speed: Speed Slider
	Adjusting Settings: Choosers, Sliders, and Switches
	Gathering Information: Plots and Monitors
	Plots
	Monitors

	Controlling the View
	Models Library
	Sample Models
	Curricular Models
	Code Examples
	HubNet Activities

	What’s Next?

	Tutorial #2: Commands
	Sample Model: Traffic Basic
	Command Center
	Working with colors
	Agent Monitors and Agent Commanders
	What’s Next?

	Tutorial #3: Procedures
	Agents and procedures
	Making the setup button
	Switching to tick-based view updates
	Making the go button
	Experimenting with commands
	Patches and variables
	Turtle variables
	Monitors
	Switches and labels
	More procedures
	Plotting
	Tick counter
	Some more details
	What’s next?
	Appendix: Complete code

	Interface Guide
	Menus
	Chart: NetLogo menus

	Tabs
	International Usage
	Character sets
	Languages
	Default language

	Support for translators

	Interface Tab Guide
	Overview: Working with interface elements (widgets)
	Charts: Interface Widgets
	Widget Appearance: Light and Dark Themes
	Widget Icons and Functionality

	Other Interface Toolbar controls
	Interface Menus
	Add Widgets Menu
	Align Widgets Menu
	Aligning
	Distributing
	Stretching
	Widget Overlap

	Interface Tools
	Interaction Tool
	Right-clicking
	Ctrl-clicking or Cmd-clicking
	Drag Select
	Exiting

	Selection, Editing and Deletion Tools
	Selection Tool
	Selecting
	Selecting multiple items
	Deselecting
	Moving
	Resizing

	Editing Tool
	Deletion Tool
	Deleting

	The 2D and 3D views
	World Settings
	View Settings
	Tick Counter Settings
	Interacting with Agents
	Manipulating the 3D View
	Fullscreen Mode
	3D Shapes

	Command Center
	Reporters
	Accessing previous commands
	Clearing
	Arranging

	Plots
	Plot Pens
	Plot Pen Advanced Settings

	Agent Monitors

	Info Tab
	Editing
	Headings
	Input

	Paragraphs
	Example
	Formatted

	Italicized and bold text
	Example
	Formatted

	Ordered lists
	Example
	Formatted

	Unordered lists
	Example
	Formatted

	Links
	Automatic links
	Example
	Formatted

	Links with text
	Example
	Formatted

	Local links
	Example
	Example

	Images
	Example
	Formatted
	Local images
	Example
	Formatted

	Bundled images

	Block quotations
	Example
	Formatted

	Code
	Example
	Formatted

	Code blocks
	Example
	Formatted

	Superscripts and subscripts
	Example
	Formatted

	Notes on usage
	Other features

	Code Tab Guide
	Code Tab Toolbar
	Procedures menu

	Checking for Errors
	Separate Code tab
	Find & Replace
	Automatic Indentation
	Line Numbers
	More Editing Options
	Included Files

	Programming Guide
	Agents and Agentsets
	Agents
	Agentsets
	Special agentsets
	Agentsets and lists

	Breeds
	Link breeds

	Variables
	Links
	Tie
	Drawing
	Turtle shapes
	Link shapes

	Programming
	Procedures
	Ask
	Ask-Concurrent
	Syntax
	Colors
	Notice
	Keywords
	Identifiers
	Scope
	Comments
	Structure
	Commands and reporters
	Compared to other Logos
	Surface differences
	Deeper differences

	Multiple source files
	Buttons
	Anonymous procedures
	Anonymous procedure primitives
	Anonymous procedure inputs
	Anonymous procedures and strings
	Concise syntax
	Anonymous procedures as closures
	Nonlocal exits
	Anonymous procedures and extensions
	Limitations
	What is Optional?
	Code example

	World
	Tick counter
	When to tick
	Fractional ticks

	View updates
	Continuous updates
	Tick-based updates
	Choosing a mode
	Frame rate

	Topology

	Observer Perspective
	Input/Output
	Output
	How Output Primitives Differ
	User Interaction Primitives
	What does “Halt” mean?

	File I/O

	Lists
	Strings
	Mathematics
	Math
	Random numbers
	Auxiliary generator
	Local randomness
	Saving a Random Seed for a Run

	Plotting
	Plotting points
	Plot commands
	Other kinds of plots
	Histograms
	Clearing and resetting
	Ranges and auto scaling
	Using a Legend
	Temporary plot pens
	set-current-plot and set-current-plot-pen
	Conclusion

	Color
	Movies

	Transition Guide
	Changes for NetLogo 7.0.0
	Changes for NetLogo 6.1.0
	CF Extension Removal
	ifelse-value Precedence Change with Infix Operators

	Changes for NetLogo 6.0.3
	Arduino Extension Changes
	CF Extension Changes

	Changes for NetLogo 6.0
	Tasks replaced by Anonymous Procedures
	Link reporters overhauled to be more consistent and flexible
	New link reporter behavior
	Old link reporter behavior

	Removal of Applets
	Changes to the NetLogo User Interface
	Nobody Not Permitted as a Chooser Value
	Breeds must have singular and plural names
	Removal of “Movie” Prims
	Improved Name Collision Detection
	Removal of hubnet-set-client-interface
	Improved & Updated Extensions API
	Add range primitive

	Changes for NetLogo 5.2
	hsb primitives
	GoGo extension

	Changes for NetLogo 5.0
	Plotting
	Tick counter
	reset-ticks
	reset-ticks and plotting
	__clear-all-and-reset-ticks

	Unicode characters
	Info tabs
	Model speed
	List performance
	Extensions API
	Syntax constants
	LogoList construction
	Primitive classes

	Changes for NetLogo 4.1
	Combining set and of

	Changes for NetLogo 4.0
	Who numbering
	Turtle creation: randomized vs. “ordered”
	Adding strings and lists
	The -at primitives
	Links
	New “of” syntax
	Serial ask
	Tick counter
	View update modes
	How to make a model use ticks and tick-based updates

	Speed slider
	Numbers
	Agentset building
	RGB Colors
	Tie

	Changes for NetLogo 3.1
	Agentsets
	Wrapping
	Random turtle coordinates

	Extension Manager Guide
	Authoring and Sharing
	Interface

	Shapes Editor Guide
	Getting started
	Importing shapes

	Creating and editing turtle shapes
	Tools
	Previews
	Overlapping shapes
	Undo
	Colors
	Other buttons
	Shape design
	Keeping a shape

	Creating and editing link shapes
	Changing link shape properties

	Using shapes in a model

	BehaviorSpace Guide
	What is BehaviorSpace?
	Why BehaviorSpace?

	How It Works
	Managing experiment setups
	Creating an experiment setup
	Combinatorial syntaxes
	Subexperiment syntax
	Run metrics when
	Pre experiment commands
	Post experiment commands

	Importing and exporting
	Special primitives for BehaviorSpace experiments
	Running an experiment
	Run options: formats
	Table output
	Spreadsheet output
	Statistics output
	Lists output
	Output File Changes
	Run options: update plots and monitors
	Run options: parallel runs
	Observing runs
	Paused experiments

	Advanced Usage
	Running from the command line
	How to use it
	Examples

	Setting up experiments in XML
	Adjusting JVM Parameters
	Bspace Extension
	Controlling API

	System Dynamics Guide
	What is the NetLogo System Dynamics Modeler?
	Basic Concepts
	Sample Models

	How it Works
	Diagram Tab
	Creating Diagram Elements
	Working with Diagram Elements
	Editing dt
	Errors

	Code Tab
	The System Dynamics Modeler and NetLogo

	Tutorial: Wolf-Sheep Predation
	Step 1: Sheep Reproduction
	Step 2: NetLogo Integration
	Step 3: Wolf Predation

	HubNet Guide
	Understanding HubNet
	NetLogo
	HubNet Architecture

	Computer HubNet
	Activities
	Clients
	Requirements
	Starting an activity
	HubNet Control Center
	Troubleshooting
	I started a HubNet activity, but when participants open a HubNet Client, my activity isn’t listed.
	When a participant tries to connect to an activity, nothing happens (the client appears to hang or gives an error saying that no serverwas found).
	The view on the HubNet client is gray.
	There is no view on the HubNet client.
	I can’t quit a HubNet client.
	My computer went to sleep while running a HubNet activity. When I woke the computer up, I got an error and HubNet wouldn’t workanymore.
	My problem is not addressed on this page.

	Known Limitations

	Teacher workshops
	HubNet Authoring Guide
	Running HubNet in headless mode
	Getting help

	HubNet Authoring Guide
	Coding HubNet activities
	Setup
	Receiving messages from clients
	Sending messages to clients
	Examples

	How to make a client interface
	View updates on the clients
	Clicking in the view on clients
	Customizing the client’s view
	Plot updates on the clients

	Modeling Commons Guide
	Introduction
	Modeling Commons Accounts
	Uploading Models
	Upload a New Model
	Upload a Child of an Existing Model (“Forking”)

	Updating an Existing Model

	Command Line Switches
	Controlling Guide
	Mathematica Link
	What can I do with it?
	Installation
	Usage
	Known Issues
	Source code
	Credits

	NetLogo 3D
	Introduction
	3D Worlds
	The observer and the 3D view
	Custom Shapes

	Tutorial
	Step 1: Depth
	Step 2: Turtle Movement
	Step 3: Observer Movement

	Dictionary
	Commands and Reporters
	Turtle-related primitives
	Patch-related primitives
	Agentset primitives
	World primitives
	Observer movement primitives
	Link primitives

	Built-In Variables
	Turtles
	Patches

	Primitives
	at-points4.1
	agentset at-points [[x1 y1 z1] [x2 y2 z2] ...]

	distancexyz4.1distancexyz-nowrap4.1
	distancexyz xcor ycor zcordistancexyz-nowrap xcor ycor zcorTurtle CommandPatch Command

	dz4.1
	dzTurtle Command

	facefacexyz4.1
	face agentfacexyz x y zTurtle CommandObserver Movement Command

	left4.1
	left numberTurtle Command

	link-pitch4.1.2
	link-pitchLink Command

	load-shapes-3d4.1
	load-shapes-3d filenameObserver Movement Command

	max-pzcor4.1min-pzcor4.1
	max-pzcormin-pzcor

	neighbors4.1neighbors64.1
	neighborsneighbors6Turtle CommandPatch Command

	orbit-down4.1orbit-left4.1orbit-right4.1orbit-up4.1
	orbit-down numberorbit-left numberorbit-right numberorbit-up numberObserver Movement Command

	__oxcor__oycor__ozcor
	__oxcor__oycor__ozcorObserver Movement Command

	patch4.1
	patch pxcor pycor pzcor

	patch-at4.1
	patch-at dx dy dzTurtle CommandPatch Command

	patch-at-heading-pitch-and-distance4.1
	patch-at-heading-pitch-and-distance heading pitch distanceTurtle CommandPatch Command

	pitch
	pitchTurtle Command

	pzcor
	pzcorPatch CommandTurtle Command

	random-pzcor4.1
	random-pzcor

	random-zcor4.1
	random-zcor

	right4.1
	right numberTurtle Command

	roll
	rollTurtle Command

	roll-left4.1
	roll-left numberTurtle Command

	roll-right4.1
	roll-right numberTurtle Command

	setxyz4.1
	setxyz x y zTurtle CommandObserver Movement Command

	tilt-down4.1tilt-up4.1
	tilt-down numbertilt-up numberTurtle Command

	towards-pitch4.1towards-pitch-nowrap4.1
	towards-pitch agenttowards-pitch-nowrap agentTurtle CommandPatch Command

	towards-pitch-xyz4.1towards-pitch-xyz-nowrap4.1
	towards-pitch-xyz x y ztowards-pitch-xyz-no-wrap x y zTurtle CommandPatch Command

	turtles-at4.1<breeds>-at
	turtles-at dx dy dz<breeds>-at dx dy dzTurtle CommandPatch Command

	world-depth4.1
	world-depth

	zcor
	zcorTurtle Command

	zoom4.1
	zoom numberObserver Movement Command

	Extensions Guide
	Authoring and Sharing
	Using Extensions
	Where extensions are located

	Extension Authoring Introduction
	Technical Details
	Sharing Extensions with the Extension Manager

	Color Picker Guide
	Introduction
	Colors in NetLogo
	Simple Tab
	The Advanced Tab
	Introduction
	Input Format
	Output Format
	Output Formats for Different Contexts
	Details about RGB Output
	Details about the Alpha Bar

	NetLogo 7.0.0 Changes Overview
	Motivation
	Interface Tab
	Overview of Visual Changes to the Interface Tab
	Interface Elements (Widgets)
	Widget Sizes

	New File Format
	Tools in the NetLogo 7 Interface
	Overview: NetLogo Interface Tool Buttons and Dropdown menus
	New Interface Tools
	New Interface Menu

	The Color Picker
	Notifications
	The Info Tab
	Code Tab
	Color Themes and Code Syntax Highlighting
	Code Tab Toolbar
	Code Tab Preferences
	Included Files

	Menu Items
	Preferences Dialog
	File -> Resource Manager dialog

	Tools Menu Changes
	Turtle Shapes Editor and Link Shapes Editor
	Help Menu

	Collection of anonymous usage statistics

	NetLogo Preferences
	Overview
	General Preferences
	User Interface language
	Reload the last used model on startup
	Reload model on external changes
	Bold widget text
	Jump sliders to click location (instead of incrementing)
	UI scale
	Send anonymous usage statistics

	Code Preferences
	Sort “Procedures” menu by
	Always show “Included Files” menu
	Automatically jump to source of compilation error
	Open code tab in separate window on startup
	Auto Indent
	Show line numbers

	Logging Preferences
	Enable logging
	Directory to store logs
	Events to log:

	Color Themes
	Light
	Dark
	Classic

	Arduino
	Using
	Notes
	Compatibility
	Questions

	Primitives
	arduino:primitives
	arduino:primitives

	arduino:ports
	arduino:ports

	arduino:open
	arduino:open port-name

	arduino:close
	arduino:close

	arduino:get
	arduino:get var-name

	arduino:write-string
	arduino:write-string string-message

	arduino:write-int
	arduino:write-int int-message

	arduino:write-byte
	arduino:write-byte byte-message

	arduino:is-open?
	arduino:is-open?

	arduino:debug-to-arduino
	arduino:debug-to-arduino

	arduino:debug-from-arduino
	arduino:debug-from-arduino

	Array
	Using
	When to Use
	Example use of Array Extension

	Primitives
	array:from-list
	array:from-list list

	array:item
	array:item array index

	array:set
	array:set array index value

	array:length
	array:length array

	array:to-list
	array:to-list array

	Bitmap
	Using
	What does the Bitmap Extension do?
	Getting started

	Primitives
	bitmap:average-color
	bitmap:average-color image

	bitmap:channel
	bitmap:channel image channel

	bitmap:copy-to-drawing
	bitmap:copy-to-drawing image x y

	bitmap:copy-to-pcolors
	bitmap:copy-to-pcolors image boolean

	bitmap:difference-rgb
	bitmap:difference-rgb image1 image2

	bitmap:export
	bitmap:export image filename

	bitmap:from-base64
	bitmap:from-base64 base64-string

	bitmap:to-base64
	bitmap:to-base64 base64-string

	bitmap:from-view
	bitmap:from-view

	bitmap:to-grayscale
	bitmap:to-grayscale image

	bitmap:height
	bitmap:height image

	bitmap:import
	bitmap:import filename

	bitmap:scaled
	bitmap:scaled image width height

	bitmap:width
	bitmap:width image

	CSV
	Common use cases and examples
	Read a file all at once
	Read a file one line at a time
	Read a file one line per tick
	Write a file

	Primitives
	Formatting NetLogo data as CSV
	Parsing CSV input to NetLogo data
	csv:from-row
	csv:from-row stringcsv:from-row string delimiter

	csv:from-string
	csv:from-string stringcsv:from-string string delimiter

	csv:from-file
	csv:from-file csv-filecsv:from-file csv-file delimiter

	csv:to-row
	csv:to-row listcsv:to-row list delimiter

	csv:to-string
	csv:to-string listcsv:to-string list delimiter

	csv:to-file
	csv:to-file csv-file listcsv:to-file csv-file list delimiter

	GIS
	Using
	How to use
	Known Issues
	Credits

	Primitives
	RasterDataset Primitives
	Dataset Primitives
	VectorDataset Primitives
	Coordinate System Primitives
	Drawing Primitives
	gis:set-transformation
	gis:set-transformation gis-envelope netlogo-envelope

	gis:set-transformation-ds
	gis:set-transformation-ds gis-envelope netlogo-envelope

	gis:set-world-envelope
	gis:set-world-envelope gis-envelope

	gis:set-world-envelope-ds
	gis:set-world-envelope-ds gis-envelope

	gis:world-envelope
	gis:world-envelope

	gis:envelope-of
	gis:envelope-of thing

	gis:envelope-union-of
	gis:envelope-union-of envelope1 envelope2gis:envelope-union-of envelope1...

	gis:load-coordinate-system
	gis:load-coordinate-system file

	gis:set-coordinate-system
	gis:set-coordinate-system system

	gis:project-lat-lon
	gis:project-lat-lon latitude longitude

	gis:project-lat-lon-from-ellipsoid
	gis:project-lat-lon-from-ellipsoid latitude longitude ellipsoid-radius ellipsoid-inverse-flattening

	gis:load-dataset
	gis:load-dataset file

	gis:store-dataset
	gis:store-dataset dataset file

	gis:type-of
	gis:type-of dataset

	gis:patch-dataset
	gis:patch-dataset patch-variable

	gis:turtle-dataset
	gis:turtle-dataset turtle-set

	gis:link-dataset
	gis:link-dataset link-set

	gis:shape-type-of
	gis:shape-type-of VectorDataset

	gis:property-names
	gis:property-names VectorDataset

	gis:feature-list-of
	gis:feature-list-of VectorDataset

	gis:vertex-lists-of
	gis:vertex-lists-of VectorFeature

	gis:centroid-of
	gis:centroid-of VectorFeature

	gis:random-point-inside
	gis:random-point-inside VectorFeature

	gis:location-of
	gis:location-of Vertex

	gis:set-property-value
	gis:set-property-value VectorFeature property-name value

	gis:property-value
	gis:property-value VectorFeature property-name

	gis:find-features
	gis:find-features VectorDataset property-name specified-value

	gis:find-one-feature
	gis:find-one-feature VectorDataset property-name specified-value

	gis:find-less-than
	gis:find-less-than VectorDataset property-name value

	gis:find-greater-than
	gis:find-greater-than VectorDataset property-name value

	gis:find-range
	gis:find-range VectorDataset property-name minimum-value maximum-value

	gis:property-minimum
	gis:property-minimum VectorDataset property-name

	gis:property-maximum
	gis:property-maximum VectorDataset property-name

	gis:apply-coverage
	gis:apply-coverage VectorDataset property-name patch-variable

	gis:create-turtles-from-points
	gis:create-turtles-from-points VectorDataset breed commands

	gis:create-turtles-from-points-manual
	gis:create-turtles-from-points-manual VectorDataset breed property-mapping commands

	gis:create-turtles-inside-polygon
	gis:create-turtles-inside-polygon VectorFeature breed n commands

	gis:create-turtles-inside-polygon-manual
	gis:create-turtles-inside-polygon-manual VectorFeature breed n property-mapping commands

	gis:coverage-minimum-threshold
	gis:coverage-minimum-threshold

	gis:set-coverage-minimum-threshold
	gis:set-coverage-minimum-threshold new-threshold

	gis:coverage-maximum-threshold
	gis:coverage-maximum-threshold

	gis:set-coverage-maximum-threshold
	gis:set-coverage-maximum-threshold new-threshold

	gis:intersects?
	gis:intersects? x y

	gis:contains?
	gis:contains? x y

	gis:contained-by?
	gis:contained-by? x y

	gis:have-relationship?
	gis:have-relationship? x y

	gis:relationship-of
	gis:relationship-of x y

	gis:intersecting
	patch-set gis:intersecting data

	gis:width-of
	gis:width-of RasterDataset

	gis:height-of
	gis:height-of RasterDataset

	gis:raster-value
	gis:raster-value RasterDataset x y

	gis:set-raster-value
	gis:set-raster-value RasterDataset x y value

	gis:minimum-of
	gis:minimum-of RasterDataset

	gis:maximum-of
	gis:maximum-of RasterDataset

	gis:sampling-method-of
	gis:sampling-method-of RasterDataset

	gis:set-sampling-method
	gis:set-sampling-method RasterDataset sampling-method

	gis:raster-sample
	gis:raster-sample RasterDataset sample-location

	gis:raster-world-envelope
	gis:raster-world-envelope RasterDataset x y

	gis:create-raster
	gis:create-raster width height envelope

	gis:resample
	gis:resample RasterDataset envelope width height

	gis:convolve
	gis:convolve RasterDataset kernel-rows kernel-columns kernel key-column key-row

	gis:apply-raster
	gis:apply-raster RasterDataset patch-variable

	gis:drawing-color
	gis:drawing-color

	gis:set-drawing-color
	gis:set-drawing-color color

	gis:draw
	gis:draw vector-data line-thickness

	gis:fill
	gis:fill vector-data line-thickness

	gis:paint
	gis:paint RasterDataset transparency

	gis:import-wms-drawing
	gis:import-wms-drawing server-url spatial-reference layers transparency

	GoGo
	NetLogoLab and the GoGo Board Extension for sensors and robotics

	NetLogoLab and the GoGo Board Extension
	What is NetLogoLab?
	The GoGo Board NetLogo extension
	GoGo Board: a low-cost robotics and data-logging board
	Sensor and actuator toolkits
	NetLogo models

	How to get a GoGo Board?
	Installing and testing the GoGo Extension
	Windows
	Mac OS X
	Linux

	Usage
	Changes
	Primitives
	Other Outputs
	Utilities
	General
	Sensors
	Outputs and Servos
	gogo:primitives
	gogo:primitives

	gogo:howmany-gogos
	gogo:howmany-gogos

	gogo:init
	gogo:init

	gogo:talk-to-output-ports
	gogo:talk-to-output-ports list-of-portnames

	gogo:talk-to-servo-ports
	gogo:talk-to-servo-ports list-of-portnames

	gogo:set-output-port-power
	gogo:set-output-port-power power-level

	gogo:output-port-on
	gogo:output-port-on

	gogo:output-port-off
	gogo:output-port-off

	gogo:output-port-clockwise
	gogo:output-port-clockwise

	gogo:output-port-counterclockwise
	gogo:output-port-counterclockwise

	gogo:set-servo
	gogo:set-servo number

	gogo:led
	gogo:led on-or-off

	gogo:beep
	gogo:beep

	gogo:read-sensors
	gogo:read-sensors

	gogo:read-sensor
	gogo:read-sensor which-sensor

	gogo:read-all
	gogo:read-all

	gogo:send-bytes
	gogo:send-bytes list

	Examples of NetLogoLab models
	Controlling a car
	A simple sensing project

	LevelSpace
	LevelSpace fundamentals
	Headless and Interactive Models
	Keeping Track of Models
	A general use case: Asking and Reporting
	A general use case: Inter-Model Interactions
	A general Usecase: Tidying up “Dead” Child Models

	Citing LevelSpace in Research
	Primitives
	Commanding and Reporting
	Logic and Control
	Opening and Closing Models
	ls:create-models
	ls:create-models number pathls:create-models number path anonymous command

	ls:create-interactive-models
	ls:create-interactive-models number pathls:create-interactive-models number path anonymous command

	ls:close
	ls:close model-or-list-of-models

	ls:reset
	ls:reset

	ls:ask
	ls:ask model-or-list-of-models command argument

	ls:of
	reporter ls:of model-or-list-of-models

	ls:report
	ls:report model-or-list-of-models reporter argument

	ls:with
	list-of-models ls:with reporter

	ls:let
	ls:let variable-name value

	ls:assign
	ls:assign model-or-list-of-models global-variable value

	ls:models
	ls:models

	ls:show
	ls:show model-or-list-of-models

	ls:show-all
	ls:show-all model-or-list-of-models

	ls:hide
	ls:hide model-or-list-of-models

	ls:hide-all
	ls:hide-all model-or-list-of-models

	ls:path-of
	ls:path-of model-or-list-of-models

	ls:name-of
	ls:name-of model-or-list-of-models

	ls:model-exists?
	ls:model-exists? model-or-list-of-models

	ls:random-seed
	ls:random-seed seed

	Matrix
	Using
	When to Use
	How to Use
	Example

	Primitives
	Matrix creation and conversion to/from lists
	Advanced features
	Matrix data retrieval and manipulation
	Math operations
	matrix:make-constant
	matrix:make-constant n-rows n-cols initialValue

	matrix:make-identity
	matrix:make-identity size

	matrix:from-row-list
	matrix:from-row-list nested-list

	matrix:from-column-list
	matrix:from-column-list nested-list

	matrix:to-row-list
	matrix:to-row-list matrix

	matrix:to-column-list
	matrix:to-column-list matrix

	matrix:copy
	matrix:copy matrix

	matrix:pretty-print-text
	matrix:pretty-print-text matrix

	matrix:get
	matrix:get matrix row-i col-j

	matrix:get-row
	matrix:get-row matrix row-i

	matrix:get-column
	matrix:get-column matrix col-j

	matrix:set
	matrix:set matrix row-i col-j new-value

	matrix:set-row
	matrix:set-row matrix row-i simple-list

	matrix:set-column
	matrix:set-column matrix col-j simple-list

	matrix:swap-rows
	matrix:swap-rows matrix row1 row2

	matrix:swap-columns
	matrix:swap-columns matrix col1 col2

	matrix:set-and-report
	matrix:set-and-report matrix row-i col-j new-value

	matrix:dimensions
	matrix:dimensions matrix

	matrix:submatrix
	matrix:submatrix matrix r1 c1 r2 c2

	matrix:map
	matrix:map anonymous reporter matrixmatrix:map anonymous reporter matrix anything

	matrix:times-scalar
	matrix:times-scalar matrix factor

	matrix:times
	matrix:times m1 m2matrix:times m1 m2 ...

	matrix:*
	m1 matrix:* m2

	matrix:times-element-wise
	matrix:times-element-wise m1 m2

	matrix:plus-scalar
	matrix:plus-scalar matrix number

	matrix:plus
	matrix:plus m1 m2matrix:plus m1 m2 ...

	matrix:+
	m1 matrix:+ m2

	matrix:minus
	matrix:minus m1 m2matrix:minus m1 m2 ...

	matrix:-
	m1 matrix:- m2

	matrix:inverse
	matrix:inverse matrix

	matrix:transpose
	matrix:transpose matrix

	matrix:real-eigenvalues
	matrix:real-eigenvalues matrix

	matrix:imaginary-eigenvalues
	matrix:imaginary-eigenvalues matrix

	matrix:eigenvectors
	matrix:eigenvectors matrix

	matrix:det
	matrix:det matrix

	matrix:rank
	matrix:rank matrix

	matrix:trace
	matrix:trace matrix

	matrix:solve
	matrix:solve A C

	matrix:forecast-linear-growth
	matrix:forecast-linear-growth data-list

	matrix:forecast-compound-growth
	matrix:forecast-compound-growth data-list

	matrix:forecast-continuous-growth
	matrix:forecast-continuous-growth data-list

	matrix:regress
	matrix:regress data-matrix

	Networks
	Usage
	Special agentsets vs normal agentsets

	A note regarding floating point calculations
	Performance
	Primitives
	Generators
	Path and Distance
	Clusterer/Community Detection
	Context Management
	Import and Export
	Centrality Measures
	Clustering Measures
	nw:set-context
	nw:set-context turtleset linkset

	nw:get-context
	nw:get-context

	nw:with-context
	nw:with-context turtleset linkset command-block

	nw:turtles-in-radius
	nw:turtles-in-radius radius

	nw:turtles-in-reverse-radius
	nw:turtles-in-reverse-radius radius

	nw:distance-to
	nw:distance-to target-turtle

	nw:weighted-distance-to
	nw:weighted-distance-to target-turtle weight-variable

	nw:path-to
	nw:path-to target-turtle

	nw:turtles-on-path-to
	nw:turtles-on-path-to target-turtle

	nw:weighted-path-to
	nw:weighted-path-to target-turtle weight-variable

	nw:turtles-on-weighted-path-to
	nw:turtles-on-weighted-path-to target-turtle weight-variable

	nw:mean-path-length
	nw:mean-path-length

	nw:mean-weighted-path-length
	nw:mean-weighted-path-length weight-variable

	nw:betweenness-centrality
	nw:betweenness-centrality

	nw:eigenvector-centrality
	nw:eigenvector-centrality

	nw:page-rank
	nw:page-rank

	nw:closeness-centrality
	nw:closeness-centrality

	nw:weighted-closeness-centrality
	nw:weighted-closeness-centrality link-weight-variable

	nw:clustering-coefficient
	nw:clustering-coefficient

	nw:modularity
	nw:modularity

	nw:bicomponent-clusters
	nw:bicomponent-clusters

	nw:weak-component-clusters
	nw:weak-component-clusters

	nw:louvain-communities
	nw:louvain-communities

	nw:maximal-cliques
	nw:maximal-cliques

	nw:biggest-maximal-cliques
	nw:biggest-maximal-cliques

	nw:generate-preferential-attachment
	nw:generate-preferential-attachment turtle-breed link-breed num-nodes min-degree optional-command-block

	nw:generate-random
	nw:generate-random turtle-breed link-breed num-nodes connection-probability optional-command-block

	nw:generate-watts-strogatz
	nw:generate-watts-strogatz turtle-breed link-breed num-nodes neighborhood-size rewire-probability optional-command-block

	nw:generate-small-world
	nw:generate-small-world turtle-breed link-breed row-count column-count clustering-exponent is-toroidal optional-command-block

	nw:generate-lattice-2d
	nw:generate-lattice-2d turtle-breed link-breed row-count column-count is-toroidal optional-command-block

	nw:generate-ring
	nw:generate-ring turtle-breed link-breed num-nodes optional-command-block

	nw:generate-star
	nw:generate-star turtle-breed link-breed num-nodes optional-command-block

	nw:generate-wheel
	nw:generate-wheel turtle-breed link-breed num-nodes optional-command-block

	nw:save-matrix
	nw:save-matrix file-name

	nw:load-matrix
	nw:load-matrix file-name turtle-breed link-breed optional-command-block

	nw:save-graphml
	nw:save-graphml file-name

	nw:load-graphml
	nw:load-graphml file-name optional-command-block

	nw:load
	nw:load file-name default-turtle-breed default-link-breed optional-command-block

	nw:save
	nw:save file-name

	Palette
	Using the Palette Extension
	Getting Started
	Background
	Review of color representation in NetLogo
	Colors can be represented as NetLogo colors or RGB or RGBA colors
	Transparency
	HSB Color Specification

	More control over the color
	Varying an Agent’s Transparency or Color
	How do I choose a color scheme?
	Decide first whether to use a Sequential, Divergent or Qualitative color scheme
	Additional color considerations

	Should I use a continuous color gradient or just a discrete color set?
	Example Models
	Further Reading

	Primitives
	palette:alpha-of
	palette:alpha-of color

	palette:with-alpha
	color palette:with-alpha number

	palette:alpha
	palette:alpha

	palette:set-alpha
	palette:set-alpha number

	palette:transparency-of
	palette:transparency-of color

	palette:with-transparency
	color palette:with-transparency number

	palette:transparency
	palette:transparency

	palette:set-transparency
	palette:set-transparency number

	palette:hue-of
	palette:hue-of color

	palette:with-hue
	color palette:with-hue number

	palette:hue
	palette:hue

	palette:set-hue
	palette:set-hue number

	palette:saturation-of
	palette:saturation-of color

	palette:with-saturation
	color palette:with-saturation number

	palette:saturation
	palette:saturation

	palette:set-saturation
	palette:set-saturation number

	palette:brightness-of
	palette:brightness-of color

	palette:with-brightness
	color palette:with-brightness number

	palette:brightness
	palette:brightness

	palette:set-brightness
	palette:set-brightness number

	palette:R-of
	palette:R-of color

	palette:with-R
	color palette:with-R number

	palette:R
	palette:R

	palette:set-R
	palette:set-R number

	palette:G-of
	palette:G-of color

	palette:with-G
	color palette:with-G number

	palette:G
	palette:G

	palette:set-G
	palette:set-G number

	palette:B-of
	palette:B-of color

	palette:with-B
	color palette:with-B number

	palette:B
	palette:B

	palette:set-B
	palette:set-B number

	palette:scale-gradient
	palette:scale-gradient rgb-color-list number range1 range2

	palette:scale-gradient-hsb
	palette:scale-gradient-hsb rgb-color-list number range1 range2

	palette:scheme-colors
	palette:scheme-colors scheme-type scheme-color number-of-classes

	palette:scale-scheme
	palette:scale-scheme scheme-type scheme-color number-of-classes number range1 range2

	palette:scheme-dialog
	palette:scheme-dialog

	References

	Profiler
	Using the Profiler Extension
	How to use
	Example

	Primitives
	profiler:calls
	profiler:calls procedure-name

	profiler:exclusive-time
	profiler:exclusive-time procedure-name

	profiler:inclusive-time
	profiler:inclusive-time procedure-name

	profiler:start
	profiler:start

	profiler:stop
	profiler:stop

	profiler:reset
	profiler:reset

	profiler:report
	profiler:report

	profiler:data
	profiler:data

	Python
	Using
	Error handling

	Configuring
	Primitives
	py:setup
	py:setup python-executable

	py:python
	py:python

	py:python2
	py:python2

	py:python3
	py:python3

	py:run
	py:run python-statement

	py:runresult
	py:runresult python-expression

	py:set
	py:set variable-name value

	Resource
	Using
	Purpose
	Getting Started

	Primitives
	resource:get
	resource:get name

	resource:list
	resource:list

	Rnd
	Usage
	A note about performance
	Primitives
	AgentSet Primitives
	List Primitives
	rnd:weighted-one-of
	rnd:weighted-one-of agentset reporter

	rnd:weighted-n-of
	rnd:weighted-n-of size agentset [reporter]

	rnd:weighted-n-of-with-repeats
	rnd:weighted-n-of-with-repeats size agentset [reporter]

	rnd:weighted-one-of-list
	rnd:weighted-one-of-list list anonymous-reporter

	rnd:weighted-n-of-list
	rnd:weighted-n-of-list size list anonymous-reporter

	rnd:weighted-n-of-list-with-repeats
	rnd:weighted-n-of-list-with-repeats size list anonymous-reporter

	Sound
	Using
	How to Use
	MIDI support

	Primitives
	sound:drums
	sound:drums

	sound:instruments
	sound:instruments

	sound:play-drum
	sound:play-drum drum velocity

	sound:play-note
	sound:play-note instrument keynumber velocity duration

	sound:play-note-later
	sound:play-note-later delay instrument keynumber velocity duration

	Drum Names
	Instrument Names

	Simple R
	Using
	Error handling

	Citing Simple R in Research
	Primitives
	sr:setup
	sr:setup

	sr:run
	sr:run R-statementsr:run R-statement anything...

	sr:runresult
	sr:runresult R-expression

	sr:set
	sr:set variable-name value

	sr:set-agent
	sr:set-agent r-variable-name agent or agentset agent-variable-namesr:set-agent r-variable-name agent or agentset agent-variable-name1 agent-variable-name2...

	sr:set-agent-data-frame
	sr:set-agent-data-frame r-variable-name agents agent-variable-namesr:set-agent-data-frame r-variable-name agents agent-variable-name1 agent-variable-name2...

	sr:set-data-frame
	sr:set-data-frame r-variable-name column-name list or anythingsr:set-data-frame variable-name column-name1 list or anything 1 column-name2 list or anything 2...

	sr:set-list
	sr:set-list r-variable-name anythingsr:set-list r-variable-name anything1 anything2...

	sr:set-named-list
	sr:set-named-list r-variable-name column-name list or anythingsr:set-named-list r-variable-name column-name1 list or anything 1 column-name2 list or anything 2...

	sr:set-plot-device
	sr:set-plot-device

	sr:r-home
	sr:r-home

	sr:show-console
	sr:show-console

	Transitioning from the old R extension
	Using the Simple R code converter
	Handling a named list

	Table
	Using
	When to Use
	Example
	Manipulating Tables
	Key Restrictions

	Primitives
	table:clear
	table:clear table

	table:counts
	table:counts list

	table:group-agents
	table:group-agents agentset anonymous reporter

	table:group-items
	table:group-items list anonymous-reporter

	table:from-list
	table:from-list list

	table:from-json
	table:from-json string

	table:from-json-file
	table:from-json-file filename

	table:get
	table:get table key

	table:get-or-default
	table:get-or-default table key default-value

	table:has-key?
	table:has-key? table key

	table:keys
	table:keys table

	table:length
	table:length table

	table:make
	table:make

	table:put
	table:put table key value

	table:remove
	table:remove table key

	table:to-list
	table:to-list table

	table:to-json
	table:to-json table

	table:values
	table:values table

	Time
	Quickstart
	What is it?
	Installation
	Examples
	Data Types
	Behavior
	Format
	Date Format
	Supported Format Characters
	Date-time Bounds
	User Defined Formatting

	Primitives
	Date/Time Utilities
	Time Series Tool

	back to top
	Discrete Event Scheduler

	Building with SBT
	Authors
	Feedback? Bugs? Feature Requests?
	Credits
	Terms of Use
	Primitives

	Vid
	Concepts
	Video Source
	Source Lifecycle
	Video Recorder
	Known Issues

	Primitives
	vid:camera-names
	vid:camera-names

	vid:camera-open
	vid:camera-open

	vid:camera-select
	vid:camera-select

	vid:movie-select
	vid:movie-select

	vid:movie-open
	vid:movie-open filename

	vid:movie-open-remote
	vid:movie-open-remote url

	vid:close
	vid:close

	vid:start
	vid:start

	vid:stop
	vid:stop

	vid:status
	vid:status

	vid:capture-image
	vid:capture-image width height

	vid:set-time
	vid:set-time seconds

	vid:show-player
	vid:show-player width height

	vid:hide-player
	vid:hide-player

	vid:record-view
	vid:record-view

	vid:record-interface
	vid:record-interface

	vid:record-source
	vid:record-source

	vid:recorder-status
	vid:recorder-status

	vid:reset-recorder
	vid:reset-recorder

	vid:start-recorder
	vid:start-recorder

	vid:save-recording
	vid:save-recording filename

	View2.5D
	How to Use
	Incorporating Into Models
	Feedback

	Primitives
	view2.5d:patch-view
	view2.5d:patch-view Title Reporter

	view2.5d:decorate-patch-view
	view2.5d:decorate-patch-view Title

	view2.5d:undecorate-patch-view
	view2.5d:undecorate-patch-view Title

	view2.5d:turtle-view
	view2.5d:turtle-view Title Agents Reporter

	view2.5d:update-all-patch-views
	view2.5d:update-all-patch-views

	view2.5d:update-patch-view
	view2.5d:update-patch-view Title

	view2.5d:update-turtle-view
	view2.5d:update-turtle-view Title Agents

	view2.5d:get-z-scale
	view2.5d:get-z-scale title

	view2.5d:set-z-scale
	view2.5d:set-z-scale Title new-z-scale

	view2.5d:set-turtle-stem-thickness
	view2.5d:set-turtle-stem-thickness Title thickness

	view2.5d:set-turtle-stem-color
	view2.5d:set-turtle-stem-color Title colorReporter

	view2.5d:show-links-xy-plane
	view2.5d:show-links-xy-plane Title

	view2.5d:show-links-xyz
	view2.5d:show-links-xyz Title

	view2.5d:get-observer-angles
	view2.5d:get-observer-angles Title

	view2.5d:set-observer-angles
	view2.5d:set-observer-angles Title heading pitch

	view2.5d:get-observer-xy-focus
	view2.5d:get-observer-xy-focus Title

	view2.5d:set-observer-xy-focus
	view2.5d:set-observer-xy-focus Title number ycor

	view2.5d:get-observer-distance
	view2.5d:get-observer-distance Title

	view2.5d:set-observer-distance
	view2.5d:set-observer-distance Title new-distance

	view2.5d:remove-patch-view
	view2.5d:remove-patch-view Title

	view2.5d:remove-turtle-view
	view2.5d:remove-turtle-view Title

	view2.5d:remove-all-patch-views
	view2.5d:remove-all-patch-views

	view2.5d:remove-all-turtle-views
	view2.5d:remove-all-turtle-views

	view2.5d:count-windows
	view2.5d:count-windows

	FAQ (Frequently Asked Questions)
	General
	Why is it called NetLogo?
	How do I cite NetLogo or HubNet in a publication?
	How do I cite a model from the Models Library in a publication?
	Where and when was NetLogo created?
	What programming language was NetLogo written in?
	What’s the relationship between StarLogo and NetLogo?
	Under what license is NetLogo released? Is the source code available?
	Do you offer any workshops or other training opportunities for NetLogo?
	Are there any NetLogo textbooks?
	Is NetLogo available in other languages besides English?
	Is NetLogo compiled or interpreted?
	Has anyone built a model of <x>?
	Are NetLogo models runs scientifically reproducible?
	Will NetLogo and NetLogo 3D remain separate?
	Can I run NetLogo on my phone or tablet?

	Downloading
	Can I have multiple versions of NetLogo installed at the same time?
	I’m on a UNIX system and I can’t untar the download. Why?
	How do I install NetLogo unattended?

	Running
	Can I run NetLogo from a CD, a network drive, or a USB drive?
	Why is NetLogo so much slower when I unplug my Windows laptop?
	Why does NetLogo bundle Java?
	How come NetLogo won’t start up on my Linux machine?
	When I try to install NetLogo on Windows, I see “Windows protected your PC”
	When I try to start NetLogo on Windows I get an error “The JVM could not be started”. Help!
	NetLogo won’t start on Mac OS Sierra (or later)
	NetLogo won’t start on Windows or crashes suddenly on Mac OS Sierra
	How can I speed up the launching of NetLogo on a remote server that is behind a proxy?
	Can I run NetLogo from the command line, without the GUI?
	Does NetLogo take advantage of multiple processors?
	Can I distribute NetLogo model runs across a cluster or grid of computers?
	Is there any way to recover lost work if NetLogo crashes or freezes?
	Why is HubNet Discovery Not Working?

	Usage
	When I move the speed slider all the way to the right, why does my model seem to stop?
	Can I use the mouse to “paint” in the view?
	How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?
	Where are the NetLogo Configuration Files?
	Can I use GIS data in NetLogo?
	My model runs slowly. How can I speed it up?
	Can I have more than one model open at a time?
	Can I change the choices in a chooser on the fly?
	Can I divide the code for my model up into several files?

	Programming
	How does the NetLogo language differ from other Logos?
	How come my model from an earlier NetLogo doesn’t work right?
	How do I take the negative of a number?
	My turtle moved forward 1, but it’s still on the same patch. Why?
	How do I keep my turtles on patch centers?
	patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?
	How do I give my turtles “vision”?
	Can agents sense what’s in the drawing layer?
	I’m getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?
	The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to beincluded?
	Why is the number value in my monitor widget changing even though nothing is happening in my model?
	How can I keep two turtles from occupying the same patch?
	How can I find out if a turtle is dead?
	Does NetLogo have arrays?
	Does NetLogo have hash tables or associative arrays?
	How can I use different patch “neighborhoods” (circular, Von Neumann, Moore, etc.)?
	How can I convert an agentset to a list of agents, or vice versa?
	How do I stop foreach?
	I’m trying to make a list. Why do I keep getting the error “Expected a literal value”?

	BehaviorSpace
	Why are the rows in my BehaviorSpace table results out of order?
	How do I measure runs every n ticks?
	I’m varying a global variable I declared in the Code tab, but it doesn’t work. Why?

	NetLogo 3D
	Does NetLogo work with my stereoscopic device?

	Extensions
	I’m writing an extension. Why does the compiler say it can’t find org.nlogo.api?

	NetLogo Dictionary
	Categories
	Turtle-related
	Patch-related
	Link-related
	Agentset
	Color
	Control flow and logic
	Anonymous Procedures
	World
	Perspective
	HubNet
	Input/output
	File
	List
	String
	Mathematical
	Plotting
	BehaviorSpace
	System

	Built-In Variables
	Turtles
	Patches
	Links

	Keywords
	Constants
	Mathematical Constants
	Boolean Constants
	Color Constants

	A
	abs1.0
	abs number

	acos1.3
	acos number

	all?4.0
	all? agentset [reporter]

	and1.0
	boolean1 and boolean2

	any?2.0
	any? agentset

	approximate-hsb4.0
	approximate-hsb hue saturation brightness

	approximate-rgb4.0
	approximate-rgb red green blue

	Arithmetic Operators+1.0*1.0-1.0/1.0^1.0<1.0>1.0=1.0!=1.0<=1.0>=1.0
	asin1.3
	asin number

	ask1.0
	ask agentset [commands]ask agent [commands]

	ask-concurrent4.0
	ask-concurrent agentset [commands]

	at-points1.0
	agentset at-points [[x1 y1] [x2 y2] ...]

	atan1.0
	atan x y

	autoplot?1.0autoplotx?7.0autoploty?7.0
	autoplot?autoplotx?autoploty?

	auto-plot-off1.0auto-plot-x-off7.0auto-plot-y-off7.0auto-plot-on1.0auto-plot-x-on7.0auto-plot-y-on7.0
	auto-plot-offauto-plot-x-offauto-plot-y-offauto-plot-onauto-plot-x-onauto-plot-y-on

	B
	back1.0bk1.0
	back numberTurtle Command

	base-colors4.0
	base-colors

	beep2.1
	beep

	behaviorspace-experiment-name5.2
	behaviorspace-experiment-name

	behaviorspace-run-number4.1.1
	behaviorspace-run-number

	both-ends4.0
	both-endsLink Command

	breed
	breedTurtle CommandLink Command

	breed
	breed [<breeds> <breed>]

	but-first1.0butfirst1.0bf1.0but-last1.0butlast1.0bl1.0
	but-first listbut-first stringbut-last listbut-last string

	C
	can-move?3.1
	can-move? distanceTurtle Command

	carefully2.1
	carefully [commands1] [commands2]

	ceiling1.0
	ceiling number

	clear-all1.0ca1.0
	clear-all

	clear-all-plots1.0
	clear-all-plots

	clear-drawing3.0cd3.0
	clear-drawing

	clear-globals5.2
	clear-globals

	clear-links4.0
	clear-links

	clear-output1.0
	clear-output

	clear-patches1.0cp1.0
	clear-patches

	clear-plot
	clear-plot

	clear-ticks5.0
	clear-ticks

	clear-turtles1.0ct1.0
	clear-turtles

	color
	colorTurtle CommandLink Command

	cos1.0
	cos number

	count1.0
	count agentset

	create-ordered-turtles4.0cro4.0
	create-ordered-turtles numbercreate-ordered-turtles number [commands]create-ordered<breeds> numbercreate-ordered<breeds> number [commands]

	create-<breed>-tocreate-<breeds>-tocreate-<breed>-fromcreate-<breeds>-fromcreate-<breed>-withcreate-<breeds>-withcreate-link-to4.0create-links-to4.0create-link-from4.0create-links-from4.0create-link-with4.0create-links-with4.0
	create-<breed>-to turtlecreate-<breed>-to turtle [commands]create-<breed>-from turtlecreate-<breed>-from turtle [commands]create-<breed>-with turtlecreate-<breed>-with turtle [commands]create-<breeds>-to turtlesetcreate-<breeds>-to turtleset [commands]create-<breeds>-from turtlesetcreate-<breeds>-from turtleset [commands]create-<breeds>-with turtlesetcreate-<breeds>-with turtleset [commands]create-link-to turtlecreate-link-to turtle [commands]create-link-from turtlecreate-link-from turtle [commands]create-link-with turtlecreate-link-with turtle [commands]create-links-to turtlesetcreate-links-to turtleset [commands]create-links-from turtlesetcreate-links-from turtleset [commands]create-links-with turtlesetcreate-links-with turtleset [commands]Turtle Command

	create-turtles1.0crt1.0
	create-turtles numbercreate-turtles number [commands]create-<breeds> numbercreate-<breeds> number [commands]

	create-temporary-plot-pen1.1
	create-temporary-plot-pen string

	D
	date-and-time3.0
	date-and-time

	die1.0
	dieTurtle CommandLink Command

	diffuse1.0
	diffuse patch-variable number

	diffuse41.0
	diffuse4 patch-variable number

	directed-link-breed
	directed-link-breed [<link-breeds> <link-breed>]

	display1.0
	display

	distance1.0
	distance agentTurtle CommandPatch Command

	distancexy1.0
	distancexy x yTurtle CommandPatch Command

	downhill1.0downhill41.0
	downhill patch-variabledownhill4 patch-variableTurtle Command

	dx1.0dy1.0
	dxdyTurtle Command

	E
	empty?1.0
	empty? listempty? string

	end
	end

	end14.0
	end1Link Command

	end24.0
	end2Link Command

	error5.0
	error value

	error-message2.1
	error-message

	every1.0
	every number [commands]

	exp1.0
	exp number

	export-view3.0export-interface2.0export-output1.0export-plot1.0export-all-plots1.2.1export-world1.0
	export-view filenameexport-interface filenameexport-output filenameexport-plot plotname filenameexport-all-plots filenameexport-world filename

	extensions
	extensions [name ...]

	extract-hsb1.0
	extract-hsb color

	extract-rgb1.0
	extract-rgb color

	F
	face3.0
	face agentTurtle Command

	facexy3.0
	facexy x yTurtle Command

	file-at-end?2.0
	file-at-end?

	file-close2.0
	file-close

	file-close-all2.0
	file-close-all

	file-delete2.0
	file-delete string

	file-exists?2.0
	file-exists? string

	file-flush4.0
	file-flush

	file-open2.0
	file-open string

	file-print2.0
	file-print value

	file-read2.0
	file-read

	file-read-characters2.0
	file-read-characters number

	file-read-line2.0
	file-read-line

	file-show2.0
	file-show value

	file-type2.0
	file-type value

	file-write2.0
	file-write value

	filter1.3
	filter reporter list

	first1.0
	first listfirst string

	floor1.0
	floor number

	follow3.0
	follow turtle

	follow-me3.0
	follow-meTurtle Command

	foreach1.3
	foreach list command(foreach list1 ... command)

	forward1.0fd1.0
	forward numberTurtle Command

	fput1.0
	fput item list

	G
	globals
	globals [var1 ...]

	H
	hatch1.0
	hatch number [commands]hatch-<breeds> number [commands]Turtle Command

	heading
	headingTurtle Command

	hidden?
	hidden?Turtle CommandLink Command

	hide-link4.0
	hide-linkLink Command

	hide-turtle1.0ht1.0
	hide-turtleTurtle Command

	histogram1.0
	histogram list

	home1.0
	homeTurtle Command

	home-directory6.4.1
	home-directory

	hsb1.0
	hsb hue saturation brightness

	hubnet-broadcast1.1
	hubnet-broadcast tag-name value

	hubnet-broadcast-clear-output4.1
	hubnet-broadcast-clear-output

	hubnet-broadcast-message4.1
	hubnet-broadcast-message value

	hubnet-clear-override4.1hubnet-clear-overrides4.1
	hubnet-clear-override client agent-or-set variable-namehubnet-clear-overrides client

	hubnet-clients-list5.0
	hubnet-clients-list

	hubnet-enter-message?1.2.1
	hubnet-enter-message?

	hubnet-exit-message?1.2.1
	hubnet-exit-message?

	hubnet-fetch-message1.1
	hubnet-fetch-message

	hubnet-kick-client5.0
	hubnet-kick-client client-name

	hubnet-kick-all-clients5.0
	hubnet-kick-all-clients

	hubnet-message1.1
	hubnet-message

	hubnet-message-source1.1
	hubnet-message-source

	hubnet-message-tag1.1
	hubnet-message-tag

	hubnet-message-waiting?1.1
	hubnet-message-waiting?

	hubnet-reset1.1
	hubnet-reset

	hubnet-reset-perspective4.1
	hubnet-reset-perspective tag-name

	hubnet-send1.1
	hubnet-send string tag-name value
	hubnet-send list-of-strings tag-name value

	hubnet-send-clear-output4.1
	hubnet-send-clear-output string
	hubnet-send-clear-output list-of-strings

	hubnet-send-follow4.1
	hubnet-send-follow client-name agent radius

	hubnet-send-message4.1
	hubnet-send-message string value

	hubnet-send-override4.1
	hubnet-send-override client-name agent-or-set variable-name[reporter]

	hubnet-send-watch4.1
	hubnet-send-watch client-name agent

	I
	if1.0
	if boolean [commands]

	ifelse1.0
	ifelse boolean1 [commands1] [elsecommands](ifelse boolean1 [commands1] boolean2 [commands2] ... [elsecommands])6.1

	ifelse-value2.0
	ifelse-value boolean1 [reporter1] [elsereporter](ifelse-value boolean1 [reporter1] boolean2 [reporter2] ... [elsereporter])6.1

	import-drawing3.0
	import-drawing filename

	import-pcolors3.0
	import-pcolors filename

	import-pcolors-rgb4.0
	import-pcolors-rgb filename

	import-world1.0
	import-world filename

	in-cone3.0
	agentset in-cone distance angleTurtle Command

	in-<breed>-neighbor?in-link-neighbor?4.0
	in-<breed>-neighbor? agentin-link-neighbor? turtleTurtle Command

	in-<breed>-neighborsin-link-neighbors4.0
	in-<breed>-neighborsin-link-neighborsTurtle Command

	in-<breed>-fromin-link-from4.0
	in-<breed>-from turtlein-link-from turtleTurtle Command

	__includes4.0
	__includes [filename ...]

	in-radius1.0
	agentset in-radius numberTurtle CommandPatch Command

	insert-item6.0.2
	insert-item index list valueinsert-item index string1 string2

	inspect1.1
	inspect agent

	int1.0
	int number

	is-agent?1.2.1is-agentset?1.2.1is-anonymous-command?6.0is-anonymous-reporter?6.0is-boolean?1.2.1is-directed-link?4.0is-link?4.0is-link-set?4.0is-list?1.0is-number?1.2.1is-patch?1.2.1is-patch-set?4.0is-string?1.0is-turtle?1.2.1is-turtle-set?4.0is-undirected-link?4.0
	is-agent? valueis-agentset? valueis-anonymous-command? valueis-anonymous-reporter? valueis-boolean? valueis-<breed>? valueis-<link-breed>? valueis-directed-link? valueis-link? valueis-link-set? valueis-list? valueis-number? valueis-patch? valueis-patch-set? valueis-string? valueis-turtle? valueis-turtle-set? valueis-undirected-link? value

	item1.0
	item index listitem index string

	J
	jump1.0
	jump numberTurtle Command

	L
	label
	labelTurtle CommandLink Command

	label-color
	label-colorTurtle CommandLink Command

	last1.0
	last listlast string

	layout-circle4.0
	layout-circle agentset radiuslayout-circle list-of-turtles radius

	layout-radial4.0
	layout-radial turtle-set link-set root-agent

	layout-spring4.0
	layout-spring turtle-set link-set spring-constant spring-length repulsion-constant

	layout-tutte4.0
	layout-tutte turtle-set link-set radius

	left1.0lt1.0
	left numberTurtle Command

	length1.0
	length listlength string

	let2.1
	let variable value

	link4.0
	link end1 end2<breed> end1 end2

	link-heading4.0
	link-headingLink Command

	link-length4.0
	link-lengthLink Command

	link-set4.0
	link-set value(link-set value1 value2 ...)

	link-shapes4.0
	link-shapes

	links4.0
	links

	links-own
	links-own [var1 ...]<link-breeds>-own [var1 ...]

	list1.0
	list value1 value2(list value1 ...)

	ln1.0
	ln number

	log1.0
	log number base

	loop1.0
	loop [commands]

	lput1.0
	lput value list

	M
	map1.3
	map reporter list(map reporter list1 ...)

	max1.0
	max list

	max-n-of4.0
	max-n-of number agentset [reporter]

	max-one-of1.0
	max-one-of agentset [reporter]

	max-pxcor3.1max-pycor3.1
	max-pxcormax-pycor

	mean1.0
	mean list

	median1.0
	median list

	member?1.0
	member? value listmember? string1 string2member? agent agentset

	min1.0
	min list

	min-n-of4.0
	min-n-of number agentset [reporter]

	min-one-of1.0
	min-one-of agentset [reporter]

	min-pxcor3.1min-pycor3.1
	min-pxcormin-pycor

	mod1.0
	number1 mod number2

	modes2.0
	modes list

	mouse-down?1.0
	mouse-down?

	mouse-inside?3.0
	mouse-inside?

	mouse-xcor1.0mouse-ycor1.0
	mouse-xcormouse-ycor

	move-to4.0
	move-to agentTurtle Command

	my-<breeds>my-links4.0
	my-<breeds>my-linksTurtle Command

	my-in-<breeds>my-in-links4.0
	my-in-<breeds>my-in-linksTurtle Command

	my-out-<breeds>my-out-links4.0
	my-out-<breeds>my-out-linksTurtle Command

	myself1.0
	myselfTurtle CommandPatch CommandLink Command

	N
	n-of3.1
	n-of size agentsetn-of size list

	n-values2.0
	n-values size reporter

	neighbors1.1neighbors41.1
	neighborsneighbors4Turtle CommandPatch Command

	<breed>-neighborslink-neighbors4.0
	<breed>-neighborslink-neighborsTurtle Command

	<breed>-neighbor?link-neighbor?4.0
	<breed>-neighbor? turtlelink-neighbor? turtleTurtle Command

	netlogo-version3.0
	netlogo-version

	netlogo-web?5.2
	netlogo-web?

	new-seed3.0
	new-seed

	no-display1.0
	no-display

	nobody
	nobody

	no-links4.0
	no-links

	no-patches4.0
	no-patches

	not1.0
	not boolean

	no-turtles4.0
	no-turtles

	O
	of4.0
	[reporter] of agent[reporter] of agentset

	one-of1.0
	one-of agentsetone-of list

	or1.0
	boolean1 or boolean2

	other4.0
	other agentsetTurtle CommandPatch Command

	other-end4.0
	other-endTurtle CommandLink Command

	out-<breed>-neighbor?out-link-neighbor?4.0
	out-<breed>-neighbor? turtleout-link-neighbor? turtleTurtle Command

	out-<breed>-neighborsout-link-neighbors4.0
	out-<breed>-neighborsout-link-neighborsTurtle Command

	out-<breed>-toout-link-to4.0
	out-<breed>-to turtleout-link-to turtleTurtle Command

	output-print2.1output-show2.1output-type2.1output-write2.1
	output-print valueoutput-show valueoutput-type valueoutput-write value

	P
	patch1.0
	patch xcor ycor

	patch-ahead2.0
	patch-ahead distanceTurtle Command

	patch-at1.0
	patch-at dx dyTurtle CommandPatch Command

	patch-at-heading-and-distance2.0
	patch-at-heading-and-distance heading distanceTurtle CommandPatch Command

	patch-here1.0
	patch-hereTurtle Command

	patch-left-and-ahead2.0patch-right-and-ahead2.0
	patch-left-and-ahead angle distancepatch-right-and-ahead angle distanceTurtle Command

	patch-set4.0
	patch-set value1(patch-set value1 value2 ...)

	patch-size4.1
	patch-size

	patches1.0
	patches

	patches-own
	patches-own [var1 ...]

	pcolor
	pcolorPatch CommandTurtle Command

	pen-down1.0pd1.0pen-erase3.0pe3.0pen-up1.0pu1.0
	pen-downpen-erasepen-upTurtle Command

	pen-mode
	Turtle Command

	pen-size
	Turtle Command

	plabel
	plabelPatch CommandTurtle Command

	plabel-color
	plabel-colorPatch CommandTurtle Command

	plot1.0
	plot number

	plot-name1.0
	plot-name

	plot-pen-exists?4.0
	plot-pen-exists? string

	plot-pen-down1.0plot-pen-up1.0
	plot-pen-downplot-pen-up

	plot-pen-reset1.0
	plot-pen-reset

	plotxy1.0
	plotxy number1 number2

	plot-x-min1.0plot-x-max1.0plot-y-min1.0plot-y-max1.0
	plot-x-minplot-x-maxplot-y-minplot-y-max

	position1.0
	position item listposition string1 string2

	precision1.0
	precision number places

	print1.0
	print value

	pxcorpycor
	pxcorpycorPatch CommandTurtle Command

	R
	random1.0
	random number

	random-float2.0
	random-float number

	random-exponential1.2.1random-gamma2.0random-normal1.2.1random-poisson1.2.1
	random-exponential meanrandom-gamma alpha lambdarandom-normal mean standard-deviationrandom-poisson mean

	random-pxcor3.1random-pycor3.1
	random-pxcorrandom-pycor

	random-seed1.0
	random-seed number

	random-xcor3.1random-ycor3.1
	random-xcorrandom-ycor

	range6.0
	range stop(range start stop)(range start stop step)

	read-from-string1.1
	read-from-string string

	reduce1.3
	reduce reporter list

	remainder1.2.1
	remainder number1 number2

	remove1.0
	remove item listremove string1 string2

	remove-duplicates1.0
	remove-duplicates list

	remove-item2.0
	remove-item index listremove-item index string

	repeat1.0
	repeat number [commands]

	replace-item1.0
	replace-item index list valuereplace-item index string1 string2

	report1.0
	report value

	reset-perspective3.0rp3.0
	reset-perspective

	reset-ticks4.0
	reset-ticks

	reset-timer1.0
	reset-timer

	resize-world4.1
	resize-world min-pxcor max-pxcor min-pycor max-pycor

	reverse1.0
	reverse listreverse string

	rgb1.0
	rgb red green blue

	ride3.0
	ride turtle

	ride-me3.0
	ride-meTurtle Command

	right1.0rt1.0
	right numberTurtle Command

	round1.0
	round number

	run1.3runresult1.3
	run command(run command input1 ...)run stringrunresult reporter(runresult reporter input1 ...)runresult string

	S
	scale-color1.0
	scale-color color number range1 range2

	self1.3
	selfTurtle CommandPatch CommandLink Command

	; (semicolon)
	; comments

	sentence1.0se1.0
	sentence value1 value2(sentence value1 ...)

	set1.0
	set variable value

	set-current-directory2.0
	set-current-directory string

	set-current-plot1.0
	set-current-plot plotname

	set-current-plot-pen1.0
	set-current-plot-pen penname

	set-default-shape1.0
	set-default-shape turtles stringset-default-shape links stringset-default-shape breed string

	set-histogram-num-bars1.0
	set-histogram-num-bars number

	__set-line-thickness
	__set-line-thickness numberTurtle Command

	set-patch-size4.1
	set-patch-size size

	set-plot-background-color6.0.2
	set-plot-background-color color

	set-plot-pen-color1.0
	set-plot-pen-color color

	set-plot-pen-interval1.0
	set-plot-pen-interval number

	set-plot-pen-mode1.0
	set-plot-pen-mode number

	setup-plots5.0
	setup-plots

	set-plot-x-range1.0set-plot-y-range1.0
	set-plot-x-range min maxset-plot-y-range min max

	set-topology7.0
	set-topology wraps-in-x? wraps-in-y?

	setxy1.0
	setxy x yTurtle Command

	shade-of?1.0
	shade-of? color1 color2

	shape
	shapeTurtle CommandLink Command

	shapes2.1
	shapes

	show1.0
	show value

	show-turtle1.0st1.0
	show-turtleTurtle Command

	show-link4.0
	show-linkLink Command

	shuffle2.0
	shuffle list

	sin1.0
	sin number

	size
	sizeTurtle Command

	sort1.0
	sort listsort agentset

	sort-by1.3
	sort-by reporter listsort-by reporter agentset

	sort-on5.0
	sort-on [reporter] agentset

	sprout1.0
	sprout number [commands]sprout-<breeds> number [commands]Patch Command

	sqrt1.0
	sqrt number

	stamp1.0
	stampTurtle CommandLink Command

	stamp-erase3.1
	stamp-eraseTurtle CommandLink Command

	standard-deviation1.0
	standard-deviation list

	startup
	startup

	stop1.0
	stop

	stop-inspecting5.2
	stop-inspecting agent

	stop-inspecting-dead-agents5.2
	stop-inspecting-dead-agents

	subject3.0
	subject

	sublist2.1substring1.0
	sublist list position1 position2substring string position1 position2

	subtract-headings2.1
	subtract-headings heading1 heading2

	sum1.0
	sum list

	T
	tan1.0
	tan number

	thickness
	thicknessLink Command

	tick4.0
	tick

	tick-advance4.0
	tick-advance number

	ticks4.0
	ticks

	tie4.0
	tieLink Command

	tie-mode
	tie-modeLink Command

	timer1.0
	timer

	to
	to procedure-nameto procedure-name [input1 ...]

	to-report
	to-report procedure-nameto-report procedure-name [input1 ...]

	towards1.0
	towards agentTurtle CommandPatch Command

	towardsxy1.0
	towardsxy x yTurtle CommandPatch Command

	turtle1.0
	turtle number<breed> number

	turtle-set4.0
	turtle-set value1(turtle-set value1 value2 ...)

	turtles1.0
	turtles

	turtles-at1.0
	turtles-at dx dy<breeds>-at dx dyTurtle CommandPatch Command

	turtles-here1.0
	turtles-here<breeds>-hereTurtle CommandPatch Command

	turtles-on2.0
	turtles-on turtle or patchturtles-on turtleset or agentset<breeds>-on turtle or patch<breeds>-on turtleset or patchsetTurtle CommandPatch Command

	turtles-own
	turtles-own [var1 ...]<breeds>-own [var1 ...]

	type1.0
	type value

	U
	undirected-link-breed
	undirected-link-breed [<link-breeds> <link-breed>]

	untie4.0
	untieLink Command

	up-to-n-of6.1
	up-to-n-of size agentsetup-to-n-of size list

	update-plots5.0
	update-plots

	uphill1.0uphill41.0
	uphill patch-variableuphill4 patch-variableTurtle Command

	user-directory3.1
	user-directory

	user-file3.1
	user-file

	user-new-file3.1
	user-new-file

	user-input1.1
	user-input value(user-input value default-value)7.0

	user-message1.1
	user-message value

	user-one-of3.1
	user-one-of value list-of-choices

	user-yes-or-no?2.0
	user-yes-or-no? value

	V
	variance1.0
	variance list

	W
	wait1.0
	wait number

	watch3.0
	watch agent

	watch-me3.0
	watch-meTurtle CommandPatch CommandLink Command

	while1.0
	while [reporter] [commands]

	who
	whoTurtle Command

	who-are-not6.3.1
	agentset who-are-not agentsetagentset who-are-not agent

	with1.0
	agentset with [reporter]

	<breed>-withlink-with4.0
	<breed>-with turtlelink-with turtleTurtle Command

	with-max2.1
	agentset with-max [reporter]

	with-min2.1
	agentset with-min [reporter]

	with-local-randomness4.0
	with-local-randomness [commands]

	without-interruption1.1
	without-interruption [commands]

	word1.0
	word value1 value2(word value1 ...)

	world-width3.1world-height3.1
	world-widthworld-height

	wrap-color1.0
	wrap-color number

	write2.0
	write value

	X
	xcor
	xcorTurtle Command

	xor1.0
	boolean1 xor boolean2

	Y
	ycor
	ycorTurtle Command

	->
	->6.0
	[[args] -> commands][[args] -> reporter]

